首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Nitrogen mineralization, nitrification, denitrification, and microbial biomass were evaluated in four representative ecosystems in east-central Minnesota. The study ecosystems included: old field, swamp forest, savanna, and upland pin oak forest. Due to a high regional water table and permeable soils, the upland and wetland ecosystems were separated by relatively short distances (2 to 5 m). Two randomly selected sites within each ecosystem were sampled for an entire growing season. Soil samples were collected at 5-week intervals to determine rates of N cycling processes and changes in microbial biomass. Mean daily N mineralization rates during five-week in situ soil incubations were significantly different among sampling dates and ecosystems. The highest annual rates were measured in the upland pin oak ecosystem (8.6 g N m–2 yr–1), and the lowest rates in the swamp forest (1.5 g N m–2 yr–1); nitrification followed an identical pattern. Denitrification was relatively high in the swamp forest during early spring (8040 g N2O–N m–2 d–1) and late autumn (2525 g N2O–N m–2 d–1); nitrification occurred at rates sufficient to sustain these losses. In the well-drained uplands, rates of denitrification were generally lower and equivalent to rates of atmospheric N inputs. Microbial C and N were consistently higher in the swamp forest than in the other ecosystems; both were positively correlated with average daily rates of N mineralization. In the subtle landscape of east-central Minnesota, rates of N cycling can differ by an order of magnitude across relatively short distances.  相似文献   

2.
The effects of forest management (thinning) on gross and net N conversion, the balance of inorganic N production and consumption, inorganic N concentrations and on soil microbial biomass in the Ah layer were studied in situ during eight intensive field measuring campaigns in the years 2002–2004 at three beech (Fagus sylvatica L.) forest sites. At all sites adjacent thinning plots (“T”) and untreated control plots (“C”) were established. Since the sites are characterized either by cool-moist microclimate (NE site and NW site) or by warm-dry microclimate (SW site) and thinning took place in the year 1999 at the NE and SW sites and in the year 2003 at the NW site the experimental design allowed to evaluate (1) short-term effects (years 1–2) of thinning at the NW site and (2) medium-term effects (years 4–6) of thinning under different microclimate at the SW and NE site. Microbial biomass N was consistently higher at the thinning plots of all sites during most of the field campaigns and was overall significantly higher at the SWT and NWT plots as compared to the corresponding untreated control plots. The size of the microbial biomass N pool was found to correlate positively with both gross ammonification and gross nitrification as well as with extractable soil NO3 concentrations. At the SW site neither gross ammonification, gross nitrification, gross ammonium (NH4+) immobilization and gross nitrate (NO3) immobilization nor net ammonification, net nitrification and extractable NH4+ and NO3 contents were significantly different between control and thinning plot. At the NET plot lower gross ammonification and gross NH4+ immobilization in conjunction with constant nitrification rates coincided with higher net nitrification and significantly higher extractable NO3 concentrations. Thus, the medium-term effects of thinning varied with different microclimate. The most striking thinning effects were found at the newly thinned NW site, where gross ammonification and gross NH4+ immobilization were dramatically higher immediately after thinning. However, they subsequently tended to decrease in favor of gross nitrification, which was significantly higher at the NWT plot as compared to␣the␣NWC plot during all field campaigns after␣thinning except for April 2004. This increase␣in␣gross nitrification at the NWT plot (1.73 mg N kg−1 sdw day−1 versus 0.48 mg N kg−1 sdw day−1 at the NWC plot) coincided with significantly higher extractable NO3 concentrations (4.59 mg N kg−1 sdw at the NWT plot versus 0.96 mg N kg−1 sdw at the NWC plot). Pronounced differences in relative N retention (the ratio of gross NH4+ immobilization + gross NO3 immobilization to gross ammonification + gross nitrification) were found across the six research plots investigated and could be positively correlated to the soil C/N ratio (R = 0.94; p = 0.005). In sum, the results obtained in this study show that (1) thinning can lead to a shift in the balance of microbial inorganic N production and consumption causing a clear decrease in the N retention capacity in the monitored forest soils especially in the first two years after thinning, (2)␣the resistance of the investigated forest ecosystems to disturbances of N cycling by thinning may vary with different soil C contents and C/N ratios, e. g. caused by differences in microclimate, (3) thinning effects tend to decline with the growth of understorey vegetation in the years 4–6 after thinning.  相似文献   

