首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
周围神经损伤后外源性GKNF对神经元的保护作用   总被引:1,自引:0,他引:1  
Chen ZY  Cao L  Lu CL  He C  Bao X 《生理学报》2000,52(4):295-300
采用硅管套接大鼠切断的坐骨神经模型,局部给予胶质细胞源性神经营养因子(GDNF),应用尼氏染色、酶组织化学染色方法,观察到外源性GDNF能减少脊髓修复侧前角运动神经元死亡的数目,降低脊髓前角运动神经元及脊神经节感觉神经元中胆碱酯酶(CHE)及酸性磷酸酶(ACP)变化的幅度。这表明外源性GDNF能保护周围神经切断后引起的神经元损伤.  相似文献   

2.
本实验用6-OHDA造成成年小白鼠领下腺化学性去交感神经,观察了神经生长因子对该神经的保护作用。6-OHDA(15mg/kgip)处理后24h腺体内去甲肾上腺素(NE)含量降至正常水平的2%以下。若在6-OHDA处理同时开始多次给予神经生长因子(NGF),则NE残留量明显提高。减小6-OHDA剂量至10mg/kg,NE残留量增加,同时NGF的作用亦较用6-OHDA15mg/kg时更为显著。若提前24h给予NGF,尽管仍显著提高NE残留量,但程度却显然低于与6-OHDA同时给予者。以上结果表明外源性NGF对6-OHDA造成交感神经化学性损毁有保护作用,此作用与神经受损的严重程度以及NGF处理时间有关。  相似文献   

3.
研究表明,缺乏神经生长因子(NGF)的营养支持是Alzheimer's等神经元退行性疾病发生发展的重要原因,而NGF和/或NGF受体的过度表达则与一些神经系统肿瘤的发生发展有着十分密切的因果关系。采用(125)Ⅰ-NGF受体特异结合实验作为NGF受体活性物质筛选实验模型从中药牛膝中筛选出了能强烈地抑制(125)Ⅰ-NGF受体结合的活性成分N42-A(ⅠC(50)=6.18±3.43,n=4);细胞培养实验表明,N42-A对NGF诱导大鼠嗜铬神经瘤PCl2细胞的分化也具有很强的剂量依赖性抑制作用(对0.1nmol/L和0.2nmol/LNGF诱导的大鼠嗜铬神经病PC12细胞轴突生长的半数抑制浓度分别为6μg/mL和21μg/mL)。这表明,N42-A是神经元上介导NGF诱导轴突生长的特异受体抑制剂,不仅对NGF及其受体过度表达所致的神经系统肿瘤的防治具有潜在的应用价值,而且对Alzheimer's等神经元退行性疾病防治药物的开发研究具有十分重要的意义。  相似文献   

4.
胶质细胞源性神经营养因子GDNF和Neurturin的新受体:TrnR2最近,Neurturin(NTN)———一种与胶质细胞源性神经营养因子(GDNF)相关的神经营养因子被发现,于是产生了一个由GDNF和NTN所组成的转化生长因子(TGF)β相关...  相似文献   

5.
为了研究GDNF在神经系统中的生物学功能,通过RT-PCR方法从大鼠睾丸总RNA中扩增出GDNFcDNA全序列,序列分析表明与GenBank中的顺序完全相同.将GDNFcDNA以非融合方式连接在真核表达载体pEGFP-NⅠ的绿色荧光蛋白的上游,在CMV启动子控制下表达.通过绿色荧光蛋白报告基因的表达表明GDNFcDNA能在真核细胞HeLa中很好表达.采用裸DNA转染方法研究GDNF对损伤的坐骨神经的修复作用,在雏鸡出生后3h切断其右侧坐骨神经,将pEGFP-GDNF与Lipofectin的混合物注射到坐骨神经切断位点附近肌肉内,5d后追补一次.20d后进行实验检测,观察到GDNFcDNA的转染阻止了切断神经侧的腰脊髓内[L4-L6]运动神经元的大量死亡,并显著促进了切断坐骨神经的再生.  相似文献   

