首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein and soluble nitrogen distribution in different parts of lettuce seedling was studied in light and darkness and in presence and absence of gibberellic acid. In dark, applied gibberellic acid failed to show any marked effect on the nitrogen changes in lettuce. Light inhibits translocation of nitrogen reserves from the cotyledons. Gibberellic acid reverses the light inhibition of longitudinal growth but has no effect on the inhibition of translocation from the cotyledons. Light grown, gibberellic acid treated seedlings exhibit a pattern of protein and soluble-N which is characteristic of the dark grown seedlings. Thus gibberellic acid not only causes morphological reversal of light inhibition but also shifts the nitrogen metabolism of light grown plants, close to that of plants grown in darkness.  相似文献   

2.
Lettuce seed germination or lettuce root elongation after germination in water was inhibited by coumarin and these inhibitions were reversed by Cycocel. 2.53 × 103 M Cycocel reversed the inhibition of seed germination by 6.8 × 104 M coumarin. and 6.32 × lO?4 M Cycocel reversed the inhibition of root elongation by 3.4 × 103 M coumarin. No other analogs of Cycocel reversed these coumarin induced inhibitions of growth. Cycocel reversal of coumarin inhibition of lettuce seed germination occurred in red light but not in far-red light or darkness. The red-far-red system was photoreversible. Cycocel and kinetin appear to act similarly in reversing coumarin inhibition of germination. Gibberellin A3 and IAA were unable to reverse these coumarin induced inhibitions. A common mechanism is suggested for Cycocel reversal of coumarin and lAA inhibition of growth.  相似文献   

3.
1. Experiments with the seeds of Grand Rapids lettuce showedthat the germination induced by gibberellic acid or by red lightis strongly accelerated by kinetin, although the latter itselfcan promote the germination in the dark only slightly. The reversiblelight reactions of the phytochrome system interact with kinetintreatment just as effectively as with water-imbibed controls.The site of primary action of red light is not altered by kinetintreatment. Kinetin does not modify the water uptake of the seedsfor at least 8 hours. 2. Kinetin was found to inhibit the growth of the hypocotyland root of the seed, but to promote very markedly the expansionof the cotyledons. This effect was observed not only with cotyledonsin intact seeds but also with isolated cotyledons. The expansionof kinetin-treated cotyledons is further promoted by red light,but not by far-red, as is also the case with germination itself. 3. A number of purine derivatives which have been reported topromote germination also cause expansion of isolated cotyledons. 4. Gibberellic acid promotes both hypocotyl elongation and cotyledonexpansion in the dark, but this effect does not interact withthe phytochrome system. The site of action of gibberellic acidprobably lies in the axis. 5. It is concluded, therefore, that the site of kinetin actionis in the cotyledons, whose expansion helps to break the seed-coatwhen light or gibberellin has contributed the primary stimulus. 1 Present address: Johnson Foundation for Medical Physics, Universityof Pennsylvania, Philadelphia, Pa. (Received January 16, 1963; )  相似文献   

4.
The inhibition of germination of Grand Rapids lettuce (Lactuca sativa L.) seeds at 35 C was removed to a marked extent by kinetin and 2-chloroethylphosphonic acid (ethrel). When both compounds were used together, an additive effect was observed. A synergistic effect was, however, noted when ethrel promoted the kinetin reversal of abscisic acid inhibition of seed germination (light- as well as gibberellic acid-, induced). Both kinetin and ethrel increased the total ribosomal material and the percentage of polyribosomes in lettuce seeds imbibed in the light for 24 hours. A combination of the two compounds showed a synergism in polyribosome formation only at high ethrel concentration. The inability of ethrel to reverse abscisic acid inhibition indicates that kinetin action cannot always be substituted by ethrel. The possible mechanisms involved in the enhanced response by a combination of kinetin and ethrel are discussed.  相似文献   

