首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial mortality was studied using two complementary methods between 2002 and 2004 in the two main basins (north and south) of Lake Tanganyika. The disappearance of radioactivity from the DNA of natural assemblages of bacteria previously labeled with tritiated thymidine was used to estimate the mortality due to grazing by predators (72%) and due to the cell lysis (28%). Measurements of ingestion rate of bacteria by protozoa using fluorescent micro-particles yielded protozoan grazing rates similar to those provided by the thymidine method, and showed that heterotrophic nano-flagellates were responsible for most of the grazing pressure on the bacterial community of the pelagic zone (92-99%). Bacterial cell lysis was the second process involved in bacterial mortality, ranking before ciliate grazing. Overall, bacterial mortality was balanced with bacterial production. With regard to the assessment of the trophic role of bacteria, it was estimated that c. 5-8% of the organic carbon taken up by bacteria was converted into protozoan biomass and was thus available for metazoans.  相似文献   

2.
Ciliated protists are important predators of bacteria in many aquatic habitats, including sediments. Since, many biochemical transformations within the nitrogen cycle are performed by bacteria, ciliates could have an indirect impact on the nitrogen cycle through selective grazing on nitrogen-transforming bacteria. As a case study, we examined ciliate grazing on nitrifying bacteria of the genera Nitrosomonas and Nitrospira. All experiments were designed as in vitro-experiments with cultures of different bacteria and ciliate species. The nitrifying bacteria used in our experiments were Nitrosomonas europaea [Winogradsky 1892] and Nitrospira moscoviensis [Ehrich 2001]. The ciliates comprised of four species that are known as efficient bacterivores and common members of the protist community in aquatic systems: Paramecium aurelia [Müller 1773], Euplotes octocarinatus [Carter 1972], Tetrahymena pyriformis [Ehrenberg 1830] and Cyclidium glaucoma [Müller 1786]. Our experimental approach, using a combination of DAPI and FISH staining, was successful in allowing the observation of ingestion of specific bacteria and their detection within ciliate food vacuoles. However, the ciliates in this study showed no significant selective grazing. No food preferences for a any bacterial taxon or any size class or morphotype were detected. Correlation with time between ciliate abundance and bacterial abundance or biovolume, using log transformed growth rates of ciliates and bacteria, showed no significant results. On the bacterial side, neither an active defence mechanism of the nitrifying bacteria against ciliate grazing, such as changes in morphology, nor competition for resources were observed. These results suggest that in our in vitro-experiments grazing by ciliates has no influence on abundance and growth of nitrifying bacteria and nitrification.  相似文献   

3.
The taxonomic composition of the ciliate assemblage and their taxon‐specific bacterial grazing rates in Lake Constance were investigated over the course of one year. Bacterial grazing rates were measured using natural fluorescently labelled bacteria (FLB) and compared to bacterial production. Small species such as Balanion planctonicum/Urotricha furcata and Rimostrombidium spp./Halteria sp. were the most numerous ciliates on the annual average. Larger ciliates such as Rimostrombidium lacustris and Limnostrombidium spp. contributed significantly to total ciliate biomass, but were relatively unimportant as bacterial grazers. Per capita ingestion rates ranged from 0–194 bacteria ciliate−1 h−1 and changed seasonally up to a hundredfold within a given taxon. Approximately 1% of the bacterial production were removed by the ciliate community on the annual average. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The effect of temperature on length of time for digestion of bacteria was evaluated, by using fluorescently labeled bacteria (FLB), for phagotrophic flagellates and ciliates isolated from coastal northwest Mediterranean waters. Accumulation of FLB in protozoan food vacuoles was followed until a plateau of FLB per cell occurred; then after a 1:10 dilution of FLB with unlabeled bacteria, disappearance of FLB in food vacuoles was monitored. For both 3- to 5-μm flagellates and 10- to 40-μm ciliates, the absolute linear slopes of FLB uptake and disappearance were nearly identical in individual experiments over a temperature range of 12 to 22°C. We inferred from these results that the leveling off of the uptake curves resulted when equilibrium between ingestion and digestion of bacteria was attained. The time to leveling off then represented the average time needed for complete digestion of the bacteria ingested at the start of the experiment, and the inverse of this time represented a bacterial digestion rate. The digestion rate increased exponentially from 12 to 22°C for both a mixed flagellate assemblage and the oligotrichous ciliate Strombidium sulcatum, with a Q10 of 2.8 for the flagellates and 2.0 for the ciliate. Although bacterial ingestion rates varied greatly, depending on protozoan cell size, total bacterial abundance, and temperature, digestion times appeared to be significantly influenced only by protozoan cell size (or type of protozoan) and by temperature.  相似文献   

