首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Key message

Stem reorientation is critical to tree survival. With anatomical observation and strain measurement, the tension wood formation and biomechanical behavior were studied to gain insights into tree uprighting process.

Abstract

Tension wood plays a role in maintaining the mechanical stability of angiosperm trees. Both biological and physical aspects of tension wood are essential in understanding the mechanism of trunk or branch reorientation. In this study, we worked on both tension wood formation and its biomechanical function in artificially inclined 2-year-old Koelreuteria henryi seedlings. The tension wood formation and reorientation process of the trunk last for about 3 months. With pinning method, we confirmed that at the beginning of inclination the cambial zone including the vascular cambium and the developing normal wood fibers on the upper side of the inclined trunk perceives the onset of mechanical change and starts to produce G-fibers that generate a strong contractile released growth strain (RGS) for gravitropic correction. Stronger contractile RGS and more tension wood were found at the trunk base than at the half-height, suggesting that the trunk base plays a key role in trunk uprighting of K. henryi seedlings. The eccentric cambial growth in the tension wood side increases the efficiency of gravitropic correction and the compressive strains measured in the opposite wood of some inclined seedlings also help the upright movement.
  相似文献   

2.

Key message

Functional branch analysis (FBA) is a promising non-destructive method that can produce accurate tree biomass equations when applied to trees which exhibit fractal branching architecture.

Abstract

Functional branch analysis (FBA) is a promising non-destructive alternative to the standard destructive method of tree biomass equation development. In FBA, a theoretical model of tree branching architecture is calibrated with measurements of tree stems and branches to estimate the coefficients of the biomass equation. In this study, species-specific and mixed-species tree biomass equations were derived from destructive sampling of trees in Western Kenya and compared to tree biomass equations derived non-destructively from FBA. The results indicated that the non-destructive FBA method can produce biomass equations that are similar to, but less accurate than, those derived from standard methods. FBA biomass prediction bias was attributed to the fact that real trees diverged from fractal branching architecture due to highly variable length–diameter relationships of stems and branches and inaccurate scaling relationships for the lengths of tree crowns and trunks assumed under the FBA model.  相似文献   

3.

Background

Isometric gene tree reconciliation is a gene tree/species tree reconciliation problem where both the gene tree and the species tree include branch lengths, and these branch lengths must be respected by the reconciliation. The problem was introduced by Ma et al. in 2008 in the context of reconstructing evolutionary histories of genomes in the infinite sites model.

Results

In this paper, we show that the original algorithm by Ma et al. is incorrect, and we propose a modified algorithm that addresses the problems that we discovered. We have also improved the running time from \(O(N^2)\) to \(O(N\log N)\), where N is the total number of nodes in the two input trees. Finally, we examine two new variants of the problem: reconciliation of two unrooted trees and scaling of branch lengths of the gene tree during reconciliation of two rooted trees.

Conclusions

We provide several new algorithms for isometric reconciliation of trees. Some questions in this area remain open; most importantly extensions of the problem allowing for imprecise estimates of branch lengths.
  相似文献   

4.

Background and Aims

Olive tree (Olea europaea L.) is a drought-tolerant tree species cultivated in Mediterranean-type environments. Although it is tolerant to drought, dry conditions decrease its productivity. A thorough analysis of the hydraulic architecture and wood anatomical plasticity, as well as of their physiological significance, is needed to understand how olive trees will adapt to the predicted increase in frequency and severity of drought in the Mediterranean region.

Methods

Dendrochronological, stable isotopic (δ13C, δ18O) and wood anatomical analyses were applied to understand how different water availability can affect wood stem structure and function, in rainfed and irrigated at 100 % of crop evapotranspiration (ETc) olive trees in an experimental orchard close to Benevento (Italy) from 1992 to 2009.

Results

Dendrochronological data indicate that cross-dating and synchronization of ring-width time series in olive tree is possible. After the start of irrigation, significantly more negative δ13C and lower δ18O values were recorded in irrigated trees indicating higher stomatal conductance and transpiration rates. Increased water balance induced the formation of a higher number of vessels with higher diameter.

