首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The locus for one subtype of autosomal dominant spinocerebellar ataxias (SCA1) is closely linked (within 1-2 cM) to D6S89, which contains a highly polymorphic dinucleotide repeat sequence. D6S89 has been mapped previously to 6p24----p21.3, between the HLA and F13A1 loci. Mutant cell lines were used to correlate the absence or presence of D6S89 with cytogenetically detectable interstitial 6p deletions. The results allowed us to map D6S89 to the 6p24.2----p23.05 region. The close linkage of SCA1 to D6S89 indicates that this locus is most likely located in the 6p24----p23 segment.  相似文献   

2.
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant disorder which is genetically linked to the short arm of chromosome 6, telomeric to the human major histocompatibility complex (HLA) and very close to D6S89. Previous multipoint linkage analysis using HLA, D6S89, and SCA1 suggested that SCA1 maps centromeric to D6S89. Data from this study using nine large kindreds indicate a maximum lod score between SCA1 and D6S89 of 67.58 at a maximum recombination fraction of .004. To localize SCA1 more precisely, we identified five dinucleotide polymorphisms near D6S89. Genotypic analyses at these polymorphic loci were carried out in nine multigeneration SCA1 kindreds and in the Centre d'Étude du Polymorphisme Humain reference families. A new marker, AM10GA, demonstrates no recombination with SCA1. The maximum lod score for AM10GA linkage to SCA1 is 42.14 at a recombination fraction of 0. Linkage analysis and analysis of recombination events confirm that SCA1 maps centromeric to D6S89 and establish the following order: CEN-D6S109–AM10GA/SCA1–D6S89–LR40–D6S202–TEL.  相似文献   

3.
Autosomal dominant familial exudative vitreoretinopathy (adFEVR) is a hereditary disorder characterized by the incomplete vascularization of the peripheral retina. The primary biochemical defect in adFEVR is unknown. The adFEVR locus has tentatively been assigned to 11q by linkage studies. We report the results of an extended multipoint linkage analysis of two families with adFEVR by using five markers (INT2, D11S533, D11S527, D11S35, and CD3D) from 11q13-q23. Pairwise linkage data obtained in the two families were rather similar and hence have not provided evidence for genetic heterogeneity. The highest complied two-point lod score (3.67, at a recombination fraction of .07) was obtained for the disease locus versus D11S533. Multipoint analyses showed that the adFEVR locus maps most likely, with a maximum location score of over 20, between D11S533/D11S527 and D11S35, at recombination rates of .147 and .104, respectively. Close linkage without recombination (maximum lod score 11.26) has been found between D11S533 and D11S527.  相似文献   

4.
Two large kindreds with HLA-linked, autosomal dominant spinocerebellar ataxia (SCA1) were examined with markers from chromosome 6p to determine the location of the SCA1 locus. Results of the three-point analysis between the markers HLA-A, SCA1, and F13A overwhelmingly favor the conclusion that SCA1 is located distal of HLA and proximal of F13A. In addition, our data strongly support the conclusion that SCA1 lies centromeric and genetically very close to the highly informative D6S89 marker within the 8-cM chromosomal segment flanked by the D6S88 and D6S89 markers. In the two kindreds, one recombinant was observed between D6S89 and SCA1, resulting in a recombination fraction of .014 between the two loci.  相似文献   

5.
A 7-generation kindred with the HLA-linked form of spinocerebellar ataxia (SCA1) was studied to determine whether the SCA1 gene maps centromeric or telomeric to the HLA loci. The DNA markers flanking the HLA-(A-B) region were used for polymorphism studies and multilocus linkage analysis. These two markers are the cDNA for the beta-subunit of HLA-DP, which is centromeric to HLA-(A-B), and the cDNA for coagulation factor XIIIa (F13A), which is telomeric to HLA-(A-B). Haplotypes were constructed using multiple polymorphisms for these two DNA markers, and pairwise linkage analysis revealed a maximum lod score of 2.18 for SCA1 versus HLA-DP at a recombination fraction of .05 and a maximum lod score of 0 for SCA1 versus F13A at a recombination fraction of .50. A possible crossover between HLA-(A-B) and HLA-DP was identified, but lack of samples from key individuals hampered the analysis. To clarify the phase and improve the analysis, the two chromosomes 6 for the crossover individual were separated in somatic cell hybrids. The results strongly favored the probability that the crossover occurred between HLA-(A-B-DR) and HLA-DP with SCA1 segregating with HLA-DP, consistent with a location centromeric to HLA-(A-B). Multilocus linkage analysis was used to evaluate further the location of SCA1 relative to F13A, HLA-(A-B), and HLA-DP; the results indicated that the SCA1 gene locus is centromeric to HLA-DP with odds of 46:1 favoring this most likely location over the second most likely location, i.e., telomeric to HLA-(A-B) between the HLA complex and F13A.  相似文献   