5.
Plankton community structure and major pools and fluxes of carbon were observed before and after culmination of a bloom of cyanobacteria in eutrophic Frederiksborg Slotssø, Denmark. Biomass changes of heterotrophic nanoflagellates, ciliates, microzooplankton (50 to 140 μm), and macrozooplankton (larger than 140 μm) were compared to phytoplankton and bacterial production as well as micro- and macrozooplankton ingestion rates of phytoplankton and bacteria. The carbon budget was used as a means to examine causal relationships in the plankton community. Phytoplankton biomass decreased and algae smaller than 20 μm replacedAphanizomenon after the culmination of cyanobacteria. Bacterial net production peaked shortly after the culmination of the bloom (510 μg C liter?1 d?1 and decreased thereafter to a level of approximately 124 μg C liter?1 d?1. Phytoplankton extracellular release of organic carbon accounted for only 4–9% of bacterial carbon demand. Cyclopoid copepods and small-sized cladocerans started to grow after the culmination, but food limitation probably controlled the biomass after the collapse of the bloom. Grazing of micro- and macrozooplankton were estimated from in situ experiments using labeled bacteria and algae. Macrozooplankton grazed 22% of bacterial net production during the bloom and 86% after the bloom, while microzooplankton (nauplii, rotifers and ciliates larger than 50 μm) ingested low amounts of bacteria and removed 10–16% of bacterial carbon. Both macro-and microzooplankton grazed algae smaller than 20 μm, although they did not control algal biomass. From calculated clearance rates it was found that heterotrophic nanoflagellates (40–440 ml?1) grazed 3–4% of the bacterial production, while ciliates smaller than 50 μm removed 19–39% of bacterial production, supporting the idea that ciliates are an important link between bacteria and higher trophic levels. During and after the bloom ofAphanizomenon, major fluxes of carbon between bacteria, ciliates and crustaceans were observed, and heterotrophic nanoflagellates played a minor role in the pelagic food web.  相似文献   

6.
Fluorescence in situ hybridization (FISH) was applied to detect ingested natural bacteria within the food vacuoles of ciliates harvested from the natural sediment. In addition to this important qualitative aspect, FISH was also successfully used to measure the bacterivory of a culture of the ciliate Tetrahymena pyriformis on natural field sediment bacteria. In this feeding experiment, we compared the FISH technique with the only available alternative technique using fluorescently stained sediment (FS-sediment). The ingestion rate of unstained sediment bacteria determined by FISH was 4.6 bacteria per ciliate and hour. In contrast, Tetrahymena pyriformis cells that fed on bacteria from FS-sediment ingested 12.7 bacteria per ciliate and hour. Bacterial abundances in the sediment were equal in both sediment types (4 x 10(8) cells g sediment dry weight(-1)) when determined by DAPI counts. However, when analyzed using DTAF-counts, the number of bacteria in the FS-sediment increased to 9.7 x 10(8) cells g sediment dry weight(-1). From our findings we conclude that bacterivory by ciliates is overestimated when FS-sediment is used because DTAF stains bacteria as well as protein-containing detritus particles, which are also ingested by many ciliates. In contrast, FISH is a direct, a posteriori method that specifically stains phylogenetic lineages, e.g. eubacteria, after ingestion and thereby avoids a false determination of the number of ingested bacteria. Thus this method can also be used for the study of natural ciliate bacterivory in benthic systems.  相似文献   

