首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of surgical implantation of an acoustic transmitter on the swimming performance, growth and survival of juvenile sockeye salmon Oncorhynchus nerka and Chinook salmon Oncorhynchus tshawytscha was examined. The transmitter had a mass of 0·7 g in air while sockeye salmon had a mass of 7·0–16·0 g and Chinook salmon had a mass of 6·7–23·1 g (a transmitter burden of 4·5–10·3% for sockeye salmon and 3·1–10·7% for Chinook salmon). Mean critical swimming speeds (Ucrit) for Chinook salmon ranged from 47·5 to 51·2 cm s?1 [4·34–4·69 body lengths (fork length, LF) s?1] and did not differ among tagged, untagged and sham‐tagged groups. Tagged sockeye salmon, however, did have lower Ucrit than control or sham fish. The mean Ucrit for tagged sockeye salmon was 46·1 cm s?1 (4·1 LF s?1), which was c. 5% less than the mean Ucrit for control and sham fish (both groups were 48·6 cm s?1 or 4·3 LF s?1). A laboratory evaluation determined that there was no difference in LF or mass among treatments (control, sham or tag) either at the start or at the end of the test period, suggesting that implantation did not negatively influence the growth of either species. None of the sockeye salmon held under laboratory conditions died from the influence of surgical implantation of transmitters. In contrast, this study found that the 21 day survival differed between tagged and control groups of Chinook salmon, although this result may have been confounded by the poor health of Chinook salmon treatment groups.  相似文献   

2.
The duration of residence, behavior, and thermal experience of adult Chinook salmon (Oncorhynchus tshawytscha) in a stratified lagoon-type estuary over a four-year period was determined using acoustic and radio biotelemetry transmitters and archival temperature tags. Results did not support the hypothesis that adult Chinook salmon would hold extensively and migrate slowly through the estuarine lagoon with return trips to the sea and use of the salt wedge for behavioral thermo-osmoregulation in response to high summer water temperatures. Passive tidal transport was not observed as predicted and entry from the sea to the estuarine lagoon occurred during all tidal phases suggesting that conserving energy was not a priority for fish during the estuarine phase of their migration. An unexpected finding was that the persistent pursuit pressure of pinnipeds, especially from California sea lions (Zalophus californianus), appeared to negate the suitability of estuarine lagoon as holding habitat. This finding led to the hypothesis that the risk of pinniped predation was primarily responsible for the brief residence (<24 h on average) and rapid migration (mean 1.2 km/h, 0.42 body lengths/s) of adult Chinook salmon in the estuarine lagoon, especially given its relatively small size (7 km). This hypothesis will be difficult to test without exclusion of pinnipeds. Thermal records of fish that retreated back to the sea after tagging suggested that use of the marine river plume could be important for osmotic adaption to allow rapid migration through estuaries, which often contain concentrations of predators anticipating the return of migrating salmon. Alternatively, use of the marine river plume could have occurred independent of predators. Fish retreating back to the sea should be considered a tagging effect as downstream movement commonly occurs when adult salmonids are released after tagging. There was no evidence of any other tagging effects or biased behavior by fish tagged in this study. Regardless of the reasons, the successful migration of fish that held for weeks in the sea after tagging indicates that there could be considerable flexibility in the river entry timing of some salmon stocks. Tagging adult salmonids in the sea as they approach their natal rivers is ideal but the associated logistical challenges and expense make tagging fish immediately upon entrance to river mouths the next best option when possible.  相似文献   

