首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The beta-glucan receptor dectin-1 and Toll-like receptors TLR2 and TLR4 are the main receptors for recognition of Candida albicans by the innate immune system. It has been reported that dectin-1 amplifies TLR2-dependent induction of cytokines in mouse models. In the present study we hypothesized that dectin-1 has potent synergistic effects with both TLR2 and TLR4 in human PBMCs and macrophages. Human PBMCs and monocyte-derived macrophages were stimulated with curdlan, a linear beta-1,3-glucan-polymer derived from Alcaligenes faecalis with specific ligand affinity for dectin-1, in combination with the synthetic TLR2 ligand Pam3Cys and the ultrapure TLR4 ligand LPS. TNF-alpha and IL-10 production was measured in the supernatants with ELISA. Curdlan is a specific dectin-1 ligand without TLR2- or TLR4-stimulating properties. Human primary monocytes and macrophages express dectin-1 on the cell membrane. Stimulation of human PBMCs with curdlan in combination with Pam3Cys or LPS leads to synergistic increase in TNF-alpha production that was inhibited by GE2, a neutralizing dectin-1 antibody. Dectin-1-dependent synergy between curdlan and TLR agonists was also apparent in human monocyte-derived macrophages. Conclusively, dectin-1 synergizes with both TLR2 and TLR4 pathways for the production of TNF-alpha in human primary PBMCs and in monocyte-derived macrophages.  相似文献   

2.
3.
4.
Toll-like receptors (TLRs) function as sensors for infection that induce the activation of the immune responses. Recent studies have demonstrated a crucial involvement of TLRs in the recognition of fungal pathogens such as Candida albicans. Although both TLR2 and TLR4 have been implicated in the host interaction with C. albicans, their specific role during infection has not been unequivocally established, as conflicting results have been reported. In this review, we summarize and discuss our own and others' key findings about the specific role of TLR2 and TLR4 in murine resistance to candidiasis, and in triggering cytokine secretion by murine cells in response to C. albicans yeasts and hyphae.  相似文献   

5.
Using a continuous spectrophotometric assay, we have monitored the formation of superoxide anion (O2?) by activated and resident murine peritoneal macrophages. Macrophages elicited by injection with Corynebacterium parvum, as well as resident macrophages from untreated mice, were kept in suspension culture overnight to eliminate short-lived, contaminating neutrophils. Cytochemical analysis of the cultured macrophages disclosed that essentially all of the activated macrophages reduced nitroblue tetrazolium (NBT) dye vigorously. In contrast, only 18% of the resident macrophages demonstrated vigorous NBT reduction; the remainder of the resident macrophages reduced NBT very weakly. Kinetic analysis of macrophage O2? formation revealed that activated macrophages exposed to phorbol myristate acetate (PMA) produced O2? at a 13-fold greater maximum rate than resident macrophages. The decline in the rate of O2? production with time by activated macrophages was also greater than that of resident macrophages. The data indicate that the greater O2? production by activated macrophage populations is due to (i) the presence of an increased percentage of macrophages that respond to PMA with vigorous O2? production, and (ii) an increased maximum rate of O2? formation by these macrophages.  相似文献   

6.
7.
Apoptotic lymphocytes are readily identified in murine lungs, both during the response to particulate Ag and in normal mice. Because apoptotic lymphocytes are seldom detected in other organs, we hypothesized that alveolar macrophages (AMphi) clear apoptotic lymphocytes poorly. To test this hypothesis, we compared in vitro phagocytosis of apoptotic thymocytes by resident AMphi and peritoneal macrophages (PMphi) from normal C57BL/6 mice. AMphi were deficient relative to PMphi both in percentage containing apoptotic thymocytes (19.1 +/- 1% vs 96 +/- 2.6% positive) and in phagocytic index (0.23 +/- 0.02 vs 4.2 +/- 0.67). This deficiency was not due to kinetic differences, was seen with six other inbred mouse strains, and was not observed using carboxylate-modified polystyrene microbeads. Annexin V blockade indicated that both Mphi types cleared apoptotic T cells by a mechanism involving phosphatidylserine expression. By contrast, neither mAb blockade of a variety of receptors (CD11b, CD29, CD51, and CD61) known to be involved in clearance of apoptotic cells, nor the tetrapeptide RGDS (arginine-glycine-aspartic acid-serine) blocked ingestion by either type of macrophage. To confirm these studies, apoptotic thymocytes were given intratracheally or i.p. to normal mice, and then AMphi or PMphi were recovered 30-240 min later. Ingestion of apoptotic thymocytes by AMphi in vivo was significantly decreased at all times. Defective ingestion of apoptotic lymphocytes may preserve AMphi capacity to produce proinflammatory cytokines in host defense, but could contribute to development of autoimmunity by failing to eliminate nucleosomes.  相似文献   