3.
Pot-grown alfalfa (Medicago sativa L. ) were experimented in the open top chambers in which natural air (350 × 10-6, 1 × CO2) and doubled CO2 air (700 × 10-6, 2 × CO2) were continuous blown through bottom respectively. Results showed that the biomass in both shoot and root was increased by the 2 × CO2 treatment. The root/shoot ratio was nearly unchange in the short term treatment and slightly decreased in the longer term treatment. The results differed from those reported in literatures that was attributed to the potgrown condition in this experiment. The nitrogen fixation activities (acetylene reduction) per plant were obviously promoted under the 2 × CO2 condition but the difference of the specific nitrogen-fixing activities between 1 × CO2 and 2 × CO2 treatment was small. It implied that supplement of ATP, NADP or carbon skeleton under the 2 × CO2 condition was not more than that under the 1 × CO2 condition. C/N ratio in the shoot increased in the doubled CO2 treatment group, similar to the reports from other authors; but the ratio increased in the root in the 2 × CO2 treatment group was ascribed to the higher nitrogen absorption from the soil and (or) N-fixing activity of the nodules as compared with that in the 1 × CO2 treatment. The results demonstrated that assimilation and allocation of carbon and nitrogen in legume plant were deeply influenced by the elevated CO2.  相似文献   

4.
Partitioning of nitrogen by soybeans ( Glycine max L. Merr. cv. Hodgson) grown in natural conditions was studied by successive exposures of root systems to 15N2 and periodical measurements of 15N distribution. Nitrogen derived from the atmosphere was mainly found in the aerial parts of the plants, and the stage of development exerted a strong influence on the initial 15N distribution (measured one week after incorporation). Until day 69 after sowing, leaf blades contained 47 to 57% of the fixed N. After that, reproductive structures attracted increasing proportions, 10 to 60% between days 69 and 92. Around day 82, stems and petioles stored up to 30% of the newly fixed N. During pod development and pod filling and until maturity, fixed N was remobilized from vegetative tissues and pod walls to seeds. These transfers first concerned the newly incorporated N, but at maturity 80 to 90% of the total was recovered in the seeds. The high mobility of N originating from the atmosphere as compared to that coming from the soil (vegetative tissues exported only 50% of their total N) seems to indicate that fixed N was at least partially integrated in a special pool. This was certainly the case at the later stage of N2 fixation, when a large portion of fixed N accumulated in the stems and petioles, probably in the form of storage compounds such as ureides for later transfer to the developing seeds. Further research is needed in order to investigate the nature and role of this pool in the nitrogen nutrition of soybeans.  相似文献   

5.
Summary Non-symbiotic heterotrophic N2 fixation in coniferous bark litter was investigated with the acetylene reduction assay under aerobic and anaerobic conditions. The litter studied was composed essentially of bark, of pH 5 and a C/N ratio of 101; the ratio of available C to available N, which governs N2 fixation, was considerably higher. The rate of N2 fixation was estimated as 2.5–4.4 g N. g–1 dry wt. day–1. Nitrogenase activity was still evident after seven months of incubation under aerobic conditions. The N2-ase activity was O2 dependent: under anaerobic conditions no N2-ase activity was found unless a fermentable C source was added. The importance of N2 fixation in N-poor litter for the maintenance of soil fertility is emphasized.  相似文献   