Conclusions

Water balance variations affected wood anatomy and isotopic composition. Anatomical analyses detected structural and functional adjustments in rainfed trees that produced more vessels with lower diameter to prevent cavitation. Isotopic analyses confirmed that irrigated trees continuously showed enhanced transpiration rates.  相似文献   

5.

Key message

This study provides data necessary to develop mechanistic models of the failure of open-grown trees. The literature contains few such data. Some results contrast previous studies on conifers.

Abstract

In cities and towns, tree failure can cause damage and injury. Few studies have considered large, open-grown trees when measuring parameters related to tree failure. To measure elastic modulus and maximum bending moment and stress, we winched red oaks (Quercus rubra L.), including some with co-dominant stems and others with extant decay. To simulate decay in a subsample of trees, we cut voids in the trunk before pulling trees to failure. Maximum bending moment was greatest for uprooted trees, but maximum bending and shear stresses were greatest for trees that failed in the crown in the vicinity of branches. The likelihood of failure at a void or area of extant decay increased as the loss in area moment of inertia increased. The moduli of elasticity and rupture of specimens taken from trees were greater than values measured on the trees themselves. Failure at the union of co-dominant stems only occurred when we pulled them apart, loading them perpendicular to the plane bifurcating the union. Some of the results are inconsistent with previous work on conifers; more data on open-grown trees are necessary to develop mechanistic models to predict tree failure.  相似文献   

6.

Key message

We developed the generalized branch diameter and length models using the multi-level nonlinear mixed-effects techniques for the natural Dahurian larch ( Larix gmelini ) forest in northeast China.

Abstract

Dahurian larch (Larix gmelini) is the most commercially cultivated timber species in northeastern China due to its ecological prevalence and its superior wood attribute. However, its timber quality was largely driven by the crown architecture, i.e., the number, size and distribution of branches. The majority of branch-level models in the literature are focused on planted forests, which have substantially different crown architecture than that grown in natural mixed forests. Therefore, the goal of this investigation was to develop branch diameter and length models for Dahurian larch that are grown in natural mixed forests. A multi-level nonlinear mixed-effects model technique, including the fixed-effects, random-effects, variance functions and correlation structures, was employed to develop the branch growth models. The results suggested that the cumulative branch diameter and length were both increased with the increases of branch depth into the crown. Diameter at breast height (DBH) had significant positive influences on the branch size; however, tree height (HT) produced negative influences on the branch size, i.e., larger DBH and smaller HT could lead to larger branch size. Model fitting and validation results confirmed that we should avoid developing over-complex models from the perspective of application. As for the branch diameter and length models in our study, addressing the stand and tree level effects as random component were quite reliable and accurate for predicting the branch growth process of Dahurian larch in northeastern China.
  相似文献   

7.

Background and Aims

Plastic tree-shelters are increasingly used to protect tree seedlings against browsing animals and herbicide drifts. The biomass allocation in young seedlings of deciduous trees is highly disturbed by common plastic tree-shelters, resulting in poor root systems and reduced diameter growth of the trunk. The shelters have been improved by creating chimney-effect ventilation with holes drilled at the bottom, resulting in stimulated trunk diameter growth, but the root deficit has remained unchanged. An experiment was set up to elucidate the mechanisms behind the poor root growth of sheltered Prunus avium trees.

Methods

Tree seedlings were grown either in natural windy conditions or in tree-shelters. Mechanical wind stimuli were suppressed in ten unsheltered trees by staking. Mechanical stimuli (bending) of the stem were applied in ten sheltered trees using an original mechanical device.

Key Results

Sheltered trees suffered from poor root growth, but sheltered bent trees largely recovered, showing that mechano-sensing is an important mechanism governing C allocation and the shoot–root balance. The use of a few artificial mechanical stimuli increased the biomass allocation towards the roots, as did natural wind sway. It was demonstrated that there was an acclimation of plants to the imposed strain.

Conclusions

This study suggests that if mechanical stimuli are used to control plant growth, they should be applied at low frequency in order to be most effective. The impact on the functional equilibrium hypothesis that is used in many tree growth models is discussed. The consequence of the lack of mechanical stimuli should be incorporated in tree growth models when applied to environments protected from the wind (e.g. greenhouses, dense forests).Key words: Prunus avium, growth, mechanical stress, bending, biomass, shoot/root ratio, wind, shelter  相似文献   

8.