8.
9.
10.
Conjugate vaccines consisting of the capsular polysaccharide (PS) of Haemophilus influenzae type b (Hib) covalently linked to carrier proteins, unlike pure PS, are immunogenic in infants and have significantly reduced Hib infections in the United States, but require multiple doses to induce protective anti-PS Ab titers. Hib-meningococcal outer membrane protein complex (OMPC) conjugate vaccine, however, elicits protective anti-PS Ab titers after one dose. We found that OMPC and Hib-OMPC engaged human Toll-like receptor 2 (TLR2) expressed in human embryonic kidney (HEK) cells, inducing IL-8 production, and engaged mouse TLR2 on bone marrow-derived dendritic cells, inducing TNF release. Hib conjugated to the carrier proteins CRM(197) and tetanus toxoid did not engage TLR2 on HEK or dendritic cells. Engagement of TLR2 by Hib-OMPC was MyD88 dependent, as Hib-OMPC-induced TNF production was ablated in MyD88 knockout (KO) mice. Hib-OMPC was significantly less immunogenic in TLR2 KO mice, inducing lower Hib PS IgG and IgM titers compared with those in wild-type mice. Splenocytes from OMPC-immunized TLR2 KO mice also produced significantly less IL-6 and TNF-alpha than those from wild-type mice. Hib-OMPC is unique among glycoconjugate vaccines by engaging TLR2, and the ability of Hib-OMPC to elicit protective levels of Abs after one dose may be related to TLR2-mediated induction and regulation of cytokines produced by T cells and macrophages in addition to the peptide/MHC II-dependent recruitment of T cell help commonly afforded by carrier proteins. TLR2 engagement by an adjuvant or carrier protein may be a useful strategy for augmentation of the anti-PS Ab response induced by glycoconjugate vaccines.  相似文献   

11.
12.
Inhalation of Bacillus anthracis, a bioterrorism agent, results in a high mortality rate despite appropriate antibiotic therapy. Macrophages appear to be a key factor in B. anthracis pathogenesis. The burst of pro-inflammatory cytokines from macrophages could be a major cause of death in anthrax. However, preactivation of Toll-like receptors (TLRs) could modify the host response. TLR ligands stimulate the release of activating cytokines but may also down-modulate the subsequent deleterious cytokine response to pathogens. We developed a cell culture model to measure macrophage responses to B. anthracis spores and bacilli. We found that germination from spores to bacilli produced a substantial stimulus for the secretion of the cytokines IL-6, TNF-alpha, IL-10, and IL-12 p40. Our studies showed that pretreatment of mouse macrophages with the TLR9 ligand ISS-1018, or the TLR7 ligands R-848 and IT-37, results in a substantial decrease in the subsequent secretion of IL-6 and TNF-alpha in response to B. anthracis infection of macrophages. Furthermore, the TLR7 and TLR9 ligands significantly decreased anthrax-induced cytotoxicity in the macrophages. These findings suggest that TLR ligands may contribute to the enhancement of innate immunity in B. anthracis infection by suppressing potentially deleterious pro-inflammatory cytokine responses and by improving macrophage viability.  相似文献   

13.
Summary Alveolar macrophages, which play a central role in lung defense, produce cytokines that help orchestrate local inflammatory responses. In sepsis and other pathological conditions, bacterial lipopolysaccharide endotoxin can induce alveolar macrophages (AM) to release proinflammatory cytokines, including tumor necrosis factor-alpha, interleukin-1, and interleukin-6. Studying the mechanisms that control alveolar macrophage cytokine production may lead to better therapies for conditions involving inflammatory lung injury. We and others have noted significant differences between alveolar macrophages and peritoneal macrophages, but large numbers of human or murine alveolar macrophages are rarely available for detailed mechanistic studies. We have obtained three murine alveolar macrophage cell lines (AMJ2C8, AMJ2C11, and AMJ2C20) and have begun to characterize their cytokine responses to proinflammatory stimuli. We measured the effects of endotoxin, interferon gamma, and the combination of the two on production of tumor necrosis factor, interleukin-1 beta, and interleukin-6 in each line. We also studied the expression of the endotoxin receptor CD14 by these cells, and investigated the effect of serum on their endotoxin responsiveness. We show here that all three of the cell lines responded in a manner comparable to that of primary murine alveolar macrophages. Observed variations between these lines may reflect the documented heterogeneity seen in populations of primary alveolar macrophages. These cell lines should expand the repertoire of tools available to investigators studying regulation of murine alveolar macrophage responses.  相似文献   