6.
肾脏和肾神经在应激、钠盐所致高血压中的作用   总被引:16,自引:1,他引:15  
Lin ST  Zou WQ  Chen J  Li P 《生理学报》1999,51(1):7-13
本工作采用电生理、生化、放免、电镜等方法,探讨了慢性应激和盐致高血压大鼠交感神经系统和肾脏功能的改变。实验在雄性SD大鼠上进行。结果表明:(1)高盐大鼠肾血浆流量(RPF)和尿钠排泄明显增加,而应激大鼠RPF显著下降。(2)电镜显示高盐大鼠近曲和远曲小管上皮细胞及线粒体变大,应激则使细胞萎缩、线粒体变小。(3)高盐大鼠肾皮质NaKATP酶活性下降,应激可使其恢复。(4)频谱分析显示应激大鼠低频波动(02~09Hz)明显增加。(5)应激导致大鼠肾素活性(PRA)及血管紧张素Ⅱ(ANGⅡ)水平升高,并能使高盐大鼠低PRA和ANGⅡ水平升高。(6)大鼠去除双侧肾神经后,应激无法造成血压升高、RPF下降和PRA、ANGⅡ上升。上述结果提示:肾交感神经系统兴奋性增加介导的肾脏机制,可能在应激和/或盐致高血压发病过程中具有重要作用。  相似文献   

7.
胶质细胞源神经营养因子陈哲宇何成王成海(第二军医大学神经生物教研室,上海200433)关键词胶质细胞源神经营养因子多巴胺能神经元运动神经元神经营养因子是指能够促进神经细胞存活、生长和分化的一类蛋白质。胶质细胞源神经营养因子(GDNF),因其最初从大鼠...  相似文献   

8.
本文从成年小鼠脑基因库中克隆了两种独特的胶源神经营养因子转录产物。GDNF-β除了在开放阅读框架区有78bp的缺失外,其余与GDNF-α相同。由小鼠GDNF-α基因推导得的氨基酸顺序与大鼠和人的氨基酸顺序具有高度同源性。对小鼠不同组织的反转录PCR实验表明在这些组织中广泛存在这两种形式的GDNF。  相似文献   

9.
GDNF及BDNF对受损运动神经元的长期修复   总被引:3,自引:0,他引:3  
为了研究胶质细胞源神经营养因子(GDNF) 及脑源神经营养因子(BDNF) 对切断轴突的新生运动神经元的长期维持存活及促进神经再生的作用, 我们选用出生时单侧切断坐骨神经的雏鸡模型, 用裸DNA 转染方法, 在损伤神经附近的肌肉中转染GDNF cDNA 和BDNF cDNA 的真核表达载体,观察在体表达的神经营养因子对损伤的修复作用。结果显示,在体表达的GDNF 在8 周内能使切断坐骨神经的腰脊髓运动神经元近90 % 维持存活。切断的坐骨神经从断端向远体端再生,最长再生达9 .5m m 。表达两个因子比单独表达GDNF 对运动神经元的存活无显著性差异。而两个因子协同作用对坐骨神经的再生更为有效,坐骨神经再生最长的可达15 .4m m 。  相似文献   

10.
叙述了新近纯化的胶质细胞源神经营养因子(GDNF)的生物功能及其在鼠胚胎的分布,着重介绍了该因子对损伤的多巴胺能神经元及运动神经元促进存活,修复损伤及再生的活性。  相似文献   

11.
Lewis rats (RT1(1] were the recipients of 3-cm nerve grafts from syngeneic Lewis donors or allogeneic ACI (RT1a) donors. Microneurosurgical repair of the nerve graft to the transected sciatic nerve of the recipient animal was performed with 10-0 epineurial sutures. Recipients were randomly allocated to cyclosporin A (CsA) immunosuppressed or untreated groups. Cyclosporin A was administered in the minimal effective dosage to prevent nerve allograft rejection across this major histocompatibility disparity (5 mg/kg per day). Nerve regeneration across the nerve grafts was assessed by sciatic function index (SFI) and toe spread index (TSI) determinations serially and by electrophysiologic, histologic, and morphologic assessments 14 weeks after engraftment. Sciatic nerve regeneration across allogeneic nerve grafts in cyclosporin A immunosuppressed recipients was significantly superior compared to the untreated controls (p less than 0.008) and not significantly different from that across the syngeneic control animals.  相似文献   