7.
The dynamics of in situ bacterial communities in the hyporheic zone of an intermittent stream were described in high spatiotemporal detail. We assessed community dynamics in stream sediments and interstitial pore water over a two-year period using terminal-restriction fragment length polymorphism. Here, we show that sediments remained saturated despite months of drought and limited hydrologic connectivity. The intermittency of stream surface water affected interstitial pore water communities more than hyporheic sediment communities. Seasonal changes in bacterial community composition was significantly associated with water intermittency, phosphate concentrations, temperature, nitrate and dissolved organic carbon (DOC) concentrations. During periods of low- to no-surface water, communities changed from being rich in operational taxonomic units (OTUs) in isolated surface pools, to a few OTUs overall, including an overall decline in both common and rare taxa. Individual OTUs were compared between porewater and sediments. A total of 19% of identified OTUs existed in both porewater and sediment samples, suggesting that bacteria use hyporheic sediments as a type of refuge from dessication, transported through hydrologically connected pore spaces. Stream intermittency impacted bacterial diversity on rapid timescales (that is, within days), below-ground and in the hyporheic zone. Owing to the coupling of intermittent streams to the surrounding watershed, we stress the importance of understanding connectivity at the pore scale, consequences for below-ground and above-ground biodiversity and nutrient processing, and across both short- and long-time periods (that is, days to months to years).  相似文献   

8.
The abundance and biomass of the main components of the microbial plankton food web (“microbial loop”)—heterotrophic bacteria, phototrophic picoplankton and nanoplankton, heterotrophic nanoflagellates, ciliates and viruses, production of phytoplankton and bacterioplankton, bacterivory of nanoflagellates, bacterial lysis by viruses, and the species composition of protists—have been determined in summer time in the Sheksna Reservoir (the Upper Volga basin). A total of 34 species of heterotrophic nanoflagellates from 15 taxa and 15 species of ciliates from 4 classes are identified. In different parts of the reservoir, the biomass of the microbial community varies from 26.2 to 64.3% (on average 45.5%) of the total plankton biomass. Heterotrophic bacteria are the main component of the microbial community, averaging 63.9% of the total microbial biomass. They are the second (after the phytoplankton) component of the plankton and contribute on average 28.6% to the plankton biomass. The high ratio of the production of heterotrophic bacteria to the production of phytoplankton indicates the important role of bacteria, which transfer carbon of allochthonous dissolved organic substances to a food web of the reservoir.  相似文献   

9.
The seasonal and spatial distribution of abundance and biomass as well as the taxonomic composition of ciliates inhabiting the sandy hyporheic zone of a lowland stream were studied. The mean abundances varied between 0 and 895 cells ml−1 sediment, and the mean ciliate biomass ranged between 0 and 5.3 μg C ml−1 sediment. Ciliate numbers and biomasses were greatest at the sediment surface and declined significantly with increasing sample depth. Abundance and biomass varied seasonally, with maximum values in late autumn and early winter and minimum values in early summer. The community was dominated by small representatives of the Hymenostomatia and Peritrichia. Ciliate community composition changed with depth from a very diverse community at the sediment surface to a less diverse one at greater sediment depths. Ciliate abundance and biomass were two orders of magnitude lower in the channel water than in the hyporheic zone. Although representatives of all sediment taxa could also be found in the channel water, the greatest concentrations of Peritrichia and Suctoria were in the hyporheic zone. The species of the sandy Ladberger Mühlenbach sediment were ubiquitous; there was no single ciliate fauna that proved to be typical for this kind of freshwater biotope.  相似文献   

10.
The objective of this study was to analyze the flux of biomass through the communities of bacteria and phagotrophic protists in the cold and warm conditions occurring seasonally in Butrón River. Bacterial and heterotrophic protistan (flagellate and ciliate) abundance was determined by epifluorescence direct counts; protistan grazing on planktonic bacteria was measured from fluorescently labeled bacteria uptake rates; and the estimate of bacterial secondary production was obtained from [3H]thymidine incorporation rates. The abundance of bacterial, flagellate, and ciliate communities was similar during cold and warm situations. However, we observed that estimates of dynamic parameters, i.e., secondary bacterial production and protistan grazing, in both situations were noticeably different. In the warm situation, grazing rates of flagellates and ciliates (bacteria per protist per hour) were, respectively, 7 times and 18 times higher than those determined in the cold situation, and the grazing rates of the protistan communities (bacteria per protists present in 1 ml of water per hour) increased up to 5 times in the case of flagellates and 42 times in the case of ciliates. Estimates of bacterial secondary production were also higher during the warm situation, showing a ninefold increase. The percentage of bacterial production preyed upon by flagellates or ciliates was not significantly different between the two conditions. These results showed that in the different conditions of a system, the flux of biomass between the trophic levels may be quite different although this process may not be reflected in the abundance of each community of bacteria, flagellates, and ciliates. Offprint requests to: J. Iriberri.  相似文献   