3.
The estuary of the Elwha River, on Washington’s Olympic Peninsula, has been degraded and simplified over the past century from sediment retention behind two large dams, levee construction, and channelization. With the removal of Elwha Dam and initiation of Glines Canyon Dam’s removal in fall 2011, sediment deposits will change the estuary and affect anadromous and nearshore marine fishes. Juvenile Chinook salmon commonly use estuaries and the river’s population is part of an Evolutionarily Significant Unit listed as Threatened under the U.S. Endangered Species Act. This study reports on monthly sampling in part of the river’s estuary from March 2007 through September 2011 to characterize the seasonal changes in relative abundance of yearlings and sub-yearlings, and size distributions prior to dam removal. Most (69 %) of the yearlings were caught in April, when this life history type was released from the hatchery, and to a lesser extent in May (28 %) and June (3 %). Yearlings caught in the estuary were smaller than those released from the hatchery (means: 153 mm?±?28 SD vs. 175 mm?±?5 SD), suggesting more rapid departure by larger fish. Sub-yearlings were much more abundant in the estuary, and were caught from March through November, increasing in mean fork length by 8.7 mm month-1. The hatchery-origin sub-yearlings were not marked externally and so were not distinguishable from natural origin fish. However, 39 % of the sub-yearlings were caught prior to June, when sub-yearlings were released from the hatchery, indicating substantial use of the estuary by natural-origin fish. Thus, even in a reduced state after a century of dam operation, the highly modified estuary was used over many months by juvenile Chinook salmon. The information on juvenile Chinook salmon prior to dam removal provides a basis for comparison to patterns in the future, when the anticipated increase in estuarine complexity may further enhance habitat use by juvenile Chinook salmon.  相似文献   

4.
Off-channel habitat has become increasingly recognized as key for migratory fishes such as juvenile Chinook salmon (Oncorhynchus tshawytscha). Hence, floodplain habitat has been identified as critical for the continued persistence of California’s Central Valley salmon, particularly the Yolo Bypass, the primary floodplain of the Sacramento River. To provide insight into factors supporting juvenile salmon use of this 240 km2, partially leveed floodplain, we examined inter- and intra-annual relationships between environmental correlates and residency time, apparent growth, emigration, migratory phenotype, and survival over more than a decade for natural-origin (“wild”) fish and experimentally-released hatchery fish. Flood duration was positively associated with hatchery juveniles residing longer and achieving larger size. Wild juveniles grew larger and emigrated later with cumulative temperature experience (accumulated thermal units) and warmer average annual temperatures during flood years. Within years, both wild and hatchery salmon departed the floodplain as flood waters receded. Parr-sized juveniles dominated outmigrant composition, though fry and smolt-sized juveniles were also consistently observed. Survival to the ocean fishery was not significantly different between hatchery fish that reared in the Yolo Bypass versus those that reared in the main stem Sacramento River. Our study indicates improved frequency and duration of connectivity between the Sacramento River and the Yolo Bypass could increase off-channel rearing opportunities that expand the life history diversity portfolio for Central Valley Chinook salmon.  相似文献   

5.
Since juvenile Atlantic salmon (Salmo salar) and Chinook salmon (Oncorhynchus tshawytscha) occupy a similar habitat in Lake Ontario tributaries, we sought to determine the degree of diet similarity between these species in order to assess the potential for interspecific competition. Atlantic salmon, an historically important but currently extirpated component of the Lake Ontario fish community, are the focus of a bi‐national restoration effort. Presently this effort includes the release of hatchery produced juvenile Atlantic salmon in Lake Ontario tributaries. These same tributaries support substantial numbers of naturally reproduced juvenile Pacific salmonids including Chinook salmon. Subyearling Atlantic salmon and subyearling Chinook salmon had significantly different diets during each of the three time periods examined. Atlantic salmon fed slightly more from the benthos than from the drift and consumed mainly chirononmids (47.0%) and ephemeropterans (21.1%). The diet of subyearling Chinook salmon was more closely associated with the drift and consisted mainly of chironomids (60.2%) and terrestrial invertebrates (16.0%). Low diet similarity between subyearling Atlantic salmon and subyearling Chinook salmon likely minimizes competitive interactions for food between these species in Lake Ontario tributaries. However, the availability of small prey such as chironomids which comprise over 50% of the diet of each species, soon after emergence, could constitute a short term resource limitation. To our knowledge this is the first study of interspecific diet associations between these two important salmonid species.  相似文献   