12.
The objective of the paper is to evaluate the effect of acellular nerve allografts (ANA) seeded with Schwann cells to promote nerve regeneration after bridging the sciatic nerve defects of rats and to discuss its acting mechanisms. Schwann cells were isolated from neonatal Wistar rats. In vitro Schwann cells were microinjected into acellular nerve allografts and co-cultured. Twenty-four Wistar rats weighing 180–220 g were randomly divided into three groups with eight rats in each group: ANA seeded with Schwann cells (ANA + SCs), ANA group and autografts group. All the grafts were, respectively, served for bridging a 10-mm long surgically created sciatic nerve gap. Examinations of regeneration nerve were performed after 12 weeks by transmission electron microscope (TEM), scanning electron microscope (SEM), and electrophysiological methods, and then analyzed statistically. The results obtained indicated that in vitro Schwann cells displayed the feature of bipolar morphology with oval nuclei. Compared with ANA group, the conduction velocity of ANA + SCs group and autograft group was faster after 12 weeks, latent period was shorter, and wave amplitude was higher (P < 0.05). The difference between ANA + SCs group and autograft group is not significant (P > 0.05). Regeneration nerve myelinated fiber number, myelin sheath thickness, and myelinated fibers/total nerves (%) in both ANA + SCs group and autograft group are higher than that in ANA group; the difference is significant (P < 0.05). The difference between the former two is not significant (P > 0.05). In conclusion, ANA seeded with SCs could improve nerve regeneration and functional recovery after bridging the sciatic nerve gap of rats, which offers a novel approach for the repair peripheral nerve defect.  相似文献   

13.
目的:探讨新型材料poly(ethylene argininylaspartate diglyceride)(PEAD)结合肝素包裹神经生长因子组成的三元复合体比单纯运用NGF治疗大鼠坐骨神经损伤效果明显,为临床治疗外周神经损伤提供实验依据。方法:24只200g左右Wistar大鼠,分成生理盐水组,NGF组,NGF凝聚体三组,每组各8只,距梨状肌下缘远侧约1.5cm处运用静脉夹夹紧坐骨神经2min,采用无创细线(5/0)缝合肌肉和皮肤,并用碘伏进行消毒,NGF组每天沿坐骨切迹肌注80ngNGF,持续30天;NGF凝聚体组仅在造模时肌注复合体(内含2.4μg的NGF);生理盐水组给予等体积的生理盐水。术后每周运用脚步印迹法评价动物的行为学,并于30天后灌流、收集各组损伤侧坐骨神经,运用HE染色及投射电镜观察坐骨神经结构恢复情况,免疫荧光标记MBP,观察其蛋白的表达。结果:NGF组,NGF凝聚体组在行为学、病理结构及蛋白的表达远高于生理盐水组,并且NGF凝聚组的治疗效果优于NGF组。结论:新型凝聚体包载NGF具有明显的促进周围神经损伤后的修复与再生作用,能够在一定程度上提高单纯运用NGF治疗大鼠坐骨神经损伤的不足,达到更加理想和显著的促恢复效果。  相似文献   

14.
目的探讨外源性碱性成纤维细胞生长因子(bFGF)对晚期周围神经再生的作用.方法50只SD大鼠随机分治疗组、对照组各25只,切断右侧坐骨神经,12周后予以修复,修复术后每日分别给予bFGF和生理盐水,行神经电生理和组织学检查.结果治疗组和对照组修复处远段神经均有不同程度再生,4周时已可见到再生轴突,且治疗组多见.计量分析治疗组运动神经传导速度、神经肌肉动作电位幅值、髓鞘厚度、再生轴突直径和截面积明显优于对照组.治疗组与对照组相比,差异有显著性.结论bFGF能促进晚期周围神经再生.  相似文献   

