首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forest trees are involved in root symbioses with hundreds of species of ectomycorrhizal fungi which constitute functional guilds able to improve the water and mineral nutrition of host trees. In temperate ecosystems, water shortage is a main factor limiting tree vitality. To assess how soil water conditions affected the physiological state of beech (Fagus silvatica L.) ectomycorrhizal roots, we monitored glucose respiration of two ectomycorrhizal types (Lactarius sp. and Cenococcum geophilum) during two complete growing seasons. Five stands of contrasting soil conditions were chosen in north-eastern France. The top soil horizons were equipped with micropsychrometers for measuring water potential and temperature. Glucose respiration on individual ectomycorrhizas was measured in vitro by trapping [14C]-CO2 from radiolabelled glucose. For soil water potential <-0.2 MPa, the potential respiration activity of C. geophilumectomycorrhizas was significantly less altered than that of Lactariussp. ectomycorrhizas, indicating that C. geophilumis more likely than Lactariussp. to maintain the physiological integrity of beech roots facing drought stress.  相似文献   

2.
Regeneration dynamics of beech forests in Japan   总被引:4,自引:0,他引:4  
  相似文献   

3.
Minirhizotrons were used to observe fine root (Б mm) production, mortality, and longevity over 2 years in four sugar-maple-dominated northern hardwood forests located along a latitudinal temperature gradient. The sites also differed in N availability, allowing us to assess the relative influences of soil temperature and N availability in controlling fine root lifespans. Root production and mortality occurred throughout the year, with most production occurring in the early portion of the growing season (by mid-July). Mortality was distributed much more evenly throughout the year. For surface fine roots (0-10 cm deep), significant differences in root longevity existed among the sites, with median root lifespans for root cohorts produced in 1994 ranging from 405 to 540 days. Estimates of fine root turnover, based on the average of annual root production and mortality as a proportion of standing crop, ranged from 0.50 to 0.68 year-1 for roots in the upper 30 cm of soil. The patterns across sites in root longevity and turnover did not follow the north to south temperature gradient, but rather corresponded to site differences in N availability, with longer average root lifespans and lower root turnover occurring where N availability was greater. This suggests the possibility that roots are maintained as long as the benefit (nutrients) they provide outweighs the C cost of keeping them alive. Root N concentrations and respiration rates (at a given temperature) were also higher at sites where N availability was greater. It is proposed that greater metabolic activity for roots in nitrogen-rich zones leads to greater carbohydrate allocation to those roots, and that a reduction in root C sink strength when local nutrients are depleted provides a mechanism through which root lifespan is regulated in these forests.  相似文献   

4.
Vertical distribution of root density (length per unit soil volume) and abundance (length per unit ground surface area) to a depth of 1.5 m or to the depth of the water table and their relationships with soil properties and tree basal area were examined in 36 soil profiles of pine-oak and oak-pine forests of the New Jersey Pinelands. Soil morphology were almost uniform within the forest type and characterized by the presence of high coarse fragment contents in the C horizon in oak-pine uplands; by the spodic B horizon and water table in the C horizon in pine-oak lowlands; by the sandy soil throughout the profile in pine-oak uplands; and by the firm argillic B horizon in pine-oak plains. Root density decreased from ranges of 44423–133369 m m-3 in the 0–5 cm depth in all the forest types to 1900–5593 m m-3 in the 100–150 cm depth in all the forest types except in pine-oak lowlands. Total profile root density and abundance was in the order: oak-pine uplands>pine-oak lowlands>pine-oak uplands>pine-oak plains. Root density correlated positively with organic C, total N, water soluble P, exchangeable Ca, Mg, K, Al, Fe, and cation exchange capacity, and negatively with bulk density, coarse fraction content, and pH, whereas root abundance correlated positively with organic C, total N, water soluble P, exchangeable Ca, Mg, K, and Fe, and negatively with bulk density. No correlation existed between root density and abundance with tree basal area. Higher root density in the E horizon of oak-pine uplands as compared to the other forest types was associated with high nutrient content; higher root density in the C horizon of pine-oak lowlands was associated with a shallow water table beneath the horizon; and lower root densities in the B and C horizons of pine-oak plains were associated with the presence of a firm clay layer in the B horizon.  相似文献   