6.
The Duwamish estuary is an industrialized waterway located in Seattle, WA, USA. Despite a history of habitat loss, naturally produced juvenile Chinook salmon use the estuary. In addition to experiencing degraded habitat in the estuary, wild salmon growth may be affected by competition with more than three million hatchery fish released yearly into the river. Restoring habitat to benefit salmon in the Duwamish River is a priority for trustees of public resources, and a number of wetland restoration sites have been created there. We tested the function of restored sites in the Duwamish estuary for juvenile Chinook salmon by comparing fish densities from enclosure nets or beach seines at three paired restored/un-restored sites and by applying environmental and diet data to a bioenergetics model. We also examined temporal and diet overlap of wild juvenile Chinook salmon with other salmon species and with hatchery-reared Chinook salmon using non-metric multidimensional scaling (NMDS). At a brackish upstream site with a relatively large opening to the river, we found higher densities of juvenile Chinook salmon at the restored site. NMDS results indicated that juvenile Chinook salmon fed on different taxa at the restored sites than at the reference sites. However, modeled growth was similar at restored and reference sites. Co-occurring juvenile chum and Chinook salmon fed differently, with chum eating smaller prey, and Chinook salmon eating larger prey. Co-occurring hatchery and wild juvenile Chinook salmon had similar diets, indicating that they may compete for prey. However, modeled growth was positive and did not differ between hatchery and wild fish, suggesting that food was not limiting. Bioenergetics models indicated that overall juvenile Chinook salmon growth potential at the brackish water site was consistently higher than at more saline sites. Our results suggest that restoration sites in the Duwamish estuary that have larger access openings and are located in brackish water may have increased function over other configurations.  相似文献   

7.
Substantial declines of Pacific salmon populations have occurred over the past several decades related to large‐scale anthropogenic and climatic changes in freshwater and marine environments. In the Columbia River Basin, migrating juvenile salmonids may pass as many as eight large‐scale hydropower projects before reaching the ocean; however, the cumulative effects of multiple dam passages are largely unknown. Using acoustic transmitters and an extensive system of hydrophone arrays in the Lower Columbia River, we calculated the survival of yearling Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) passing one, two, or three dams. We applied a unique index of biological characteristics and environmental exposures, experienced by each fish individually as it migrated downstream, in order to examine which factors most influence salmonid survival. High outflow volumes led to involuntary spill in 2011 and created an environment of supersaturated dissolved gas concentrations. In this environment, migrating smolt survival was strongly influenced by barometric pressure, fish velocity, and water temperature. The effect of these variables on survival was compounded by multiple dam passages compared to fish passing a single dam. Despite spatial isolation between dams in the Lower Columbia River hydrosystem, migrating smolt appear to experience cumulative effects akin to a press disturbance. In general, Chinook salmon and steelhead respond similarly in terms of survival rates and responses to altered environmental conditions. Management actions that limit dissolved gas concentrations in years of high flow will benefit migrating salmonids at this life stage.  相似文献   

8.
Back-calculation of growth trajectories from otolith microstructure is a valuable tool for understanding mechanisms underlying variability in growth among fish populations. We analyzed fish length/otolith radius relationships for Snake River spring/summer Chinook and Snake River fall Chinook salmon, listed as separate “Evolutionarily Significant Units” (ESUs) under the US Endangered Species Act, to determine whether these ESUs shared relationships. In addition, we analyzed otoliths from seven separate populations within the Snake River spring/summer Chinook ESU to assess the variability in relationships among populations, which are much more closely related than ESUs. We also examined several potential functional forms for the equations. We found that the separate ESUs had significantly different fish length/otolith radius relationships, but that variability in otolith growth rate could not explain the difference. Relationships among populations within the spring/summer Chinook ESU did not vary nearly as much as those between ESUs. The quadratic model and the power model fit the data equally well, and constraining these models to pass through a biological intercept (estimated fish length and otolith radius at hatching) resulted in only a slight decrease in model fit. To test the ability of the models to back-calculate fish lengths, we predicted the length at tagging for 17 PIT-tagged fall Chinook that were measured at release and at recapture. The back-calculation demonstrated little bias (<1 mm FL, on average) and relatively small standard deviation (~3.5 mm) for the best model. When we repeated the back-calculation with data from both ESUs combined, bias increased substantially (to 15 mm FL), demonstrating the importance of determining the proper taxonomic level at which to combine data within a species.  相似文献   