15.
The potential use of peripheral nerve allografts would significantly improve the reconstructive potential for patients with major peripheral nerve deficits. This study evaluated the response of the nerve allograft recipient treated with varying dosages of cyclosporin A (CsA) to determine the minimal effective dosage necessary to prevent nerve graft rejection. Lewis rats (RT1l) were the recipients of syngeneic nerve grafts from identical Lewis donors or allogeneic nerve grafts from ACI (RT1a) donors. Nerve grafts were inlaid next to the intact sciatic nerve of the recipient. The immunologic responsiveness of the recipient animal's lymphocytes to a donor-specific antigenic challenge was assessed by the mixed lymphocyte reaction (MLR). In addition, nerve grafts were evaluated histologically. Animals were monitored for cyclosporin A toxicity. It was found that cyclosporin A (5 mg/kg per day) was effective in rendering the recipient animals unresponsive by mixed lymphocyte reaction at 10, 20, and 40 days after engraftment. This dosage was similarly effective in preventing histologic changes characteristic of nerve allograft rejection. This dosage regimen was nontoxic to the animals. Our study ascertained a minimal nontoxic dosage of cyclosporin A that effectively prevented nerve allograft rejection across a major histocompatibility disparity in rats.  相似文献   

16.
With the development of tissue engineering and the shortage of autologous nerve grafts in nerve reconstruction, cell transplantation in a conduit is an alternative strategy to improve nerve regeneration. The present study evaluated the effects and mechanism of brain-derived neural stem cells (NSCs) on sciatic nerve injury in rats. At the transection of the sciatic nerve, a 10-mm gap between the nerve stumps was bridged with a silicon conduit filled with 5?×?105 NSCs. In control experiments, the conduit was filled with nerve growth factor (NGF) or normal saline (NS). The functional and morphological properties of regenerated nerves were investigated, and expression of hepatocyte growth factor (HGF) and NGF was measured. One week later, there was no connection through the conduit. Four or eight weeks later, fibrous connections were evident between the proximal and distal segments. Motor function was revealed by measurement of the sciatic functional index (SFI) and sciatic nerve conduction velocity (NCV). Functional recovery in the NSC and NGF groups was significantly more advanced than that in the NS group. NSCs showed significant improvement in axon myelination of the regenerated nerves. Expression of NGF and HGF in the injured sciatic nerve was significantly lower in the NS group than in the NSCs and NGF groups. These results and other advantages of NSCs, such as ease of harvest and relative abundance, suggest that NSCs could be used clinically to enhance peripheral nerve repair.  相似文献   

17.
As a promising alternative to autologous nerve grafts, tissue-engineered nerve grafts have been extensively studied as a way to bridge peripheral nerve defects and guide nerve regeneration. The main difference between autogenous nerve grafts and tissue-engineered nerve grafts is the regenerative microenvironment formed by the grafts. If an appropriate regenerative microenvironment is provided, the repair of a peripheral nerve is feasible. In this study, to mimic the body’s natural regenerative microenvironment closely, we co-cultured Schwann cells (SCs) and adipose-derived stem cells (ADSCs) as seed cells and introduced them into a silk fibroin (SF)/collagen scaffold to construct a tissue-engineered nerve conduit (TENC). Twelve weeks after the three different grafts (plain SF/collagen scaffold, TENC, and autograft) were transplanted to bridge 1-cm long sciatic nerve defects in rats, a series of electrophysiological examinations and morphological analyses were performed to evaluate the effect of the tissue-engineered nerve grafts on peripheral nerve regeneration. The regenerative outcomes showed that the effect of treatment with TENCs was similar to that with autologous nerve grafts but superior to that with plain SF/collagen scaffolds. Meanwhile, no experimental animals had inflammation around the grafts. Based on this evidence, our findings suggest that the TENC we developed could improve the regenerative microenvironment and accelerate nerve regeneration compared to plain SF/collagen and may serve as a promising strategy for peripheral nerve repair.  相似文献   