6.
Nitrogen (N) cycling was analyzed in the Kalahari region of southern Africa, where a strong precipitation gradient (from 978 to 230 mm mean annual precipitation) is the main variable affecting vegetation. The region is underlain by a homogeneous soil substrate, the Kalahari sands, and provides the opportunity to analyze climate effects on nutrient cycling. Soil and plant N pools, 15N natural abundance (δ15N), and soil NO emissions were measured to indicate patterns of N cycling along a precipitation gradient. The importance of biogenic N2 fixation associated with vascular plants was estimated with foliar δ15N and the basal area of leguminous plants. Soil and plant N was more 15N enriched in arid than in humid areas, and the relation was steeper in samples collected during wet than during dry years. This indicates a strong effect of annual precipitation variability on N cycling. Soil organic carbon and C/N decreased with aridity, and soil N was influenced by plant functional types. Biogenic N2 fixation associated with vascular plants was more important in humid areas. Nitrogen fixation associated with trees and shrubs was almost absent in arid areas, even though Mimosoideae species dominate. Soil NO emissions increased with temperature and moisture and were therefore estimated to be lower in drier areas. The isotopic pattern observed in the Kalahari (15N enrichment with aridity) agrees with the lower soil organic matter, soil C/N, and N2 fixation found in arid areas. However, the estimated NO emissions would cause an opposite pattern in δ15N, suggesting that other processes, such as internal recycling and ammonia volatilization, may also affect isotopic signatures. This study indicates that spatial, and mainly temporal, variability of precipitation play a key role on N cycling and isotopic signatures in the soil–plant system.  相似文献   

7.
CO_2倍增对紫花苜蓿碳、氮同化与分配的影响   总被引:6,自引:0,他引:6  
本文简要报道CO2倍增下紫花苜蓿碳素积累、氮素的吸收与生物固氮及其产物在地上、地下部分配的特性1 材料和方法在北京香山中国科学院植物研究所植物园试验区,建立了两个高2.8m、直径2.2m的钢管支撑的圆柱状开顶式薄膜培养室,由底部向室内连续通气,保证培养室内每分钟换气3次。对照室通入正常空气(350×10-6,1×CO2),处理室通入CO2加倍的空气(700×10-6,2×CO2)。室内CO2浓度经红外CO2分析仪(QGD-07型,北京分析仪器厂产品)测定,24h内均可保持在350×10-6及70…  相似文献   

8.
Understanding nitrogen (N) removal and replenishment is crucial to crop sustainability under rising atmospheric carbon dioxide concentration ([CO2]). While a significant portion of N is removed in grains, the soil N taken from agroecosystems can be replenished by fertilizer application and N2 fixation by legumes. The effects of elevated [CO2] on N dynamics in grain crop and legume pasture systems were evaluated using meta‐analytic techniques (366 observations from 127 studies). The information analysed for non‐legume crops included grain N removal, residue C : N ratio, fertilizer N recovery and nitrous oxide (N2O) emission. In addition to these parameters, nodule number and mass, nitrogenase activity, the percentage and amount of N fixed from the atmosphere were also assessed in legumes. Elevated [CO2] increased grain N removal of C3 non‐legumes (11%), legumes (36%) and C4 crops (14%). The C : N ratio of residues from C3 non‐legumes and legumes increased under elevated [CO2] by 16% and 8%, respectively, but the increase for C4 crops (9%) was not statistically significant. Under elevated [CO2], there was a 38% increase in the amount of N fixed from the atmosphere by legumes, which was accompanied by greater whole plant nodule number (33%), nodule mass (39%), nitrogenase activity (37%) and %N derived from the atmosphere (10%; non‐significant). Elevated [CO2] increased the plant uptake of fertilizer N by 17%, and N2O emission by 27%. These results suggest that N demand and removal in grain cropping systems will increase under future CO2‐enriched environments, and that current N management practices (fertilizer application and legume incorporation) will need to be revised.  相似文献   

9.
Summary The pattern of release of ammonium and nitrate nitrogen during decomposition of glyricidia, sunflower, centrosema, calapagonium and crotolaria under aerobic and anaerobic conditions, in an alluvial soil over a period of 7 weeks was studied. Under aerobic conditions, the NH4 +–N production reached the maximum after the 4th week. Nitrate-N and total available-N increased in all cases throughout the incubation period except in sunflower. This showed a nitrification inhibitory effect and had a relatively high C/N ratio (11.0) and low total N content (2.8%). In general the increase in NH4 +–N and NO3 –N was more rapid in the early stages of incubation.Under anaerobic conditions, the production of these nutrients was considerably low. Soil organic matter mineralized faster than the added organic material which started to decompose slowly after sometime. Nitrate-N tend to decrease during incubation attributable to denitrification.  相似文献   