Key message

The developed model of gravitropism takes non-instantaneous maturation of wood into account which enabled to correctly simulate different gravitropic phases and realistic internal stress profiles.

Abstract

A new biomechanical model of tree movement in relation to gravity (gravitropism) is proposed in this study. The modelling of the progressive maturation of wood cells is taken into account, as well as spatio-temporal variations in maturation strains (MS) and mechanical properties. MS were identified using an inverse method that allows the model to fit the gravitropic reaction observed experimentally. For this purpose, the curvature during righting movement, the geometry and the mass distribution of a two-year-old poplar tree was measured. The identified MS are higher than expected, which shows the underestimation of MS by usual measurements. By using the same mechanical parameters and MS as an input, the model gives satisfying results in terms of shape modelling for different trees up to 32 days after tree tilting. The model is able to simulate the latency phase observed in the tree righting movement, and the internal stress profile in the trunk is realistic (low compressive value in the central part of the trunk and zero stress in newly formed cells). The next development of the model will aim to simulate the end of the gravitropic phase in relation with the regulation of MS by the tree.  相似文献   

9.

Key message

Across five biogeographic areas, DBH-CA allometry was characterized by inter-site homogeneity and intra-site heterogeneity, whereas the reverse was observed for DBH-H allometry.

Abstract

Tree crowns play a central role in stand dynamics. Remotely sensed canopy images have been shown to allow inferring stand structure and biomass which suggests that allometric scaling between stems and crowns may be tight, although insufficiently investigated to date. Here, we report the first broad-scale assessment of stem vs. crown scaling exponents using measurements of bole diameter (DBH), total height (H), and crown area (CA) made on 4148 trees belonging to 538 species in five biogeographic areas across the wet tropics. Allometries were fitted with power functions using ordinary least-squares regressions on log-transformed data. The inter-site variability and intra-site (sub-canopy vs. canopy trees) variability of the allometries were evaluated by comparing the scaling exponents. Our results indicated that, in contrast to both DBH-H and H-CA allometries, DBH-CA allometry shows no significant inter-site variation. This fairly invariant scaling calls for increased effort in documenting crown sizes as part of tree morphology. Stability in DBH-CA allometry, indeed, suggests that some universal constraints are sufficiently pervasive to restrict the exponent variation to a narrow range. In addition, our results point to inverse changes in the scaling exponent of the DBH-CA vs. DBH-H allometries when shifting from sub-canopy to canopy trees, suggesting a change in carbon allocation when a tree reaches direct light. These results pave the way for further advances in our understanding of niche partitioning in tree species, tropical forest dynamics, and to estimate AGB in tropical forests from remotely sensed images.
  相似文献   

10.

Background

Several methods have been developed for the accurate reconstruction of gene trees. Some of them use reconciliation with a species tree to correct, a posteriori, errors in gene trees inferred from multiple sequence alignments. Unfortunately the best fit to sequence information can be lost during this process.

Results

We describe GATC, a new algorithm for reconstructing a binary gene tree with branch length. GATC returns optimal solutions according to a measure combining both tree likelihood (according to sequence evolution) and a reconciliation score under the Duplication-Transfer-Loss (DTL) model. It can either be used to construct a gene tree from scratch or to correct trees infered by existing reconstruction method, making it highly flexible to various input data types. The method is based on a genetic algorithm acting on a population of trees at each step. It substantially increases the efficiency of the phylogeny space exploration, reducing the risk of falling into local minima, at a reasonable computational time. We have applied GATC to a dataset of simulated cyanobacterial phylogenies, as well as to an empirical dataset of three reference gene families, and showed that it is able to improve gene tree reconstructions compared with current state-of-the-art algorithms.

Conclusion

The proposed algorithm is able to accurately reconstruct gene trees and is highly suitable for the construction of reference trees. Our results also highlight the efficiency of multi-objective optimization algorithms for the gene tree reconstruction problem. GATC is available on Github at: https://github.com/UdeM-LBIT/GATC.
  相似文献   

11.