5.
6.
Nutritional and light requirements for growth and synthesis of RNA, DNA, and protein by cotyledons excised from 5-day-old seedlings of Raphanus sativus L. were investigated, and the course of synthesis was followed through the cell cycle. The minimum requirements for a net increase in nucleic acid and protein were sugar, nitrate, and light. The cotyledons used nitrite at low concentration, but not ammonium ion. Light was required for preliminary steps in synthesis of RNA, DNA, and protein, but the actual polymerization reactions occurred in the dark. The cotyledons contained sufficient endogenous growth factors for about half of the cells to complete 1 cycle on a medium of 1% sucrose, 80 mm KNO3. The increase in DNA was limited to about 50% and was accompanied by a comparable increase in cell number. Fresh weight, RNA, and protein tended to increase in proportion to DNA. Growth of the isolated cotyledons commenced with cell enlargement. RNA began to increase after about 4 hours, DNA after about 12. The major increase in protein also began at about 12 hours. The maximum rate of increase for all 3 occurred between 12 and 16 hours. Cell counts indicated that by 28 hours most of the cells which had replicated DNA had also completed cell division.  相似文献   

7.
Imbibing ‘Grand Rapids’ lettuce (Lactuca saliva L.) seeds take up 14C-kinetin, and metabolize this cytokinin to the 5′-nucleotide. The identity of the labeled nucleotide in seed extracts was verified by Sephadex LH-20 column chromatography, paper and thin layer chromatography, and high voltage paper electrophoresis. Incubations with kinetin in the presence of abscisic acid lead to an apparent specific inhibition of kinetin nucleotide formation. ABA has no effect on kinetin uptake, and does not inhibit kinetin nucleotide synthesis in vitro by a cell-free preparation from lettuce seeds. Additionally, ABA does not inhibit adenylate synthesis from exogenously supplied adenine. These results represent a specific cytokinin-ABA interaction, which might play a significant role in the hormonal regulation of lettuce seed germination.  相似文献   

8.

We elucidated the effect of increased planting density (single and grouped competing plants) on concentrations of auxin, abscisic acid, and cytokinins in normal lettuce plants and in those with ethylene perception inhibited by 1-methylcyclopropene (1-MCP). An attempt was made to relate the changes in hormone concentration induced by competition and inhibition of ethylene sensitivity to growth responses of lettuce planting. The results showed changes in concentrations of auxins, cytokinins, and ABA in the response of lettuce to crowding. Accumulation of ABA in shoots was likely to contribute to inhibition of transpiration of the plants grown in the presence of neighbors. This assumption was supported by the results of application of an inhibitor of ABA synthesis (fluridone and carotenoid biosynthesis herbicide) resulting in increased transpiration of grouped, but not single plants. Increased planting density led to the decline in root auxins paralleled by inhibition of root growth. This effect was likely to be due to decreased auxin transport to the roots from the shoots suggested by accumulation of auxins in the shoots and inhibition of root growth by application of the auxin transport inhibitor [N-(1-naphtyl)phtalamic acid (NPA)]. Importance of the changes in hormone concentrations was confirmed by data showing that disturbance of auxin and cytokinin distribution detected in MCP-treated plants was accompanied by corresponding modification of the growth response.

  相似文献   

9.
The effects of cyclic 3′,5′-adenosine monophosphate (cAMP) on amaranthin synthesis in the dark, or in the presence of kinetin or light were investigated in isolated cotyledons of Amaranthus tricolor and A. caudatus. The results suggest that sites or modes of action of cAMP and kinetin are not separated and differ from those of light and that the nucleotide cannot be considered a messenger involved in amaranthin formation stimulated by kinetin or by light.  相似文献   

10.
The germination of lettuce seeds (Lactuca sativa L., cv. Premier Great Lakes) was significantly inhibited by high temperature (32 C), 0.1 mM abscisic acid or 0.4 M mannitol. Ethylene (16 μl/1 of air) partially reversed the dormancy induced by all three inhibitors but only in the presence of 1 mM gibberellic acid (GA) or light. Neither ethylene plus GA nor ethylene plus light were able to promote germination when thermal inhibition was imposed at 36 C. Addition of 0.01 mM kinetin to the ethylene plus GA or light reversed thermodormancy at 36 C. The dormancy imposed by abscisic acid was also reversed by kinetin. Kinetin was unable to reverse the osmotic dormancy imposed by mannitol. The reversal of osmotic dormancy by ethylene or ethylene plus GA was actually inhibited by kinetin but only in the light. Kinetin apparently stimulates cotyledonary growth in the presence of light, and this growth may compete for certain metabolites critical to radicle growth and subsequent germination. Kinetin and ethylene, as demonstrated primarily in the thermodormancy at 36 C and in osmotic dormancy, appear to regulate a common event(s) leading to germination but through mechanisms unique to each respective growth regulator. The regulation of germination by ethylene is absolutely dependent upon an interaction with GA and/or light.  相似文献   