10.
The effects of simulated N deposition on changes in mass, C, N and P of decomposing pine (Pinus massoniana) needles in a disturbed and a rehabilitated forest in tropical China were studied during a 24-month period. The objective of the study was to test the hypothesis that litter decomposition in a disturbed forest is more sensitive to N deposition rate than litter decomposition in a rehabilitated forest due to the relatively low nutrient status in the former as a result of constant human disturbance (harvesting understory and litter). The litterbag method and N treatments (control, no N addition; low-N, 5 g N m−2 year−1; medium-N, 10 g N m−2 year−1) were employed to evaluate decomposition. The results revealed that N addition increased (positive effect) mass loss rate and C release rate but suppressed (negative effect) the release rate of N and P from decomposing needles in both disturbed and rehabilitated forests. The enhanced needle decomposition rate by N addition was significantly related to the reduction in the C/N ratio in decomposing needles. However, N availability is not the sole factor limiting needle decomposition in both disturbed and rehabilitated forests. The positive effect was more sensitive to the N addition rate in the rehabilitated forest than in the disturbed forest, however the reverse was true for the negative effect. These results suggest that nutrient status could be one of the important factors in controlling the response of litter decomposition and its nutrient release to elevated N deposition in reforested ecosystems in the study region.  相似文献   

11.
农田和森林土壤中氧化亚氮的产生与还原   总被引:12,自引:2,他引:12  
采用土壤淤浆方法对丹麦农田和山毛榉森林土壤反硝化过程中N2O的产生与还原进行了研究。同时考察了硝酸根和铵离子对反硝化作用的影响。结果表明,森林土壤反硝化活性大于农田土壤,但农田土壤中N2O还原活性大于森林土壤,表现在农田和森林土壤中N2O/N2的产生比率分别为0.11和3.65。硝酸根和铵离子能促进两种土壤中的N2O产生,但可降低农田土壤中的N2O还原速率,与农田土壤相比,硝酸根可降低森林土壤N2  相似文献   

12.
Abstract. The central grassland region of North America is characterized by large gradients of temperature and precipitation. These climatic variables are important determinants of the distribution of plant species, and strongly influence plant morphology and tissue chemistry. We analysed regional patterns of plant litter quality as they vary with climate in grassland ecosystems throughout central North America including tall‐grass prairie, mixed grass prairie, shortgrass steppe, and hot desert grasslands. An extensive database from the International Biological Program and the Long‐Term Ecological Research Program allowed us to isolate the effects of climate from those of plant functional types on litter quality. Our analysis of grass species confirms a previously recognized positive correlation between C/N ratios and precipitation. Precipitation exhibited a similar positive relationship with lignin/N and percent lignin. Although there was no significant correlation between temperature and C/N, there was a significant positive relationship between temperature and both percent lignin and lignin/N. Among functional types, C3 grasses had a slightly lower C/N ratio than C4 grasses. Tall grass species exhibited higher C/N, lignin/N, and percent lignin than short grass species. This understanding of the regional patterns of litter quality and the factors controlling them provides us with a greater knowledge of the effect that global change and the accompanying feedbacks may have on ecosystem processes.  相似文献   