6.
Machado-Joseph disease (MJD) is an autosomal dominant neurodegenerative spinocerebellar ataxia that has been described primarily in families of Azorean or Portuguese descent. MJD and chromosome 6p-linked spinocerebellar ataxia (SCA1) are difficult to differentiate clinically, and it has been suggested that they may be allelic variants of the same disorder. We have tested MJD families for linkage to six DNA sequence polymorphisms located on chromosome 6p, including the highly informative dinucleotide repeat, D6S89. Seventeen centimorgans telomeric to and 41 cM centromeric to D6S89, a region that includes the SCA1 locus reported to be within 3 cM of D6S89, have been excluded. These data provide conclusive evidence that MJD and SCA1 are nonallelic.  相似文献   

7.
Recent genetic linkage studies have mapped the myotonic dystrophy (DM) locus to 19q13.3. All closely linked DM markers identified to date have been located on the centromeric side of the disease locus, with a relatively large genetic interval (9 cM) observed between the nearest distal marker and DM. We show here that the recently described marker p134C is tightly linked to DM (peak lod score 35.8 at peak recombination fraction .006) and confirm the previous suggestion that the p134C locus, D19S51 maps distal to the disease locus. D19S51 and the closest proximal flanking loci, ERCC1 and D19S115 (pE0.8), define a small genetic interval of less than 2 cM that contains the DM locus.  相似文献   

8.
A locus for an autosomal dominant form of spinocerebellar ataxia (SCA1) has been assigned to the short arm of chromosome 6 on the basis of linkage to the major histocompatibility system (HLA). In this study of a five-generation American black family, close linkage between the disease locus and both HLA and the coagulation factor XIIIA (F13A1) locus was excluded, and lod scores for all locations of the disease locus between HLA and F13A1 were less than -1.4. These results suggest that the locus causing spinocerebellar ataxia in this family is not in this region. However, the disease locus was found to be closely linked to a microsatellite polymorphism, D6S89, which is between HLA and F13A1. The maximum lod score for SCA1 and D6S89 is 4.90 at a recombination fraction of 0, both in males and in females. These data show that exclusion of close linkage to the HLA complex and F13A1 in a kindred with spinocerebellar ataxia does not rule out the possibility that the disease locus in that family is on 6p. Accordingly, all families segregating a dominantly inherited ataxia should be evaluated for linkage to D6S89, to determine whether the locus causing the disease is SCA1.  相似文献   

9.
We report on linkage analysis and haplotype characterization in 12 Cuban families with autosomal dominant polycystic kidney disease (ADPK) using PKD1-linked markers. They included both standard restriction fragment length polymorphisms (26.6., BLu24, and pGGGl) as well as microsatellite polymorphisms (CW2, 16AC2.5, and SM6). All of the examined families were fully informative for genetic diagnosis and no evidence of unlinked families was found. Analysis of two recombination events places PKD1 distal to the marker BLu24 and reduces the size of the region likely to contain the disease gene by approximately 300 kb. The allele frequencies of each marker were similar in the ADPKD and normal populations.  相似文献   

10.
11.
We present a linkage study in a four-generation autosomal dominant cerebellar ataxia (ADCA) family of Dutch ancestry. The family shows a clinically and genetically distinct form of ADCA. This neurodegenerative disorder manifests in the family as a relatively mild ataxia syndrome with some additional characteristic symptoms. We have identified a SCA19 locus, approved by the Human Genome Nomenclature Committee that can be assigned to the chromosome region 1p21-q21. Our mutation analysis failed to identify any mutations in the known spinocerebellar ataxia ( SCA) genes and linkage analysis excluded the remaining SCA loci. We therefore performed a genome-wide scan with 350 microsatellite markers to identify the location of the disease-causing gene in this family. Multi-point analysis was performed and exclusion maps were generated. Linkage and haplotype analysis revealed linkage to an interval located on chromosome 1. The estimated minimal prevalence of ADCA in the Netherlands is about 3:100,000. To date, sixteen different SCA loci have been identified in ADCA ( SCA1-8 and SCA10-17). However, mutation analysis has been commercially available only for the SCA1, 2, 3, 6 and 7 genes. So far, a molecular analysis in these SCA genes cannot be made in about one-third of the ADCA families. Thus, the identification of this new, additional SCA19 locus will contribute to expanding the DNA diagnostic possibilities.  相似文献   

12.
Summary Following the observation of a patient suffering from tuberous sclerosis (TSC) with a de novo reciprocal translocation t(3;12)(p26.3;q23.3), we have undertaken a linkage study in 15 TSC families using polymorphic DNA markers neighbouring the chromosome breakpoints. Significant lod scores have been obtained for markers D12S7 (z max=2.34, =0.14) and PAH (phenylalanine hydroxylase) (z max=4.34, =0.0). In multipoint linkage analysis, the peak lod score was 4.56 at the PAH gene locus. These data suggest the existence of a third gene locus for TSC (TSC3) on chromosome 12q22-24.1. The regions that have been found to be linked to TSC in different families map to the positions of three enzymes, phenylalanine hydroxylase (12q22-24), tyrosinase (11q14-22), and dopamine-beta-hydroxylase (9q34), all of which are involved in the conversion of phenylalanine to catecholamine neurotransmitters or melanin. Disorders of these biochemical pathways might be involved in the pathogenesis of TSC.  相似文献   