11.
N. J. Pinfield  A. K. Stobart 《Planta》1972,104(2):134-145
Summary Dormancy of intact sycamore (Acer pseudoplatanus) seeds was broken by chilling (5°C) for several weeks in moist conditions. Treatment of unchilled seeds with kinetin induced some germination, but gibberellin was ineffective. This stimulation by kinetin was not suppressed by the added presence of abscisic acid during incubation.The chilling requirement of intact seeds was eliminated by removal of the testa, and the naked embryos developed with no morphological abnormalities. During early growth of isolated embryos in the light, two distinct developmental processes were recognised. One involved initial elongation of the radicle accompanied by geotropic curvature and was stimulated by kinetin but not by gibberellin, while the other involved unrolling of the cotyledons, which was accelerated by gibberellin but much less by kinetin. Abscisic acid strongly suppressed both developmental processes when applied alone, inhibited cotyledon expansion in the presence of gibberellin, but failed to overcome the promotory effects of kinetin on radicle growth. Experiments with CCC indicated that under natural conditions the unrolling of the cotyledons is dependent upon endogenous gibberellin. Radicle growth of isolated embryos was unimpaired by incubation in the dark, but cotyledon expansion of water incubated embryos was poor, and although it was accelerated by gibberellin, the responses in all treatments were slower than in the corresponding light grown samples.It is suggested that endogenous cytokinins are primary factors in the initiation of radicle growth, while gibberellins are important in cotyledon expansion. Abscisic acid appears to have an inhibitory role in both processes, and the interactions of these regulators in the control of germination and development are discussed.  相似文献   

12.
The effect of cytokinin, kinetin, on abscisic acid (dormin) inhibition of α-amylase synthesis and growth in intact barley seed was investigated. Abscisic acid at 5 × 10?5M nearly completely inhibited growth response and α-amylase synthesis in barley seed. Kinetin reversed to a large extent abscisic acid inhibition of α-aniylase synthesis and coleoptile growth. The response curves of α-amylase synthesis and coleoptile growth in presence of a fixed amount of abscisic acid (6 × l0?6M) and increasing concentrations of kinetin (from 5 × l0?7M to 5 × 10?5 M) showed remarkable similarity. Kinetin and abscisic acid caused synergistic inhibition of root growth. Gibberellic acid was far less effective than kinetin in reversing abscisic acid inhibition of α-amylase synthesis and coleoptile growth. A combination of kinetin and gibberellic acid caused nearly complete reversal of abscisic acid inhibition of α-amylase synthesis but not the abscisic acid inhibition of growth. The results suggest that factors controlling α-amylase synthesis may not have a dominant role in all growth responses of the seed. Kinetin possibly acts by removing the abscisic acid inhibition of enzyme specific sites thereby allowing gibberellic acid to function to produce α-amylase.  相似文献   

13.
Abstract

An aqueous extract of wild rocket (Diplotaxis tenuifolia DC) was tested for its allelopathic activity in vitro on radish germination and seedling growth in light and darkness. The extract caused a delay in the onset and a significant decrease in the rate of germination (40%) in the light. The photo-inhibition was accompanied by an inhibition of water uptake into the seed, and a decrease of protein content as well as an increase of peroxidase activity into the seedlings. Microscopic observations suggest that the extract markedly changes radish radicle development inducing a decreased imbibition and distension of seed cells. Consistent results were obtained with some species such as purslane, lambsquarter and tree of heaven present in the cultivated wild rocket field and with cultivated lettuce and barley. Finally, a potential allelochemical, biologically active, was isolated from the extract: S-glucopyranosyl thiohydroximate at concentration of 6.3×10?4 M.  相似文献   

14.
A neutral growth inhibitor, for which the name raphanusanin is proposed, has been isolated in crystalline form from light-exposed Sakurajima radish (Raphanus sativus var. hortensis f. gigantissimus Makino) seedlings and identified as a new compound, 3-methoxy-4-methylthio-2-piperithione by spectrometric analyses.