11.
The influence of prey characteristics such as motility and size as well as of predator characteristics such as satiation and preculturing diet on the feeding process of interception feeding heterotrophic nanoflagellates was investigated. Three species of gram-negative bacteria, one species of gram-positive bacteria, two species of cyanobacteria (Synechococcus) and inert latex particles were fed as prey particles for three species of heterotrophic nanoflagellates (Spumella, Ochromonas, Cafeteria). Ingestion rates depended on the satiation of the flagellates and especially on the filling status of the food vacuoles. In addition, the ingestion rates depended on the characteristics of the food particle and were modified by pre-culturing the flagellates on either Pseudomonas putida or Bacillus subtilis. Digestion was found to be particle-specific. Cyanobacteria were excreted a few minutes after ingestion whereas heterotrophic bacteria were stored and digested in the food vacuoles. The spectrum of ingested particles is not identical to that of digested particles and thus neither the diet of the flagellates nor their impact on bacterial communities can be calculated simply from food vacuole content. "Selective digestion" could be shown to be an important selection mechanism concerning natural food particles. The digestion strategies of Cafeteria on the one hand and Spumella and Ochromonas on the other hand may be an important factor to explain protozoan species composition and succession in the field. In addition to bacterial abundance and grazing pressure by metazooplankton, the bacterial speciescomposition as well as biochemical variations within bacterial species may influence protozoan species composition and abundance.  相似文献   

12.
Abstract The ciliated protozoan communities in the hypolimnion of a highly produtive pond were investigated over two years. Three physiological groups could be distinguished: stratified water column; (b) anaerobic ciliates with endosymbiotic methanogens; and (c) anaerobes without endosymbiotic methanogens. Both groups of anaerobes were confined to the anoxic zone of the hypolimnion. Community biomass was dominated by microaerobic ciliates which had on average 20 times larger cells than anaerobic ciliates. Abundance and biomass of microaerobic ciliates decreased over the summer, while anaerobic ciliates increased. This reflected a spatial shift in the availability of inorganic nutrients and, as a result, of ciliate food from the epi- and metalimnion to the hypolimnion. The low biomass production of anaerobic ciliates was consistent with the low theoretical growth efficiency of anaerobic metabolism. Ciliate species displayed characteristic spatial and seasonal distribution patterns within the water column which were similar in both years investigated. Spatial and temporal distribution was mainly governed by two factors: (1) the distribution of dissolved oxygen; and (2) the availability of food. Distribution patterns were not related to chemical gradients other than the oxygen gradient, but they were correlated with the distribution of major food sources.  相似文献   

13.
The microbial loop of a naturally acidic bog lake, Große Fuchskuhle (Northeastern Germany), that had been artificially divided into 4 basins, was investigated. In the northeast (NE) and southwest (SW) basins, which differ strongly in chemistry and primary production, we conducted intensive studies of the main carbon fluxes through microbial food webs. In the less acidic, NE basin, much higher phytoplankton as well as bacterial biomass and production were found in parallel with negligible numbers of larger zooplankters. Weakly top-down controlled populations of protists were characterized by an exceptionally low numerical proportion of heterotrophic nanoflagellates (HNF) to ciliates (-1.5-3.5). The ciliate community was dominated by a scuticociliate, Cyclidium sp. (>95% of total ciliates), with an estimated grazing rate equal to 46–80% of heterotrophic bacterial production. In contrast, in the more humic, SW basin, both phyto- and bacterioplankton dynamics seemed to be top-down controlled by abundant populations of small fine-filter feeding cladocerans, Ceriodaphnia quadrangula and Diaphanosoma brachyurum. Consequently, ciliates disappeared from the food web structure of the SW basin, HNF dropped to negligible numbers and bacteria showed very uniform morphology, dominated by small cocci or short rods. Our investigations have shown that the division of the lake into separate compartments can lead to very different microbial food web structures with extreme species compositions.  相似文献   