13.
The effects of changes in tropical land use on soil emissions of nitrous oxide (N2O) and nitric oxide (NO) are not well understood. We examined emissions of N2O and NO and their relationships to land use and forest composition, litterfall, soil nitrogen (N) pools and turnover, soil moisture, and patterns of carbon (C) cycling in a lower montane, subtropical wet region of Puerto Rico. Fluxes of N2O and NO were measured monthly for over 1 year in old (more than 60 years old) pastures, early- and mid-successional forests previously in pasture, and late-successional forests not known to have been in pasture within the tabonuco (Dacryodes excelsa) forest zone. Additional, though less frequent, measures were also made in an experimentally fertilized tabonuco forest. N2O fluxes exceeded NO fluxes at all sites, reflecting the consistently wet environment. The fertilized forest had the highest N oxide emissions (22.0 kg N · ha−1· y−1). Among the unfertilized sites, the expected pattern of increasing emissions with stand age did not occur in all cases. The mid-successional forest most dominated by leguminous trees had the highest emissions (9.0 kg N · ha−1· y−1), whereas the mid-successional forest lacking legumes had the lowest emissions (0.09 kg N · ha−1· y−1). N oxide fluxes from late-successional forests were higher than fluxes from pastures. Annual N oxide fluxes correlated positively to leaf litter N, net nitrification, potential nitrification, soil nitrate, and net N mineralization and negatively to leaf litter C:N ratio. Soil ammonium was not related to N oxide emissions. Forests with lower fluxes of N oxides had higher rates of C mineralization than sites with higher N oxide emissions. We conclude that (a) N oxide fluxes were substantial where the availability of inorganic N exceeded the requirements of competing biota; (b) species composition resulting from historical land use or varying successional dynamics played an important role in determining N availability; and (c) the established ecosystem models that predict N oxide loss from positive relationships with soil ammonium may need to be modified. Received 22 February 2000; accepted 6 September 2000.  相似文献   

14.
内蒙古自治区土壤有机碳、氮蓄积量的空间特征   总被引:23,自引:8,他引:23  
采用全国策二次土壤普查中内蒙古自治区的典型土种剖面资料,在剖面深度的基础上,用地统计学和地理信息系统(GIS)方法,分别按土壤类型和土地覆被类型计算了土壤有机碳、氮密度,分析了内蒙古自治区土壤有机碳、氮蓄积量的空间分布特征,探讨了土壤有机碳、氮蓄积量与主要气候要素的关系.结果表明,内蒙古自治区土壤有机碳密度处于3.24-43.24kg·m^-3之间,土壤有机氮密度处于269.56-3085.60g·m^-3之间,土壤碳、氮比(C/N)大致在4.46-17.13之间.土壤有机碳、氮密度与温度呈负相关,相关系数分别为0.557和0.460(n=245);与年均降水量呈正相关,但相关性不是很强,相关系数分别为0.285和0.203.从内蒙古自治区东北地区到西南地区,土壤有机碳、氮蓄积量随着温度递升和降水量递减呈现降低的趋势。  相似文献   

15.
Field‐scale experiments simulating realistic future climate scenarios are important tools for investigating the effects of current and future climate changes on ecosystem functioning and biogeochemical cycling. We exposed a seminatural Danish heathland ecosystem to elevated atmospheric carbon dioxide (CO2), warming, and extended summer drought in all combinations. Here, we report on the short‐term responses of the nitrogen (N) cycle after 2 years of treatments. Elevated CO2 significantly affected aboveground stoichiometry by increasing the carbon to nitrogen (C/N) ratios in the leaves of both co‐dominant species (Calluna vulgaris and Deschampsia flexuosa), as well as the C/N ratios of Calluna flowers and by reducing the N concentration of Deschampsia litter. Belowground, elevated CO2 had only minor effects, whereas warming increased N turnover, as indicated by increased rates of microbial NH4+ consumption, gross mineralization, potential nitrification, denitrification and N2O emissions. Drought reduced belowground gross N mineralization and decreased fauna N mass and fauna N mineralization. Leaching was unaffected by treatments but was significantly higher across all treatments in the second year than in the much drier first year indicating that ecosystem N loss is highly sensitive to changes and variability in amount and timing of precipitation. Interactions between treatments were common and although some synergistic effects were observed, antagonism dominated the interactive responses in treatment combinations, i.e. responses were smaller in combinations than in single treatments. Nonetheless, increased C/N ratios of photosynthetic tissue in response to elevated CO2, as well as drought‐induced decreases in litter N production and fauna N mineralization prevailed in the full treatment combination. Overall, the simulated future climate scenario therefore lead to reduced N turnover, which could act to reduce the potential growth response of plants to elevated atmospheric CO2 concentration.  相似文献   