14.
Alveolar macrophages play a crucial role in the pathogenesis of inflammatory airway diseases. By the generation and release of different inflammatory mediators they contribute to both recruitment of different leukocytes into the lung and to airway remodeling. A potent stimulus for the release of inflammatory cytokines is ATP, which mediates its cellular effects through the interaction with different membrane receptors, belonging to the P2X and P2Y families. The aim of this study was to characterize the biological properties of purinoceptors in human alveolar macrophages obtained from bronchoalveolar lavages in the context of inflammatory airway diseases. The present study is the first showing that human alveolar macrophages express mRNA for different P2 subtypes, namely P2X(1), P2X(4), P2X(5), P2X(7), P2Y(1), P2Y(2), P2Y(4), P2Y(6), P2Y(11), P2Y(13), and P2Y(14). We also showed that extracellular ATP induced Ca(2+) transients and increased IL-1beta secretion via P2X receptors. Furthermore, extracellular nucleotides inhibited production of IL-12p40 and TNF-alpha, whereas IL-6 secretion was up-regulated. In summary, our data further support the hypothesis that purinoceptors are involved in the pathogenesis of inflammatory lung diseases.  相似文献   

15.
Inhalation exposure to silica dust enhanced interleukin 1 (IL-1) production by alveolar macrophages (AM), which is attributable to an increase in Ia-positive lung cells. While the proportion of Ia-positive cells in lavaged bronchoalveolar cells (BAC) was much lower (0-3%) in unexposed control rats, about a third of the rats that inhaled silica showed higher proportions (8.0-18.5%); these were designated "Ia-high" exposed animals. The number of total cells, Ia-positive cells and lymphocytes in BAC was significantly increased (P less than 0.05, P less than 0.001, and P less than 0.001, respectively) in these "Ia-high" exposed animals, compared to the control animals. Adherent AM populations obtained from BAC preparations also contained significantly higher (P less than 0.001) proportions of Ia-positive cells in the "Ia-high" exposed animals. When these adherent AM cultures were stimulated with lipopolysaccharide, IL-1 activity of the culture supernatants was enhanced and was significantly higher (P less than 0.001) in the "Ia-high" exposed rats, compared to the control animals. These results indicate that silica-exposure can induce populational changes in lung cells and also activation of AM associated with the increase in Ia-positive cells.  相似文献   

16.
Lipopolysaccharide plus interferon gamma stimulated the L-arginine-.NO pathway of murine, but not human pulmonary alveolar macrophages. Pneumocystis carinii induced .NO production by both murine and human pulmonary alveolar macrophages suggesting that the parasite stimulates L-arginine oxidation in these cells. The potential anti-Pneumocystis activity of .NO warrants further study.  相似文献   

17.
Recent epidemiological observations suggest that acetaminophen (paracetamol) may contribute to asthma morbidity. Impaired endogenous antioxidant defences may have a role in the pathogenesis of a number of inflammatory pulmonary diseases, including asthma. We studied the effect of acetaminophen on the intracellular level of reduced glutathione (GSH) with and without inhibitors of cytochrome P450 or prostaglandin H synthetase, and TNF-alpha, IL-6 and IL-8 protein production in human alveolar macrophages and type II pneumocytes in vitro. Following a 20 h incubation with acetaminophen, cytotoxicity was apparent from > or = 5 and > or = 10 mM in macrophages and type II pneumocytes, respectively. A time- and concentration-dependent decrease of intracellular GSH occurred after acetaminophen (0.05-1 mM) exposure (1-4 h) in pulmonary macrophages (up to 53%) and type II pneumocytes (up to 34%). Diethyldithiocarbamic acid, potassium ethyl xanthate, and indomethacin decreased significantly acetaminophen-induced GSH depletion in the two cell types tested, suggesting the involvement of cytochrome P450 (mainly CYP2E1) and/or prostaglandin H synthetase. In macrophages, acetaminophen decreased the secretion of TNF-alpha (at 4 and 24 h, concentration-related) and IL-6 (at 24 h, at 0.1 mM), and did not affect significantly IL-8 production. These in vitro observations demonstrate that clinically relevant concentrations of acetaminophen decreased: (i) intracellular GSH in human pulmonary macrophages and type II pneumocytes and (ii) the secretion of TNF-alpha and possibly IL-6 by human pulmonary macrophages. These findings provide experimental plausibility to the challenging observations that frequent use of APAP may be a risk factor for asthma morbidity.  相似文献   