14.
Comerma  M.  García  J.C.  Romero  M.  Armengol  J.  Šimek  K. 《Hydrobiologia》2003,504(1-3):87-98
Changes in the pelagic community structure and activity along the longitudinal axis of the eutrophic Sau Reservoir (Catalonia, NE Spain) were studied between 1996 and 1999. Samples were taken from several transects from river to dam, measuring dissolved organic carbon (DOC), bacterial abundance and production, chlorophyll a concentration, heterotrophic nanoflagelate (HNF) and ciliate abundances and their grazing rates, and zooplankton density. The role of microbial and classical food chains (i.e., based directly on phytoplankon) were compared in the Sau Reservoir by analysing river-to-dam gradients in biomass and carbon and their temporal changes. The detritic metabolic pathway was more important near to the inflow, due to high allochthonous organic matter loads allowing the rapid development of the microbial food web. Protozoans (HNF and ciliates) consumed most of the bacterial production (i.e., >50%) in the reservoir. As opposed to the systems of lower trophic status ciliate carbon biomass and bacterivory contributions were larger than those of the HNF. We estimated species-specific ciliate growing rates on bacteria and distinguished several periods with high importance of distinct ciliate communities.  相似文献   

15.
Magnetotactic bacteria show an ability to navigate along magnetic field lines because of magnetic particles called magnetosomes. All magnetotactic bacteria are unicellular except for the multicellular prokaryote (recently named 'Candidatus Magnetoglobus multicellularis'), which is formed by an orderly assemblage of 17-40 prokaryotic cells that swim as a unit. A ciliate was used in grazing experiments with the M. multicellularis to study the fate of the magnetosomes after ingestion by the protozoa. Ciliates ingested M. multicellularis, which were located in acid vacuoles as demonstrated by confocal laser scanning microscopy. Transmission electron microscopy and X-ray microanalysis of thin-sectioned ciliates showed the presence of M. multicellularis and magnetosomes inside vacuoles in different degrees of degradation. The magnetosomes are dissolved within the acidic vacuoles of the ciliate. Depending on the rate of M. multicellularis consumption by the ciliates the iron from the magnetosomes may be recycled to the environment in a more soluble form.  相似文献   

16.
A modified fluorescence in situ hybridization (FISH) method was used to analyze bacterial prey composition in protistan food vacuoles in both laboratory and natural populations. Under laboratory conditions, we exposed two bacterial strains (affiliated with beta- and gamma-Proteobacteria -- Aeromonas hydrophila and Pseudomonas fluorescens, respectively) to grazing by three protists: the flagellates Bodo saltans and Goniomonas sp., and the ciliate Cyclidium glaucoma. Both flagellate species preferably ingested A. hydrophila over P. fluorescens, while C. glaucoma showed no clear preferences. Differences were found in the digestion of bacterial prey with B. saltans digesting significantly faster P. fluorescens compared to two other protists. The field study was conducted in a reservoir as part of a larger experiment. We monitored changes in the bacterial prey composition available compared to the bacteria ingested in flagellate food vacuoles. Bacteria detected by probe HGC69a (Actinobacteria) and R-BT065 were negatively selected by flagellates. Bacteria detected by probe CF319a were initially positively selected but along with a temporal shift in bacterial cell size, this trend changed to negative selection during the experiment. Overall, our analysis of protistan food vacuole content indicated marked effects of flagellate prey selectivity on bacterioplankton community composition.  相似文献   

17.
Abstract The role of grazing by marine sediment flagellates, ciliates, and meiobenthic animals in controlling production of their bacterial and diatom prey was investigated. At six selected time points, over the year, bacterial production and diatom standing stock were compared to grazing pressure exercised by proto- and micrometazoan consumers. The intensity of prey-predator relations showed pronounced yearly dynamics in which two stages could be distinguished. During the first phase, from the end of winter to mid-summer, the consumption of diatoms gradually increased, with possible overgrazing at the end of the period. This was followed by a collapse of diatom abundance, to the winter level. During the first stage, no appreciable bacterial consumption was observed in spite of the high abundance and production of bacteria. The second stage started in mid-summer and continued through the fall. During this period, the grazing on bacteria increased and reached the year's maximum. For at least a brief period (October), micrograzers removed the majority of bacterial production. In contrast, herbivory stayed at the year's lowest level, and diatoms appeared to be controlled by factors other than grazing. The observed ingestion rates seem to support the apparent energy requirements of flagellates and some ciliates (scuticociliates and hypotrichids). Other ciliates (pleurostomatids and karyorelictids) could not subsist on the observed diet and might have to complement it with other energy sources, possibly via dissolved organic matter absorption. Received: 27 August 1996; Accepted: 22 January 1997  相似文献   