16.
香樟(Cinnamomum camphora)凋落叶分解能够明显干扰受体植物的生长、生殖、光合生理和活性氧代谢。该研究继续采用盆栽试验,探讨了不同量[0(对照)、25、50和100g]的香樟凋落叶添加到土壤(10kg/盆)中对受体植物辣椒(Capsicum annuum)及其土壤氮营养状况的影响,外源氮(尿素)输入对凋落叶分解的交互作用,以及凋落叶分解效应的产生是否因为其较高的C/N比而导致微生物争氮。结果显示:(1)各剂量(25~100g/盆)凋落叶处理下,辣椒幼苗硝态氮、可溶性蛋白和全氮含量均在至少2个月内大幅显著降低。(2)土壤硝态氮与辣椒硝态氮、全氮间均具有极显著的协同下降趋势;土壤微生物生物量氮则在总体上高于对照,而土壤全氮和铵态氮的响应较小。(3)施氮不仅使辣椒各氮组分和土壤硝态氮含量整体提升,还使凋落叶分解在这些指标上的抑制作用显著减弱。(4)香樟凋落叶的初始C/N为125.61±4.89,其在土壤中分解48~137d后的C/N始终远高于Hodge假说指出的可导致微生物争氮的临界值,但经过分解120d和135d的凋落叶添加到土壤中并不抑制辣椒的生长。研究认为,香樟凋落叶分解初期可能释放了不利于土壤硝化过程的物质,造成土壤硝态氮匮乏,以致受体植物的氮素吸收和积累减少,而凋落叶较高的C/N比及土壤微生物争氮并非主导因素。  相似文献   

17.
Gielen  B.  Jach  M.E.  Ceulemans  R. 《Photosynthetica》2000,38(1):13-21
Six-year-old Scots pine (Pinus sylvestris L.) seedlings were grown in open top chambers (OTCs) at ambient (AC) or elevated (ambient + 400 µmol mol–1; EC) CO2 concentration for three years (1996–1998). Chlorophyll (Chl) a fluorescence of current and one-year-old needles was measured in the field at two-weekly intervals in the period July–October 1998. In addition, Chl, carbon (C), and nitrogen (N) concentrations in both needle age classes were determined monthly during the same period. Chl fluorescence parameters were not significantly affected by EC, suggesting there was no response of the light reactions and the photochemical efficiency of photosystem 2. Chl concentrations were not significantly different but a reduced N concentration was observed in needles of EC treatment. Significant differences between needle age classes were observed for all parameters, but were most apparent under EC and toward the end of the growing season, possibly due to an acclimation process. As a result, significant interactions between CO2 treatment, needle age class, and season were found. This study emphasizes the importance of repeated measures including different leaf/needle age classes to assess the photosynthetic response of trees under EC.  相似文献   

18.
Lupins, canola, ryegrass and wheat fertilized with Na2 35SO4 and either 15NH4Cl or K15NO3(N:S=10:1), were grown in the field in unconfined microplots, and the sources of N and S (fertilizer, soil, atmosphere, seed) in plant tops during crop development were estimated. Modelled estimates of the proportion of lupin N derived from the atmosphere, which were obtained independently of reference plants, were used to calculate the proportion of lupin N derived from the soil. Total uptake of N and S and uptake of labelled N and S increased during crop development. Total uptake of S by canola was higher than lupins, but labelled S uptake by lupins exceeded uptake by canola. The form of N applied had no effect on uptake of labelled and unlabelled forms of N or S. Ratios of labelled to unlabelled S and ratios of labelled to unlabelled N derived from soil sources decreased during growth, and were less for S than for N for each crop at each sampling time. Although ratios of labelled to unlabelled soil-derived N were similar between crops at 155, 176 and 190 days after sowing, ratios of labelled to unlabelled S for lupins were higher than for the reference crops and declined during this period. The ratios of labelled to unlabelled S in lupins and the reference plants therefore bore no relationship either to ratios of labelled to unlabelled soil-derived N in the plants, or to total S uptake by the plants. Therefore the hypothesis that equal ratios of labelled N to unlabelled soil-derived N in legumes (Rleg) and reference plants (Rref) would be indicated by equal ratios of labelled to unlabelled S was not supported by the data. The results therefore show that the accuracy of reference plant-derived values of Rleg cannot be evaluated by labelling with 35S.  相似文献   