Applied raphanusanin inhibited the hypocotyl growth of etiolated radish and lettuce seedlings at concentrations higher than 1.5 × 10−6 molar.

The endogenous raphanusanin contents in cotyledons and hypocotyls of radish seedlings increased more under red light, but decreased or maintained the initial level in the dark. Its content in roots showed almost no change between the light and dark materials.

  相似文献   

15.
Both dark and red light germination of lettuce seeds (cv. “Maikönig”) as well as their root and hypocotol elongation were inhibited when the seeds were sown in petri dishes together with a few seeds of Heracleum laciniatum Horn. This inhibition was not significantly counteracted by the presence of gibberellic acid (GA3) or/and 6-benzylaminopurine (BA). However, a large proportion of the lettuce seeds germinated abnormally (only cotyledons emerged) when treated with BA in the presence of Heracleum seeds. GA3 had alone no significant effect on abnormal germination, but it counteracted the effect of BA to some extent. The inhibitory effect of Heracleum seeds gradually disappeared during a moist incubation period of one to seven days in darkness at 25°C. When lettuce seeds were pre-incubated together with Heracleum seeds for one to five days the remaining, non-germinated lettuce seeds had lost their ability for subsequent germination in darkness in distilled water. This induced dark dormancy was to a great extent broken by red light, but not by GA3 or/and BA. H. laciniatum seeds inhibited the germination of Salix pentandra seeds and to some extent also the germination of radish but had no effect on the germination of spruce.  相似文献   

16.
Piera Lado 《Plant biosystems》2013,147(3-5):489-502
Abstract

On the inhibition of seeds germination and of growth by cell enlargement by the osmotic pressure of the medium. — The mechanism of inhibition by osmotic pressure (O.P.) of the medium on growth and respiration of germinating wheat, castor bean and lettuce sèeds and of etiolated pea internode segments was investigated.

The following results were obtained:

1 - External osmotic pressure (up to 0.3 M) of various substances such as mannitol, urea, glucose, NaCl, was shown to inhibit the germination and growth of lettuce, wheat and castor bean seeds.

2 - a) A remarkable decrease of the development of respiration during the first 48 h of germination was demonstrated in embryos of wheat seeds germinated and maintained in mannitol solutions at concentration from 0,2 to 0,3 M.

b) A slight but reproducible inhibition of óxygen uptake by O.P. was also observed in embryos isolated from wheat seeds germinated in water for 24 and 34 h and transported respectively in water or into 0,2 M mannitol solutions.

This is interpreted as indicating that high external O.P. inhibits both the respiratory metabolism and the development with time of enzyme systems supporting respiration.

3 - Mannitol solutions (0,2–0,3 M) inhibited completely growth by cell enlargement in pea internode sections, while they did not at all affect oxygen uptake and protein synthesis ( 14 C - leucine incorporation). The stimulatory effect of auxin on pea elongation was almost completely suppressed by mannitol, whereas the hormone stimulation of respiration remained unchanged.

These data are interpreted as indicating that in tissues, presenting an advanced differentiation, high external O.P. inhibits growth by a direct physico-chemical mechanism; while the inhibitory effect in embrional tissues seems to comprehend, besides this direct effect, a complicated metabolic component, apparently influencing protein synthesis.  相似文献   