5.
Seasonality in fine root standing crop and production was studied in two tropical dry evergreen forests viz., Marakkanam reserve forest (MRF) and Puthupet sacred grove (PSG) in the Coromandel coast of India. The study extended from December 89 to December 91 in MRF and from August 90 to December 91 in PSG with sampling at every 2 months. Total fine interval. Mean fine root standing crop was 134 g m−2 in MRF and 234 g m−2 in PSG. root production was 104 g m−2 yr−1 in MRF and 117 g m−2 yr−1 in PSG. These estimates lie within the range for fine roots reported for various tropical forests. Rootmass showed a pronounced seasonal pattern with unimodal peaks obtained during December in the first year and from October–December in the second year in MRF. In PSG greater rootmass was noticed from June–October than other times of sampling. The total root mass in MRF ranged from 114 to 145 g m−2 at the 13 sampling dates in the three sites. The live biomass fraction of fine roots in MRF ranged from 46 to 203 g m−2 and in PSG it ranged from 141 to 359 g mm−2 during the study periods. The dead necromass fraction of fine roots ranged from 6 to 37 g m−2 in MRF and from 12 to 66 g m−2 in PSG. Fine root production peaked during December in both the forest sites. The necromass fraction of newly produced roots was negligible. Total N was slightly greater in PSG than in MRF. Whereas total P level was almost similar in both the sites. The study revealed that season and site characteristics influenced fine root system.  相似文献   

6.
The fine roots of plants are key structures enabling soil resource acquisition, yet our understanding of their dynamics and the factors governing them is still underdeveloped, especially in tropical forests. We evaluated whether Bornean tree communities on soils with contrasting resource availability display different soil resource uptake strategies, based on their fine root properties and dynamics, and related responses of fine roots to the availability of multiple nutrients. Using root cores and ingrowth cores, we quantified variation in community-level fine root properties (biomass, length, and area) and their growth rates, biomass turnover rate, and specific root length (SRL) between clay and sandy loam soils, on which tree community composition differs dramatically. We found that standing fine root biomass and biomass, length, and area growth were higher in sandy loam, the soil type that is better-drained, coarser-textured, and less fertile for most nutrients. In clay SRL was significantly greater, and turnover tended to be faster, than in sandy loam. Across both soils, greater supplies of K+, NH4 +, and PO4 3? were associated with greater standing biomass and growth rates of fine roots, suggesting foraging for these nutrients. Our data support the hypothesis that the sandy loam tree community achieves fine root absorptive area through faster growth and greater investment on a mass basis, whereas trees on clay achieve a similar standing absorptive area through slower growth of less-dense fine root tissues. Furthermore, our results suggest colimitation by multiple nutrients, which may enhance tree species coexistence through increased dimensionality of soil-resource niches.  相似文献   

7.
The knowledge of the relationship between plant communities and soil types presents a valuable interpretation base for damage assessment. As expected, trees growing on unfavourable sites (e.g. on soils with impeded water) react more sensitively to secondary stress factors such as air pollutants than trees on suitable sites. With a declining nutrient supply in the series Elymo-Fagetum, Asperulo-Fagetum, Violo-Quercetum we recognize a corresponding increase of the damage level in the tree layer of these forest communities. However, ecological site parameters are not always sufficient for an explanation of the high damage level of some communities. It is supposed that a specific structure of these communities is responsible for a considerable proportion of severely damaged trees. Particular crown integration in the tree layer of forests and damage levels are closely connected. The influence of forest structure therefore masks the damage components affected by soil conditions.  相似文献   