Background and Aims

Wood density is a key variable for understanding life history strategies in tropical trees. Differences in wood density and its radial variation were related to the shade-tolerance of six canopy tree species in seasonally dry tropical forest in Thailand. In addition, using tree ring measurements, the influence of tree size, age and annual increment on radial density gradients was analysed.

Methods

Wood density was determined from tree cores using X-ray densitometry. X-ray films were digitized and images were measured, resulting in a continuous density profile for each sample. Mixed models were then developed to analyse differences in average wood density and in radial gradients in density among the six tree species, as well as the effects of tree age, size and annual increment on radial increases in Melia azedarach.

Key Results

Average wood density generally reflected differences in shade-tolerance, varying by nearly a factor of two. Radial gradients occurred in all species, ranging from an increase of (approx. 70%) in the shade-intolerant Melia azedarach to a decrease of approx. 13% in the shade-tolerant Neolitsea obtusifolia, but the slopes of radial gradients were generally unrelated to shade-tolerance. For Melia azedarach, radial increases were most-parsimoniously explained by log-transformed tree age and annual increment rather than by tree size.

Conclusions

The results indicate that average wood density generally reflects differences in shade-tolerance in seasonally dry tropical forests; however, inferences based on wood density alone are potentially misleading for species with complex life histories. In addition, the findings suggest that a ‘whole-tree’ view of life history and biomechanics is important for understanding patterns of radial variation in wood density. Finally, accounting for wood density gradients is likely to improve the accuracy of estimates of stem biomass and carbon in tropical trees.Key words: Radial gradients, shade-tolerance, tree biomass estimates, tree rings, tropical trees, wood density  相似文献   

12.

Background and Aims

This study is a first step in a multi-stage project aimed at determining allometric relationships among the tropical tree organs, and carbon fluxes between the various tree parts and their environment. Information on canopy–root interrelationships is needed to improve understanding of above- and below-ground processes and for modelling of the regional and global carbon cycle. Allometric relationships between the sizes of different plant parts will be determined.

Methods

Two tropical forest species were used in this study: Ceiba pentandra (kapok), a fast-growing tree native to South and Central America and to Western Africa, and Khaya anthotheca (African mahogany), a slower-growing tree native to Central and Eastern Africa. Growth and allometric parameters of 12-month-old saplings grown in a large-scale aeroponic system and in 50-L soil containers were compared. The main advantage of growing plants in aeroponics is that their root systems are fully accessible throughout the plant life, and can be fully recovered for harvesting.

Key Results

The expected differences in shoot and root size between the fast-growing C. pentandra and the slower-growing K. anthotheca were evident in both growth systems. Roots were recovered from the aeroponically grown saplings only, and their distribution among various diameter classes followed the patterns expected from the literature. Stem, branch and leaf allometric parameters were similar for saplings of each species grown in the two systems.

Conclusions

The aeroponic tree growth system can be utilized for determining the basic allometric relationships between root and shoot components of these trees, and hence can be used to study carbon allocation and fluxes of whole above- and below-ground tree parts.  相似文献   

13.
The theory of tree bole and branch form   总被引:1,自引:0,他引:1  
Summary Working from the general postulate that natural selection of plant form operates so as to maximize the survival potential of a species, this paper examines the hypothesis that the mechanical support of tree foliage must approach optimality in the use of wood, i.e., that tree stems and branches will have optimal form with respect to the amount of support tissue. Mathematical models of bole and branch form are presented, based on the proposition that either wind or gravity are the primary limiting factors for tree size and shape. Predictions of trunk and branch diameter as a function of tree size were tested with dimensional measurements ofPopulus tremuloides. The individual stems were selected from close-grown stands of differing ages. For small and intermediate trees, trunk diameter is such that stems have only 1.6 times as much wood as the minimum required to keep the tree from buckling under its own weight due to elastic instability. Branch diameters are shown to be close to the minimum required to maintain the spatial position of growing branches, as well as withstand wind forces. This minimal branch cost not only reduces the load which the stem must support against elastic instability, but allows the crown to flex in high winds. The flexing, in turn, reduces the drag force exerted by the wind on the trunk. Thus, the hypothesis that the observed tree form is an optimal design cannot be rejected on the basis of these results. Additional studies are planned with respect to optimal foliage distribution.  相似文献   