18.
Inflammation characterized by the expression and release of cytokines and chemokines is implicated in the development and progression of atherosclerosis. Oxidatively modified low density lipoproteins, central to the formation of atherosclerotic plaques, have been reported to signal through Toll-like receptors (TLRs), TLR4 and TLR2, in concert with scavenger receptors to regulate the inflammatory microenvironment in atherosclerosis. This study evaluates the role of low density lipoproteins (LDL) and oxidatively modified LDL (oxmLDL) in the expression and release of proinflammatory mediators IκBζ, IL-6, IL-1β, TNFα, and IL-8 in human monocytes and macrophages. Although standard LDL preparations induced IκBζ along with IL-6 and IL-8 production, this inflammatory effect was eliminated when LDL was isolated under endotoxin-restricted conditions. However, when added with TLR4 and TLR2 ligands, this low endotoxin preparation of oxmLDL suppressed the expression and release of IL-1β, IL-6, and TNFα but surprisingly spared IL-8 production. The suppressive effect of oxmLDL was specific to monocytes as it did not inhibit LPS-induced proinflammatory cytokines in human macrophages. Thus, TLR ligand contamination of LDL/oxmLDL preparations can complicate interpretations of inflammatory responses to these modified lipoproteins. In contrast to providing a proinflammatory function, oxmLDL suppresses the expression and release of selected proinflammatory mediators.  相似文献   

19.
Eicosanoid production by macrophages is an early response to microbial infection that promotes acute inflammation. The intracellular pathogen Listeria monocytogenes stimulates arachidonic acid release and eicosanoid production from resident mouse peritoneal macrophages through activation of group IVA cytosolic phospholipase A2 (cPLA2alpha). The ability of wild type L. monocytogenes (WTLM) to stimulate arachidonic acid release is partially dependent on the virulence factor listeriolysin O; however, WTLM and L. monocytogenes lacking listeriolysin O (DeltahlyLM) induce similar levels of cyclooxygenase 2. Arachidonic acid release requires activation of MAPKs by WTLM and DeltahlyLM. The attenuated release of arachidonic acid that is observed in TLR2-/- and MyD88-/- macrophages infected with WTLM and DeltahlyLM correlates with diminished MAPK activation. WTLM but not DeltahlyLM increases intracellular calcium, which is implicated in regulation of cPLA2alpha. Prostaglandin E2, prostaglandin I2, and leukotriene C4 are produced by cPLA2alpha+/+ but not cPLA2alpha-/- macrophages in response to WTLM and DeltahlyLM. Tumor necrosis factor (TNF)-alpha production is significantly lower in cPLA2alpha+/+ than in cPLA2alpha-/- macrophages infected with WTLM and DeltahlyLM. Treatment of infected cPLA2alpha+/+ macrophages with the cyclooxygenase inhibitor indomethacin increases TNFalpha production to the level produced by cPLA2alpha-/- macrophages implicating prostaglandins in TNFalpha down-regulation. Therefore activation of cPLA2alpha in macrophages may impact immune responses to L. monocytogenes.  相似文献   

20.
TLR2 recognizes components of Mycobacterium tuberculosis and initiates APC activities that influence both innate and adaptive immunity. M. tuberculosis lipoproteins are an important class of TLR2 ligands. In this study, we focused on recombinant MPT83 (rMPT83) to determine its effects on mouse macrophages. We demonstrated that rMPT83 induced the production of TNF-α, IL-6, and IL-12 p40 and that cytokine induction depended on activated MAPKs, because we observed the rapid phosphorylation of ERK1/2, p38, and JNK in macrophages. Additionally, neutralizing Abs against TLR2 significantly inhibited cytokine secretion and reduced or attenuated the rMPT83-induced activation of p38 and JNK in RAW264.7 cells, a mouse macrophage cell line. Furthermore, rMPT83-induced cytokine production was significantly lower in macrophages from TLR2(-/-) mice than in macrophages from wild-type mice. We further found that prolonged exposure (>24 h) of RAW264.7 cells or macrophages from wild-type and TLR2(-/-) mice to rMPT83 resulted in a significant enhancement of IFN-γ-induced MHC class II expression and an enhanced ability of macrophages to present the rMPT83 peptide to CD4(+) T cells. These results indicated that rMPT83 is a TLR2 agonist that induces the production of cytokines by macrophages and upregulates macrophage function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号