17.
Aspects of the carbohydrate and nitrogen metabolism of Acerpseudcplatanus, L cell suspension cultures grown on a syntheticmedium containing 2 per cent glucose and 1.0 mg/l 2,4-dichlorophenoxyaceticacid and kinetin either at 0.25 mg/l (low kinetin) or at 2.5mg/l (high kinetin) are described. High kinetin inhibits growthas measured by increase in cell number, packed-cell volume,and cell dry weight. Although not inhibitory to glucose utdization,high kinetin inhibits the O2 uptake of the cells. Such cellscontain only a trace amount of fructose and their rate of O2uptake can be raised to that of the low kinetin cells by a periodof fructose feeding. The O2 uptake of both kinds of cell issensitive to malonate but the stimulation of O2 uptake inducedby bis(hexafiuoroacetonyl)-acetone (‘1799’) at 0.2mM is much less with the high-kinetin than the low-kinetin cells.The enzymes phosphoglucoseiseomerase and glucose-6-phosphatedehydrogenase are much less active in the high-kinetin cells.Mitochondria isolated from both kinds of cells show good respiratorycontrol although slightly lower values for QO2(N), ADP/O ratioand control ratio are recorded with mitochondria from the highkinetin cells. Kinetin at 2.5 mg/l slightly reduces the ADP/Oratio of isolated mitochondria but at 4.0 mg/l their responseto ADP is completely suppressed. Extracellular hemicelluloseformed in presence of high kinetin has a reduced content ofgalactose and xylose and an increased content of glucose. Theseobservations indicate that the inhibition of respiration byhigh kinetin is mainly due to suppression of glucose conversionto other sugars rather than to inhibition of glycolysis or terminalrespiration. High kinetin decreases the rate of protein but not of amino-acidsynthesis. Suppression of the synthesis of particular proteinsmay be an important factor responsible for the reduced cellyield of the cultures in presence of high kinetin. The significanceof these observations to our understanding of the critical metaboliceffects of cytokinina is discussed. Acer pseudoplatanus cells release amino acids into their culturemedium early in the period of batch culture and largely reabsorbthem as incubation proceeds.  相似文献   

18.
Supply of 100 μM spermidine (Spd) in the nutrient solution containing 10 mM nitrate as the sole nitrogen source, increased growth of roots and shoots, total nitrogen content andin vivo orin vitro nitrate reductase (NR) activity of leaves of 10-d oldLeucaena leucocephala seedlings. Spd and the cytokinins benzyladenine or kinetin also increased growth, total nitrogen andin vivo NR activity of isolated cotyledons. The synergistic effects of nitrate, kinetin and Spd in increasing NR activity, indicate that the Spd acted at different level than the nitrate or cytokinin.  相似文献   

19.
The time course of protein synthesis in embryos of dormant and afterripened Agrostemma githago seeds was studied. In embryos of afterripened geminating seeds, protein synthesis increased in three successive stages: (a) concurrent with swelling; (b) during the lag phase between the completion of water uptake and the onset of growth; and (c) immediately after protrusion through the seed coat. Embryos of dormant seeds showed the first increase but not the second unless dormancy was broken by imbibition at 4°C. This indicates that dormancy affects processes prior to the onset of growth. The third increase was largely due to higher oxygen availability after the rupture of the seed coat and not to actual growth. It could also be elicited in dormant embryos by isolating them from the seeds.

Electrophoretic analysis of the newly synthesized proteins demonstrated that the patterns of dormant and afterripened embryos became significantly different in both axes and cotyledons only just prior to the onset of axis elongation. Thereafter, the differences became larger.

When afterripened or dormant seeds were transferred from a low, germination-permitting to a high, germination-inhibiting temperature, the seeds germinated at the high temperature if they had completed the lag phase to a sufficient extent at the low temperature. This shows that the processes during the lag phase were inhibited by the high temperature while the onset of growth was not affected.

  相似文献   

20.
Some characteristics of uptake of [8-14C]N6-benzyladenine (BA) by watermelon (Citrullus vulgaris Schrad., cv. Fairfax) cotyledons that were either excised immediately after 24 hours inhibition (day 0) or cultured in the dark for 48 hours on moist filter paper (day 2) have been compared.

The uptake of BA seems to be passive in cotyledons of both kinds. The initial rate of uptake is, however, much slower in day 2 cotyledons. This is probably due to a higher resistance of cell membranes to BA influx. When the day 2 cotyledons are frozen and thawed, so that the membrane barrier is abolished, the amount of BA taken up is the same as in day 0 cotyledons.

In spite of the lower rate of uptake, the physiological effects of BA in day 2 cotyledons are as strong as in day 0 cotyledons and occur with a shorter lag time. Sensitivity to BA seems indeed to start 24 to 48 hours after excision.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号