14.
S. Meguro  A. Miyawaki 《Plant Ecology》1994,112(2):101-111
The mechanical properties of broad-leaf tree species in a maritime-wind exposed habitat in central Japan were examined. The broad-leaf trees studied were Celtis sinensis var. japonica, Ilex integra, Eurya japonica, Pittosporum tobira, Euonymus japonicus and Cinnamomum japonicum. The results obtained can be summarized briefly as follows:
  1. At places with weaker wind, the number of species increased and the height of the canopy increased.
  2. The fracture strength σm showed no dependence on tree part or branch thickness, but was constant.
  3. The order of strength was Celtis sinensis var. japonica > Ilex integra > Eurya japonica > Pittosporum tobira > Euonymus japonicus > Cinnamomum japonicum, and these six species could best adapt to the wind pressure in the study area.
  4. Within species, fracture strength varied directly with wind strength.
  5. The strain εm decreased as the trunk became thicker.
  6. Within species, strain energy Um varied directly with wind strength.
  相似文献   

15.

Key message

We demonstrate that tropical trees growing in wet climates can have a marked seasonality in cambium activity and stem growth associated with high temperature and day length of summer.

Abstract

Monitoring the rhythm of tree growth associated with the growth rings can contribute substantially to understanding forest dynamics and the management of tropical forests. In this study, we monitored the girth increment rhythm and described the wood characteristics (anatomy of growth rings, wood specific gravity) in 10 tropical tree species (103 individuals) naturally occurring in a wet and weakly seasonal region of Atlantic Forest in southern Brazil. We aimed to verify whether tree growth dynamics are associated with climate and woody anatomy in tropical trees with contrasting ecological characteristics. We installed permanent dendrometer bands and monthly assessed the girth increment for 22 months. We collected wood samples (non-destructive method), measured wood specific gravity and prepared permanent slides to characterize the growth ring markers. We found growth rings in all species (distinct in six species); deciduous species produced more distinguishable tree rings compared with semi-deciduous and evergreen tree species. Species varied in their accumulated girth growth (in average, from 1.83 to 62.64 mm), growth rates (1–15 %), and annual radial increment (0.16–5.44 mm). Girth increment was positively related to temperature and day length in five out of ten tree species, indicating the possible effects of these climatic variables in triggering cambial activity in these species. The growth pattern varied among species and was marginally associated to the tree deciduousness. We concluded that even in wet and less seasonal climates, there can be an association in the cambium activity and stem growth with the hotter and longer days of summer months.
  相似文献   

16.

Key Message

Morphological plasticity helps plants to cope to environmental conditions. Allometric responses of the mangrove Avicennia germinans to increasing salinity are easily detectable when focusing on the top height trees.

Abstract

Several studies show that mangrove trees possess high species- and site-related trait allometry, suggesting large morphological plasticity that might be related to environmental conditions, but the causes of such variation are not clearly understood and systematic quantification is still missing. Both aspects are essential for a mechanistic understanding of the development and functioning of forests. We analyzed the role of salinity in the allometric relations of the mangrove Avicennia germinans, using: (1) the top height trees (trees with the largest diameters at breast height, which reflect forest properties at the maximum use of resources); (2) the slenderness coefficient (which indicates competition and environmental conditions); and (3) the crown to DBH ratio. These standard tools for forest scientists dealing with terrestrial forests are suitable to analyze the plastic responses of mangroves to salinity. First, the top height trees help to recognize structural forest properties that are not detectable when studying the whole stand. Second, we found that at salinities above 55 ‰, trees are less slender and develop wider crowns in relation to DBH than when growing at lower salinities. Our results suggest a significant change in allometric traits in relation to salinity, and reflect the plastic responses of tree traits in response to environmental variation. Understanding the plastic responses of plants to their environment can help to better model, predict, and manage forests in changing environments.  相似文献   

17.

Key message

Congeneric species showed similar stem and crown allometry, but differed in crown dimensions indicating that crown size is adaptive and variable despite mechanical restrictions.