9.
A novel method was developed for the combined determination of carotenoids and retinoids in fish eggs, which incorporates prior analyte isolation using liquid-liquid partitioning to minimize analyte degradation, and fraction analysis using high-performance liquid chromatography-electrospray (positive)-quadrupole mass spectrometry (LC-ESI(+)-MS; SIM or MRM modes). Eggs from Chinook salmon (Oncorhynchus tshawytscha) were used as the model fish egg matrix. The methodology was assessed and validated for beta-carotene, lutein, zeaxanthin, and beta-cryptoxanthin (molecular ion radicals [M](+)), canthaxanthin and astaxanthin ([M+Na](+) adducts) and all-trans-retinol ([(M+H)-H(2)O](+)). Using replicate egg samples (n=5) spiked with beta-cryptoxanthin and beta-carotene before and after extraction, matrix-sourced ESI(+) enhancement was observed as evidenced by comparable %matrix effect and %process efficiency values for beta-cryptoxanthin and beta-carotene of 114-119%. In aquaculture-raised eggs from adult Chinook salmon astaxanthin, all-trans-retinol, lutein and canthaxanthin were identified and determined at concentrations of 4.12, 1.06, 0.12 and 0.45 microg/g (egg wet weight), respectively. To our knowledge, this is the first report on a method for LC-MS determination of carotenoids and retinoids in a fish egg matrix, and the first carotenoid-specific determination in any fish egg sample.  相似文献   

10.
Improving the feed conversion ratio (FCR; the amount of feed consumed relative to the amount of weight gain) can reduce both production costs and environmental impacts of farmed fish. The aim of this study was to investigate what drives FCR to understand how nutrients are retained, as well as the amount of oxygen consumed for digestion, absorption and assimilation (a metabolic process known as specific dynamic action, SDA). Feed-efficient and inefficient Chinook salmon (Oncorhynchus tshawytscha) in fresh water were identified using ballotini beads and X-radiography that tracked individual feed intake across three assessment periods under satiated feeding. This allowed a comparison of physiological traits and body composition between the two FCR phenotypes over two time points as Chinook salmon grew from 305 to 620 g. Fish with higher daily feed intake (DFI) had higher daily weight gain (DWG) as expected. Nonetheless, the relationship between FCR and DFI as well as FCR and DWG was variable between time points. FCR and DWG were not correlated at the first time point and were negatively correlated at the second time point. In contrast, FCR and DFI were positively correlated at the first time point but not the second. Despite this, efficient fish ate smaller meals and retained more protein, lipid and energy in their body tissues. There was no detectable difference in metabolism between the two FCR phenotypes with respect to minimal resting metabolic rate, maximum metabolic rate, aerobic scope, or SDA parameters. In conclusion, FCR is not consistently associated with growth and metabolic differences in freshwater Chinook salmon, but FCR-efficient fish retain more nutrients and consume smaller meals.  相似文献   