18.
Bouvier  T.  Becquevort  S.  Lancelot  C. 《Hydrobiologia》1997,363(1-3):289-301
Biomass and activities of planktonicmicroorganisms (bacteria, nanoplankton andmicroplankton) were measured in the northwestern BlackSea during summer 1995. The method based on theuptake of fluorescently labeled prey was chosen todetermine the ingestion rate of bacteria andnanoplankton by phagotrophic microorganisms. Thismethod revealed the presence of mixotrophic organismssuch as ’plastid-retaining ciliates‘ in the wholecoastal area. Mixotrophic ciliates were dominated bymicro-sized forms and maximum biomasses were recorded inthe water masses characterised by low nutrientconcentrations but high food particle concentrations. Mixotrophic nanoflagellates were absentand mixotrophic dinoflagellates were observed at onestation only. Mixotrophic ciliates were shown to ingestpreferably bacteria while mixotrophic dinoflagellateswere grazing almost exclusively on nanoflagellates.Although the biomass of mixotrophic organisms weresignificantly lower than those of aplastidic protozoa,their feeding activity contributed to 14 and 24% ofthe ingestion of bacteria and nanoplankton, respectively.This is due to the high specificingestion rate of mixotrophic micro-sized ciliates anddinoflagellates, which were two and three times higher,respectively, than the specific ingestion rate ofbacteria and nanoplankton by aplastidic protozoa. Thissuggests a significant contribution of phagotrophicmixotrophs to the microbial network of thenorthwestern Black Sea. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
We studied the planktonic food web in eutrophic Sau Reservoir (Catalonia, NE Spain). Along the longitudinal axis from the Ter River downstream to the dam, we characterized a microbial succession of food web dominance of bacteria‐HNF‐ciliates. The Ter River transports a large load of organic material into the reservoir, with a bacterial density of ∼9 · 106 large cells per ml. While at the first lacustrine station of the Reservoir HNF were the dominant bacterial consumers, at the others, an oligotrich ciliate, Halteria grandinella, was the main protozoan bacterivore. Most of the bacterial production in the reservoir epilimnion was consumed by grazing. The spatial succession of the reservoir microbial food webs was followed downstream by maximum densities of their potential predators among zoo‐plankters – rotifers, and early developmental stages of copepods.  相似文献   

20.
Predation is a major mortality factor of planktonic bacteria and an important shaping force for the phenotypic and taxonomic structure of bacterial communities. In this paper we: (1) summarise current knowledge on bacterial phenotypic properties which affect their vulnerability towards grazers, and (2) review experimental evidence demonstrating that this phenotypic heterogeneity results in shifts of bacterial community composition during enhanced protist grazing pressure. Size-structured interactions are especially important in planktonic systems and bacterial cell size influences the mortality rate and the type of grazer to which bacteria are most susceptible. When protists are the major bacterivores, both very small and large bacterial cells gain some size refuge. Recent studies have revealed that also various non-morphological traits such as motility, physicochemical surface characters and toxicity affect bacterial vulnerability and protist feeding success. These properties are effective at different stages during the feeding process of interception feeding flagellates (encounter, capture, ingestion, digestion). Grazing-resistant bacteria in natural communities can account for a substantial portion of the total bacterial biomass at least in more productive aquatic systems. In field and laboratory experiments it has been demonstrated that increased protozoan grazing results in shifts in the phenotypic and genotypic composition of the bacterial assemblage. The importance of this shaping force for the bacterial community structure depends, however, on the overall food web structure, especially on the composition of the metazooplankton. Whereas the structuring impact of bacterial grazers is well documented, relatively little is known about how grazing-mediated changes in bacterial communities influence microbially mediated processes and biogeochemically important transformations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号