13.
The autosomal dominant cerebellar ataxias (ADCA) are clinically and genetically heterogeneous. To date, several loci (SCAI-V) have been identified for ADCA type I. We have studied two large families from the northern part of The Netherlands with ADCA type I with a broad intra-familial variation of symptoms. In both families significant linkage is shown of the disease to the markers of the SCA3 locus on chromosome 14. Through recombinations, the candidate region for SCA3 could be refined to a 13-cM range between D14S256 and D14S81. No recombinations were detected with the markers D14S291 and D14S280, which suggests that the SCA3 gene lies close to these loci. This finding will benefit the individuals at risk in these two families who are seeking predictive testing or prenatal diagnosis.  相似文献   

14.
This study addresses the question whether the different forms of autosomal dominant cerebellar ataxia (ADCA) are related to different ethnic/geographical regions in Europe. One mutation in families originating from Holland, Prussia and Italy has previously been localized to chromosome 6p (SCA1 locus), whereas the mutation in families of Iberic origin has been excluded from chromosome 6p. In a Danish five-generation pedigree with ADCA and in which previous HLA-serotyping had shown inconclusive linkage results, the present study shows unequivocal exclusion from the SCA1 locus, firstly through the use of the new, highly informative microsatellites D6S89 and D6S109, which closely flank the SCA1 locus, and secondly through the manifestation of disease in four pedigree members previously scored as unaffected. Additional molecular genetic analysis of the HLA DRbeta and F13A polymorphisms also argue against a cluster of ADCA genes on chromosome 6p. Since this study demonstrates the existence of non-SCA1 families and therefore heterogeneity in the North-European population, molecular family counselling remains restricted to the few known SCA1 families.  相似文献   

15.
The human transmembrane secretory component (SC or poly-Ig receptor, PIGR) is expressed basolaterally on glandular epithelial cells and is responsible for the external translocation of polymeric IgA and IgM. SC is hence a key molecule in antibody protection of mucosal surfaces. The human SC gene (locus PIGR) is located on chromosome 1 (1q31–q41). Here we present the first genetic linkage study of PIGR versus syntenic markers, including D1S58 and F13B, which have been previously regionalized to 1q31–q32 and 1q31–q32.1, respectively. We found that PIGR is closely linked to D1S58 (lods + 5.06 at max = 0.06, without sex difference). PIGR versus F13B showed + 1.46 at max = 0.25 for both sexes combined. A recombination of 0.06 between F13B and D1S58 (lods + 2.24) was in contrast to a previously published study giving max = 0.22 (lods + 3.9), the combined lods being 5.6 at max = 0.20. The progeny of a triply heterozygotic female indicated that PIGR is the flanking locus, therefore suggesting a cen-F13B-D1S58-PIGR-qter gene sequence on human chromosome 1. Only negative lod scores to RH, C8@, and PGM1 on 1p, and FY on proximal 1q, were found. Current combined Norwegian allele frequencies were estimated for PIGR to be A1 = 0.63, A2 = 0.37 (370 chromosomes), and for D1S58 to be A1 = 0.44, A2 = 0.56 (218 chromosomes).  相似文献   

16.
17.
18.
Xiao X  Li S  Guo X  Zhang Q 《Human genetics》2012,131(5):697-702
Congenital motor nystagmus (CMN) is characterized by bilateral involuntary ocular oscillation without any other underlying ocular or systemic diseases. An autosomal dominant CMN was identified in a large Chinese family where all patients had nystagmus since infancy. The nystagmus in the family is independent of any known ocular or systemic diseases. After exclusion of known CMN loci, a genome-wide scan was performed by genotyping microsatellite markers at about 10 cM intervals, together with two-point linkage analysis. Exome sequencing was used to screen coding exons of well-annotated genes. Sanger-dideoxy sequencing was used to verify candidate variations inside the linkage interval. Congenital motor nystagmus in this family shows linkage to markers in a 11.39 Mb (12.1 cM) region on chromosome 1q31-q32.2 between D1S2816 and D1S2692. All nine markers in the linkage interval gave positive lod scores, with D1S2655 and D1S2636 yielding lod scores of 5.16 and 5.18, respectively, at θ = 0. No causative mutation in the linkage interval was identified by exome sequencing of gDNA from four patients. A linkage study of additional families and further analysis of candidate genes may ultimately lead to identification of the gene responsible for dominantly inherited CMN.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号