8.
Leuschner  Christoph  Hertel  Dietrich  Schmid  Iris  Koch  Oliver  Muhs  Annette  Hölscher  Dirk 《Plant and Soil》2004,258(1):43-56
Only very limited information exists on the plasticity in size and structure of fine root systems, and fine root morphology of mature trees as a function of environmental variation. Six northwest German old-growth beech forests (Fagus sylvatica L.) differing in precipitation (520 – 1030 mm year–1) and soil acidity/fertility (acidic infertile to basic fertile) were studied by soil coring for stand totals of fine root biomass (0–40 cm plus organic horizons), vertical and horizontal root distribution patterns, the fine root necromass/biomass ratio, and fine root morphology (root specific surface area, root tip frequency, and degree of mycorrhizal infection). Stand total of fine root biomass, and vertical and horizontal fine root distribution patterns were similar in beech stands on acidic infertile and basic fertile soils. In five of six stands, stand fine root biomass ranged between 320 and 470 g m–2; fine root density showed an exponential decrease with soil depth in all profiles irrespective of soil type. An exceptionally small stand fine root biomass (<150 g m–2) was found in the driest stand with 520 mm year–1 of rainfall. In all stands, fine root morphological parameters changed markedly from the topsoil to the lower profile; differences in fine root morphology among the six stands, however, were remarkably small. Two parameters, the necromass/biomass ratio and fine root tip density (tips per soil volume), however, were both much higher in acidic than basic soils. We conclude that variation in soil acidity and fertility only weakly influences fine root system size and morphology of F. sylvatica, but affects root system structure and, probably, fine root mortality. It is hypothesized that high root tip densities in acidic infertile soils compensate for low nutrient supply rates, and large necromasses are a consequence of adverse soil chemical conditions. Data from a literature survey support the view that rainfall is another major environmental factor that influences the stand fine root biomass of F. sylvatica.  相似文献   

9.
10.
Nakahata  Ryo  Osawa  Akira 《Plant and Soil》2017,420(1-2):467-480
Plant and Soil - The survival and coexistence of plants in water-limited environments are related to their ability to coordinate water acquisition and regulation of water loss. To assess the...  相似文献   

11.
Fine root mass in relation to soil N supply in a cool temperate forest   总被引:1,自引:0,他引:1  
Soil inorganic nitrogen supply and fine root mass in the top layers of mineral soil (0–5 and 5–10cm) were investigated at upper and lower sites of a cool temperate forest where Fagus crenata and Quercus crispula dominate. At both sites, soil inorganic nitrogen supply was greatest in the 0–5cm layer. The predominant forms of soil inorganic nitrogen supply were NH4+-N at the upper site and NO3-N at the lower site. Fine roots were concentrated in the 0–5cm layer at the upper site, but not at the lower site. The form of supplied soil inorganic nitrogen supply can be important in determining the vertical distribution of fine roots.  相似文献   

12.
The trends in the occurrence of climatic disturbances in the ChineseFagus range are described, and the relationship between woody species diversity and climatic factors in eight old-growth Chinese beech forests is characterized. In the ChineseFagus range that lies in the humid mountains of southern China, wind storms and heavy rain frequency increase towards the eastern coast. Thunderstorm frequency increases southwards. Snowfall frequency increases northwards. Glaze storm frequency peaks in the center near Lake Dongtian, but much higher in the east than in the west. Hailstorm frequency also peaks in the center. The forests sampled in this study are widely separated. Their canopies consist of either deciduous broad-leaved trees or a mixture of evergreen and deciduous broad-leaved trees. Their species diversity increases towards warmer sites and towards the east. The importance of the evergreen trees in relation to warmth and minimum temperature increases southwards. Our analysis suggests that wind storms and heavy rains enhance the species diversity of Chinese beech forests. Cold disturbances such as glaze and snow diminish the diversity and canopy dominance of evergreen broad-leaved trees but favor deciduous broad-leaved trees, especially beech. The annual precipitation received by the forests in this study varies from 1400–2550 mm. This is not correlated with diversity, however, probably because all of these forests grow in humid conditions with sufficient water being supplied by precipitation throughout the year.  相似文献   