19.
The quantitative relationship between C2H2 reduction, H2 evolution and 15N2 fixation was investigated in excised root nodules from pea plants ( Pisum sativum L. cv. Bodil) grown under controlled conditions. The C2H2/N2 conversion factor varied from 3.31 to 5.12 between the 32nd and the 67th day after planting. After correction for H2 evolution in air, the factor (C2H2-H2)/N2 decreased to values near the theoretical value 3, or in one case to a value significantly ( P < 0.05) below 3. The proportion of the total electron flow through nitrogenase, which is not wasted in H2 production but used for N2 reduction, is often stated as the relative efficiency (1-H2/C2H2). This factor varied significantly ( P < 0.05) during the growth period. The actual allocation of electrons to H2 and N2, expressed as the H2/N2 ratio, was independent of plant age, however. This discrepancy and the observation that the (C2H2-H2)/N2 conversion factor tended to be lower than 3, suggests that the C2H2reduction assay underestimates the total electron flow through nitrogenase.  相似文献   

20.
Transformed plants of Nicotiana plumbaginifolia Viv. constitutively expressing nitrate reductase (35S-NR) or β-glucuronidase (35S-GUS) and untransformed controls were grown for two weeks in a CO2-enriched atmosphere. Whereas CO2 enrichment (1000 μl · l−1) resulted in an increase in the carbon (C) to nitrogen (N) ratio of both the tobacco lines grown in pots with vermiculite, the C/N ratio was only slightly modified when plants were grown in hydroponic culture in high CO2 compared to those grown in air. Constitutive nitrate reductase (NR) expression per se did not change the C/N ratio of the shoots or roots. Biomass accumulation was similar in both types of plant when hydroponic or pot-grown material, grown in air or high CO2, were compared. Shoot dry matter accumulation was primarily related to the presence of stored carbohydrate (starch and sucrose) in the leaves. In the pot-grown tobacco, growth at elevated CO2 levels caused a concomitant decrease in the N content of the leaves involving losses in NO 3 and amino acid levels. In contrast, the N content and composition were similar in all plants grown in hydroponic culture. The 35S-NR plants grown in air had higher foliar maximum extractable NR activities and increased glutamine levels (on a chlorophyll or protein basis) than the untransformed controls. These increases were maintained following CO2 enrichment when the plants were grown in hydroponic culture, suggesting that an increased flux through nitrogen assimilation was possible in the 35S-NR plants. Under CO2 enrichment the NR activation state in the leaves was similar in all plants. When the 35S-NR plants were grown in pots, however, foliar NR activity and glutamine content fell in the 35S-NR transformants to levels similar to those of the untransformed controls. The differences in NR activity between untransformed and 35S-NR leaves were much less pronounced in the hydroponic than in the pot-grown material but the difference in total extractable NR activity was more marked following CO2 enrichment. Foliar NR message levels were decreased by CO2 enrichment in all growth conditions but this was much more pronounced in pot-grown material than in that grown hydroponically. Since β-glucuronidase (GUS) activity and message levels in 35S-GUS plants grown under the same conditions of CO2 enrichment (to test the effects of CO2 enrichment on the activity of the 35S promoter) were found to be constant, we conclude that NR message turnover was specifically accelerated in the 35S-NR plants as well as in the untransformed controls as a result of CO2 enrichment. The molecular and metabolic signals involved in increased NR message and protein turnover are not known but possible effectors include NO3 , glutamine and asparagine. We conclude that plants grown in hydroponic culture have greater access to N than those grown in pots. Regardless of the culture method, CO2 enrichment has a direct effect on NR mRNA stability. Received: 17 October 1996 / Accepted: 11 February 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号