18.
Shu L  Dong YR  Yan WH  Zhai Y  Wang Y  Li W 《生理学报》2011,63(4):291-299
坐骨神经损伤是临床常见的周围神经疾病。神经损伤后再生肌肉和运动神经元会出现各种功能障碍,虽然其中一部分因素已被阐明,但多局限于受损神经局部,而对于再生后脊髓运动神经元的回返性抑制(recurrent inhibition,RI)通路的功能变化却很少被报道。本文研究大鼠短暂坐骨神经损伤后,恢复神经再支配(reinnervation)情况下,脊髓RI通路的功能变化。在正常或坐骨神经挤压(crush)受损后的成年大鼠上,通过刺激离断的脊髓背根(L5),在外侧腓肠肌-比目鱼肌(lateral gas-trocnemius-soleus,LG-S)神经或内侧腓肠肌(medial gastrocnemius,MG)神经记录单突触反射(monosynaptic reflex,MSR),并同时在另一神经给予条件性刺激,以检测LG-S和MG运动神经元间RI的变化。结果显示:(1)脊髓运动神经元的RI在坐骨神经挤压受损后即基本丢失(<5周),至损伤6周后部分恢复至正常的50%,并至少维持至损伤14周后;(2)一侧的坐骨神经损伤对对侧的RI没有影响;(3)外周神经损伤后,免疫组织化学方法显示脊髓运动神经元数目本身并不发生减少。以上...  相似文献   

19.
Objectives To observe the effect of ultrashortwave (USW) therapy on nerve regeneration after acellular nerve allografts(ANA) repairing the sciatic nerve gap of rats and discuss its acting mechanisms. Methods Sixteen Wistar rats weighing 180–220 g were randomly divided into four groups with four rats in each group: normal control group; acellular group (ANA, treated by hypotonic-chemical detergent, was applied for bridging a 10 mm-long sciatic nerve defect); USW group (After 24 h of ANA repairing the sciatic nerve gap, low dose USW was administrated for 7 min, once a day, 20 times a course of treatment, three courses of treatment in all); and autografts group. 12 weeks after operation, a series of examinations was performed, including electrophysiological methods, the restoring rate of tibialis anterior muscle wet weight, histopathological observation (myelinated nerve number, myelin sheath thickness, and axon diameter), vascular endothelial growth factor (VEGF) mRNA expression of spinal cord, and muscle at injury site, and analyzed statistically. Results Compared to acellular nerve allografts alone, USW therapy can increase nerve conductive velocity, the restoring rate of tibialis anterior muscle wet weight, myelinated nerve number, axon diameter, VEGF mRNA expression of spinal cord, and muscle at injury site, the difference is significant. There were no differences between USW group and autografts group except myelin sheath thickness. Conclusions USW therapy can promote nerve axon regeneration and Schwann cells proliferation after ANA repairing the sciatic nerve gap of rats, the upregulation of VEGF mRNA expression of spinal cord and muscle may play an important role.  相似文献   

20.
Autologous nerve grafts are the current “gold standard” for repairing large nerve gaps. However, they cause morbidity at the donor nerve site and only a limited amount of nerve can be harvested. Nerve conduits are a promising alternative to autografts and can act as guidance cues for the regenerating axons, without the need to harvest donor nerve. Separately, it has been shown that localized delivery of GDNF can enhance axon growth and motor recovery. FK506, an FDA approved small molecule, has also been shown to enhance peripheral nerve regeneration. This paper describes the design of a novel hole-based drug delivery apparatus integrated with a polytetrafluoroethylene (PTFE) nerve conduit for controlled local delivery of a protein such as GDNF or a small molecule such as FK506. The PTFE devices were tested in a diffusion chamber, and the bioactivity of the released media was evaluated by measuring neurite growth of dorsal root ganglions (DRGs) exposed to the released drugs. The drug delivering nerve guide was able to release bioactive concentrations of FK506 or GDNF. Following these tests, optimized drug releasing nerve conduits were implanted across 10 mm sciatic nerve gaps in a BL6 yellow fluorescent protein (YFP) mouse model, where they demonstrated significant improvement in muscle mass, compound muscle action potential, and axon myelination in vivo as compared with nerve conduits without the drug. The drug delivery nerve guide could release drug for extended periods of time and enhance axon growth in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号