13.
M. R. Davis 《Plant and Soil》1990,126(2):237-246
Concentrations of ions were measured in soil solutions from beech (Nothofagus) forests in remote areas of New Zealand and in solutions from beech (Fagus sylvatica) and Norway spruce (Picea abies) forests in North-East Bavaria, West Germany, to compare the chemistry of soil solutions which are unaffected by acid deposition (New Zealand) with those that are affected (West Germany). In New Zealand, soil solution SO4 2– concentrations ranged between <2 and 58 mol L–1, and NO3 concentrations ranged between <1 and 3 mol L–1. In West Germany, SO4 2– concentrations ranged between 80 and 700 mol L–1, and NO3 concentrations at three of six sites ranged between 39 and 3750 mol L–1, but was not detected at the remaining three sites. At all sites in New Zealand, and at sites where the soil base status was moderately high in West Germany, pH levels increased, and total Al (Alt) and inorganic monomeric Al (Ali) levels decreased rapidly with increasing soil depth. In contrast, at sites on soils of low base status in West Germany, pH levels increased only slightly, and Al levels did not decline with increasing soil depth.Under a high-elevation Norway spruce stand showing severe Mg deficiency and dieback symptoms in West Germany, soil solution Mg2+ levels ranged between 20 and 60 mol L, and were only half those under a healthy stand. Alt and Ali levels were substantially higher the healthy stand than under the unhealthy stand, indicating that Al toxicity was not the main cause of spruce decline.  相似文献   

14.
15.
16.
Plant and Soil - We aimed to clarify the intraspecific variation in the morphological traits of branch orders under different soil conditions in Chamaecyparis obtusa (Siebold &amp; Zucc.) Endl....  相似文献   

17.
18.
Precipitation as a key determinant of forest productivity influences forest ecosystems also indirectly through alteration of the nutrient status of the soil, but this interaction is not well understood. Along a steep precipitation gradient, we studied the consequences of reduced precipitation for the soil and biomass nutrient pools and dynamics in 14 mature European beech (Fagus sylvatica L.) forests on Triassic sandstone. We tested the hypotheses that lowered summer precipitation (1) is associated with less acid soils and (2) a reduced accumulation of organic matter on the forest floor, and (3) reduces nutrient supply from the soil and leads to decreasing foliar and root nutrient concentrations. Soil acidity, the amount of forest floor organic matter, and the associated organic matter N and P pools decreased to about a half from wet to dry sites; the C/P and N/P ratios, but not the C/N ratio, of forest floor organic matter were reduced as well. Net N mineralization and P and K pools in the mineral soil did not change with decreasing precipitation. Foliar P and K concentrations (beech sun leaves) increased while N remained constant, resulting in decreasing foliar N/P and N/K ratios. Estimated N resorption efficiency increased toward the dry sites. We conclude that a reduction in summer rainfall significantly reduces the soil C, N and P pools but does not result in decreasing foliar N and P contents in beech. However, the decreasing foliar N/P ratios towards the dry stands indicate that the importance of P limitation for tree growth declines with decreasing precipitation.  相似文献   

19.
20.
不同年龄三倍体毛白杨纸浆林生长期间细根变化规律   总被引:5,自引:0,他引:5  
以3、5、6及7年生三倍体毛白杨纸浆林为对象,于2008年研究生长期(4—11月)细根生物量、根长密度和细根表面积的月动态变化和垂直分布的变化。结果表明:细根生物量、根长密度或细根表面积在4—11月均表现为单峰曲线,其中细根生物量的峰值出现在8月,而根长密度和细根表面积的峰值出现在9月;细根生物量、根长密度及细根表面积的平均值随年龄的增加而增加,3、5、6及7年生的三倍体毛白杨细根生物量分别为658.3、750.6、1048.1和1115.0kg.hm-2,相应地根长密度分别为12.490×103、9.983×103、9.227×103和5.921×103m.m-3,细根表面积分别为12.17、18.68、22.23和25.28m2.m-3;细根生物量、根长密度及细根表面积的垂直分布表现为表层化,随年龄的增加表层细根增多,其中细根生物量的46.36%~51.12%、根长密度的62.77%~75.33%、细根表面积的61.74%~64.16%均分布在0~10cm土层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号