11.
Multilocus heterozygosity, aggressive and feeding behaviour, plasma cortisol levels and growth rate were evaluated among three groups of juvenile Chinook salmon Oncorhynchus tshawytscha : diploid, triploid and mixed groups of diploid and triploid fish. There was no difference between diploid and triploid fish in measurements of heterozygosity calculated using seven microsatellite loci, and these measurements did not correlate with performance measurements including feeding rate and growth rate. Aggression trials that examined small groups of fish revealed that after 4 days together in tanks, triploid fish were significantly less aggressive during feeding than diploid fish or fish in mixed groups. At the end of the trials, however, plasma cortisol levels did not differ among the three groups. Thirty-day growth trials in duplicate tanks of 60 fish revealed no difference in growth rate among diploid, triploid and mixed groups, but plasma cortisol levels were significantly lower in triploid fish than in either diploid fish or the mixed fish. Overall, independent of the above differences in aggressive behaviour and cortisol levels, these results suggest similar performance in diploid and triploid Chinook salmon, and thus provide support for the viability of triploid Chinook salmon culture in commercial aquaculture.  相似文献   

12.
The attachment of dummy, ultrasonic, acoustic tags, of the Stirling Mk. VI design, to pre-smolt Atlantic salmon parr significantly affected fish growth rates. Fish less than 160 mm in length lost weight and showed no change in length. Fish over 160 mm in length put on weight, though at a rate significantly lower than that of untagged controls. For fish between 160 and 180mm in length, the increase in length was significantly smaller in tagged fish than in untagged controls. Over 180 mm in length, no difference could be detected in the length gains of tagged and untagged fish.
Smaller tagged fish gave up maintaining station and showed signs of distress at an earlier stage in the experiment than larger tagged fish. Tag-related mortality was inversely related to fish size. All but two of the control fish survived the experiment and continued to maintain station throughout.
The results suggest that the minimum length of Atlantic salmon parr on which this design of acoustic tag could be employed is 160 mm, and that caution is needed in the interpretation of track lengths longer than l0 daysof parr in the size range 160–180 mm.  相似文献   

13.
One of the strategies that can be used to reduce predation impacts to valued fish species is by swamping predators with more prey than they can eat. We examined whether this approach was viable by calculating the maximum bioenergetic consumption potential of non-native smallmouth bass Micropterus dolomieu on fall Chinook salmon Oncorhynchus tshawytscha juveniles in the Yakima River throughout the spring between 1998 and 2002 and comparing those estimates to previously published estimates of fall Chinook salmon consumption. We found that the smallmouth bass population consumed fall Chinook salmon well below their bioenergetic potential. However, individual smallmouth bass that were piscivorous were eating other food items at a level near satiation. Furthermore, the maximum consumption potential was relatively low prior to mid-April, and then increased substantially to a peak in May. Predation mortality to hatchery fall Chinook salmon could be reduced within a year by releasing hatchery fall Chinook salmon that will emigrate quickly prior to mid-April, when predation potential is still very low. However, attempting to swamp predators with hatchery Chinook salmon to benefit naturally produced Chinook salmon poses uncertain benefits to natural origin fish and likely unacceptable costs to hatchery fish. Considerable swamping is occurring by other naturally produced fish species in the Yakima River such as dace Rhinichthys spp., mountain whitefish Prosopium williamsoni, and crayfish Pacificastus spp. Therefore, it is important to consider impacts to these non-target species because they could have indirect predation impacts on Chinook salmon.  相似文献   

14.
Using acoustic telemetry methods on large numbers of tagged fish, we studied how the holding behavior of Chinook salmon and steelhead smolts could be related to habitat features and spatial and temporal variables on a highly altered section of the Sacramento River. We viewed downstream migration as a process in which fish transition between moving and holding states, and used a binomial and negative binomial Generalized Linear Model to analyze two aspects of holding: 1) probability of holding, and 2) holding time. For Chinook salmon, the probability of holding increased as wood size and fine substrates increased; holding time increased as overhead shade increased. For steelhead, holding behavior was only weakly related to habitat variables, in contrast to the strong relationships with spatial and temporal variables. For both species, the probability of holding increased when distance from the release location decreased and instream flows decreased. We found support for three main findings: 1) spatial and temporal factors have considerably greater influence on Chinook salmon and steelhead smolt holding behavior than nearshore habitat features; 2) holding behaviors of Chinook salmon smolts are influenced more strongly by habitat features than steelhead smolts; and 3) incorporation of habitat features such as large woody material and overhead shade should be considered when conducting nearshore bank rehabilitation projects to increase cover from predators and provide velocity refuge, improving holding habitat during downstream migration.  相似文献   