Abstract

Morphological adaptations favor differential use of the space in tropical trees, but the variability in stem and crown allometry can be constrained by phylogenetic and mechanical factors. In addition, dioecious species show marked differences in their energy requirements related to reproduction, but little information is available about the role of shape and allometry on differential acquisition of energy between the sexes. We studied the stem and crown dimensions of congeneric dioecious trees to determine if there are: (i) differences in the allometry between the sexes, (ii) different average sizes among sympatric species, and (iii) differences in stem and crown allometry between sympatric and allopatric species. Two pairs of sympatric Virola (Myristicaceae) in Brazil and Costa Rica were studied. SMA regression models were used to investigate allometric relationships between diameter at breast height (DBH) and tree height, and between DBH and crown volume (CV). No sexual dimorphism in stem and crown morphology was observed in this study, indicating that differences in resource allocation for reproduction between the sexes do not impact the stem and crown structure in these species. Overall, low variability among the species was observed. Only one species differed in stem allometry and none differed in crown allometry. CV differed between sympatric species. Stem and crown allometry are related to structural stability and our results support similar mechanical restriction for these species. The ecological significance of differences in CV among canopy species remains to be explored.
  相似文献   

18.
19.

Key message

The level of stresses of tension wood changes during the gravitropic movement. These changes are induced by the perception of strains experienced by the tree during reorientation to the upright position.

Abstract

In most hardwood species, tension wood is produced to ensure tropic movements in radially growing organs. Tension wood exhibits internal tensional forces (autostresses) greater than those of normal wood, which enable the trunk to restore its verticality. During the gravitropic response, there is a first phase when the trunk curves upwards and a second phase when the trunk decurves to reach a final vertical and straight shape. Tension wood appears to be of varying strength, but the source of these variations remains partly undefined. We set out to assess the involvement of mechanosensing in the regulation of the strength of tension wood. Autostress levels characterise the strength of tension wood and can be indirectly estimated by measuring the associated residual longitudinal maturation strains (rlms) after the autostresses release. The higher the tension, the higher the measured associated shrinkage. To look for the involvement of mechanosensing in the regulation of tension wood strength, rlms were measured in different types of experiments in which the trunk mechanical state was modified. Results showed that (1) bigger trees exhibited higher levels of rlms, (2) there was a quantitative relationship between the rlms and the sum of strains experienced by the trunk, (3) artificial curving induced an increase in rlms and (4) in tilted staked trees, rlms increased towards negative values for 3 weeks and then remained constant. These findings are consistent evidence for the regulation of rlms values by mechanosensing. This brings new insight into gravitropism.  相似文献   

20.

Key message

The threshold minimum air temperature driving xylem growth of alpine  Rhododendron aganniphum is lower than that commonly observed at the treeline of conifers.

Abstract

Understanding how alpine shrubs grow and which environmental factors drive their biomass gain could help to functionally differentiate trees and shrubs. The cambium is the main meristem responsible for wood formation in trees and shrubs. Thus, a better knowledge of cambium growth dynamics in alpine shrubs would allow explaining why shrubs displace trees above the treeline. Here, we aim to investigate the timings and dynamics of xylogenesis and to identify the thermal thresholds controlling the onset of xylem growth of Rhododendron aganniphum, a tall shrub growing above the alpine treeline on the Tibetan Plateau. Timings of xylogenesis and radial growth rates were assessed from anatomical observations of the developing xylem during three growing seasons (2011, 2012, and 2013). The threshold temperature at which xylogenesis had a 0.5 probability of being active was calculated with logistic regressions. The onset of xylogenesis was observed between mid and late June, whereas the end of xylogenesis lasted from mid to late September. Overall, the duration of xylem growth lasted 88–101 days, and 94 % of the ring was formed from June to August. The threshold for the onset of xylem growth was observed at 2.0 ± 0.6 °C for the minimum air temperature, lower than that commonly observed for treeline conifers (ca. 6 °C). This low thermal threshold allows alpine shrubs to have a growing season long enough to complete xylem production and maturation during the warmest summer months. Our results suggest that the time required to complete xylogenesis is critical to understand why shrubs displace trees above the treeline.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号