15.
The trophic habits, size and condition of yearling Chinook salmon (Oncorhynchus tshawytscha) caught early in their marine residence were examined during 19 survey years (1981–1985; 1998–2011). Juvenile salmon consumed distinct highly piscivorous diets in cold and warm ocean regimes with major differences between ocean regimes driven by changes in consumption of juvenile rockfishes, followed by several other fish prey, adult euphausiids and decapod larvae. Notable, Chinook salmon consumed 30% more food in the warm versus cold ocean regime in both May and June. Additionally, there were about 30% fewer empty stomachs in the warm ocean regime in May, and 10% fewer in warm June periods. The total prey energy density consumed during the warmer ocean regime was also significantly higher than in cold. Chinook salmon had lower condition factor and were smaller in fork length during the warm ocean regime, and were longer and heavier for their size during the cold ocean regime. The significant increase in foraging during the warm ocean regime occurred concurrently with lower available prey biomass. Adult return rates of juvenile Chinook salmon that entered the ocean during a warm ocean regime were lower. Notably, our long term data set contradicts the long held assertion that juvenile salmon eat less in a warm ocean regime when low growth and survival is observed, and when available prey are reduced. Comparing diet changes between decades under variable ocean conditions may assist us in understanding the effects of projected warming ocean regimes on juvenile Chinook salmon and their survival in the ocean environment. Bioenergetically, the salmon appear to require more food resources during warm ocean regimes.  相似文献   

16.
While individual growth ultimately reflects the quality and quantity of food resources, intra and interspecific interactions for these resources, as well as individual size, may have dramatic impacts on growth opportunity. Out‐migrating anadromous salmonids make rapid transitions between habitat types resulting in large pulses of individuals into a given location over a short period, which may have significant impact on demand for local resources. We evaluated the spatial and temporal variation in IGF‐1 concentrations (a proxy for growth rate) and the relationship between size and concentration for juvenile Chinook salmon in Puget Sound, WA, USA, as a function of the relative size and abundance of both Chinook salmon and Pacific herring, a species which commonly co‐occurs with salmonids in nearshore marine habitats. The abundance of Chinook salmon and Pacific herring varied substantially among the sub‐basins as function of outmigration timing and spawn timing, respectively, while size varied systematically and consistently for both species. Mean IGF‐1 concentrations were different among sub‐basins, although patterns were not consistent through time. In general, size was positively correlated with IGF‐1 concentration, although the slope of the relationship was considerably higher where Pacific herring were more abundant than Chinook salmon; specifically where smaller individual herring, relative to Chinook salmon, were more abundant. Where Pacific herring were less abundant than Chinook salmon, IGF‐1 concentrations among small and large Chinook salmon were more variable and showed no consistent increase for larger individuals. The noticeable positive effect of relative Pacific herring abundance on the relationship between size and individual growth rates likely represents a shift to predation based on increased IGF‐1 concentrations for individual Chinook salmon that are large enough to incorporate fish into their diet and co‐occur with the highest abundances of Pacific herring.  相似文献   

17.
Increasing levels of a mixture of Ulva spp. produced in an integrated multi-trophic aquaculture (IMTA) system were evaluated in Nile tilapia juveniles for partial replacement of dietary fish meal. A control diet (CTRL) was compared with three experimental diets containing 10 % (U10), 15 % (U15), and 20 % (U20) of Ulva spp. meal. Triplicate groups of fish (13 g initial body weight) were fed each diet for 63 days at 26 °C. Nutrient apparent digestibility coefficients and nitrogen retention efficiency did not vary significantly among diets. By the end of the trial, all groups of fish more than tripled their initial body weight. Specific growth rate and final body weight of U10 diet were similar to CTRL and significantly higher than U15 and U20 diets. Increasing Ulva dietary incorporation levels significantly increased feed conversion ratio (FCR), from 1.0 (CTRL) to 1.4 (U20). Fish fed with U10 diet had the highest protein efficiency ratio and nitrogen retention efficiency allowing this fish to growth and reach a final body weight similar to the CTRL group. Protein content was highest in fish fed with the CTRL diet, whereas the highest lipid content was observed in fish fed with U20 diet. The results show that the incorporation of IMTA-produced Ulva meal in Nile tilapia diets is possible up to 10 % without compromising growth performance, protein utilization, and protein retention of juveniles. The high capacity of Nile tilapia to digest all experimental diets suggests that Ulva meal is a practical partial replacement for fish meal in Nile tilapia diets.  相似文献   

18.
Bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix (together, the bigheaded carps) are invasive fishes in North America that have resulted in substantial negative effects on native fish communities and aquatic ecosystems. Movement and behavior of adult bigheaded carps has been studied previously using telemetry, while similar studies with juvenile bigheaded carps have yet to be attempted. Recent technological advances in telemetry transmitters has increased the availability of tags sufficiently small enough to implant in juvenile carps. However, the effects of surgical implantation of telemetry tags on juvenile bigheaded carps have not been evaluated. We determined tag retention and survival associated with surgical implantation of acoustic telemetry tags into juvenile bighead carp (range 128–152 mm total length) at three temperatures (13, 18, and 23°C). In addition, we assessed the effect of surgically implanted transmitters on the fitness, defined as changes in weight or critical swimming speed, of carp implanted with transmitters. Survival was high among tagged fish (85%) with 47% of tags retained at the conclusion of the 45‐day study. No substantial decline in fitness of the fish was observed in tagged fish compared to untagged fish.  相似文献   

19.
Juvenile largemouth bass Micropterus salmoides , intraperitoneally implanted with microradio transmitters exhibited short-term (5 days) inflammation around the incision and suture insertion points for both non-absorbable braided silk and non-absorbable polypropylene monofilament, but in the longer term (20 days) almost all sutures were shed and the incisions were completely healed. Cumulative mortality was higher for fish with braided silk sutures, however, post-mortem analysis revealed that violations to the gastro-intestinal tract from the surgical procedure were the usual cause of the mortality. Mortality was generally low in control fish. The two surgeons who performed the implantations differed substantially in experience. Despite receiving basic training, the novice surgeon took longer to complete the surgeries, had reduced suture precision and experienced more fish mortality relative to the experienced surgeon. For both surgeons, it took longer to complete suturing with polypropylene than with braided silk. During the surgery day, the experienced surgeon exhibited consistently rapid surgery times, whereas the novice surgeon exhibited significantly improved speed as the number of surgeries completed increased. This study suggests that microtransmitters can be successfully implanted in juvenile largemouth bass but some mortality can be expected. This mortality seems to be independent of suture material, but dependent upon the experience of the surgeon.  相似文献   

20.
One of the major challenges for understanding the ecological impact of escaped farmed Atlantic salmon (Salmo salar L.) is predicting their dispersal patterns after an escape event. Here, we quantify the behaviour of escaped farmed salmon using a simulated-escape experiment within a Norwegian fjord system. Thirty-seven individuals were tagged with acoustic transmitters and their spatial distribution, horizontal movements and diving behaviour was monitored throughout the fjord and accompanying rivers using 29 acoustic receivers. A rapid movement away from the release site occurred. There was no movement into the rivers feeding the fjord and there was no preference for residence at the fish farms: nearly a third of the individuals had a final detection in the outer part of the fjord and no detections occurred from approximately 2 months after release. As it is unlikely that all fish died or remained undetected within the study area it is reasonable to assume that a substantial proportion of the fish moved out of the fjord system. If a recapture program is not implemented immediately after an escape event, we recommend spreading potential recapture efforts over a relatively large area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号