首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 219 毫秒
1.
2.
3.
4.
EAP (EBER-associated protein) is an abundant, 15-kDa cellular RNA-binding protein which associates with certain herpesvirus small RNAs. We have raised polyclonal anti-EAP antibodies against a glutathione S-transferase-EAP fusion protein. Analysis of the RNA precipitated by these antibodies from Epstein-Barr virus (EBV)- or herpesvirus papio (HVP)-infected cells shows that > 95% of EBER 1 (EBV-encoded RNA 1) and the majority of HVP 1 (an HVP small RNA homologous to EBER 1) are associated with EAP. RNase protection experiments performed on native EBER 1 particles with affinity-purified anti-EAP antibodies demonstrate that EAP binds a stem-loop structure (stem-loop 3) of EBER 1. Since bacterially expressed glutathione S-transferase-EAP fusion protein binds EBER 1, we conclude that EAP binding is independent of any other cellular or viral protein. Detailed mutational analyses of stem-loop 3 suggest that EAP recognizes the majority of the nucleotides in this hairpin, interacting with both single-stranded and double-stranded regions in a sequence-specific manner. Binding studies utilizing EBER 1 deletion mutants suggest that there may also be a second, weaker EAP-binding site on stem-loop 4 of EBER 1. These data and the fact that stem-loop 3 represents the most highly conserved region between EBER 1 and HVP 1 suggest that EAP binding is a critical aspect of EBER 1 and HVP 1 function.  相似文献   

5.
Functions of Epstein-Barr virus (EBV)-encoded RNAs (EBERs) were tested in lymphoblastoid cell lines containing EBER mutants of EBV. Binding of EBER1 to ribosomal protein L22 (RPL22) was confirmed. Deletion of EBER1 or EBER2 correlated with increased levels of cytoplasmic EBV LMP2 RNA and with small effects on specific cellular microRNA (miRNA) levels, but protein levels of LMP1 and LMP2A were not affected. Wild-type EBV and EBER deletion EBV had approximately equal abilities to infect immunodeficient mice reconstituted with a human hematopoietic system.  相似文献   

6.
7.
8.
The recent derivation of otherwise isogenic Epstein-Barr virus (EBV) recombinants carrying or lacking the EBV small RNA (EBER) genes enabled us to test whether EBERs are similar to adenovirus VA RNAs in modulating interferon (IFN) effects on virus infection. EBER-positive and -negative EBV recombinants did not differ in their sensitivity to alpha interferon (IFN-alpha)- or IFN-gamma-mediated inhibition of lymphocyte growth transformation. In addition, EBERs did not decrease the inhibitory effects of IFN on vesicular stomatitis virus replication in EBV-transformed lymphocytes. EBER deletion also did not render EBV-transformed B lymphocytes susceptible to an IFN effect on cell proliferation or EBV replication.  相似文献   

9.
Epstein-Barr virus (EBV)–infected cells express two noncoding RNAs called EBV-encoded RNA (EBER) 1 and EBER2. Despite their high abundance in the nucleus (about 106 copies), the molecular function of these noncoding RNAs has remained elusive. Here, we report that the insertion into EBER1 of an RNA aptamer that binds the bacteriophage MS2 coat protein allows the isolation of EBER1 and associated protein partners. By combining MS2-mediated selection with stable isotope labeling of amino acids in cell culture (SILAC) and analysis by mass spectrometry, we identified AUF1 (AU-rich element binding factor 1)/hnRNP D (heterogeneous nuclear ribonucleoprotein D) as an interacting protein of EBER1. AUF1 exists as four isoforms generated by alternative splicing and is best known for its role in destabilizing mRNAs upon binding to AU-rich elements (AREs) in their 3′ untranslated region (UTR). Using UV crosslinking, we demonstrate that predominantly the p40 isoform of AUF1 interacts with EBER1 in vivo. Electrophoretic mobility shift assays show that EBER1 can compete for the binding of the AUF1 p40 isoform to ARE-containing RNA. Given the high abundance of EBER1 in EBV-positive cells, EBER1 may disturb the normal homeostasis between AUF1 and ARE-containing mRNAs or compete with other AUF1-interacting targets in cells latently infected by EBV.  相似文献   

10.
Epstein-Barr virus (EBV)-encoded small RNAs (EBERs) are nonpolyadenylated, untranslated RNAs, exist most abundantly in latently EBV-infected cells, and are expected to show secondary structures with many short stem-loops. Retinoic acid-inducible gene I (RIG-I) is a cytosolic protein that detects viral double-stranded RNA (dsRNA) inside the cell and initiates signaling pathways leading to the induction of protective cellular genes, including type I interferons (IFNs). We investigated whether EBERs were recognized by RIG-I as dsRNA. Transfection of RIG-I plasmid induced IFNs and IFN-stimulated genes (ISGs) in EBV-positive Burkitt's lymphoma (BL) cells, but not in their EBV-negative counterparts or EBER-knockout EBV-infected BL cells. Transfection of EBER plasmid or in vitro-synthesized EBERs induced expression of type I IFNs and ISGs in RIG-I-expressing, EBV-negative BL cells, but not in RIG-I-minus counterparts. EBERs activated RIG-I's substrates, NF-kappaB and IFN regulatory factor 3, which were necessary for type I IFN activation. It was also shown that EBERs co-precipitated with RIG-I. These results indicate that EBERs are recognized by RIG-I and activate signaling to induce type I IFN in EBV-infected cells.  相似文献   

11.
12.
13.
14.
15.
16.
17.
C Rooney  J G Howe  S H Speck    G Miller 《Journal of virology》1989,63(4):1531-1539
The Epstein-Barr virus (EBV) genes expressed in B lymphocytes immortalized in vitro or in Burkitt's lymphoma (BL) cells infected in vivo have been characterized previously; however, the viral products which are essential for immortalization or for establishment of EBV latency are still not known. To approach this question, we compared the kinetics of expression of EBV nuclear antigens and the two EBV-encoded small RNAs, EBER1 and EBER2, after infection of primary B cells or EBV genome-negative BL cells with either an immortalizing EBV strain (B95-8) or the nonimmortalizing deletion mutant (HR-1). Following infection of primary cells with B95-8 virus, EBV nuclear antigen (EBNA)-2 was expressed first, followed by EBNA-1, -3, and -4 (also called leader protein [LP]) and the two small RNAs. Infection of EBV genome-negative BL cells with the same strain of virus resulted in a similar pattern of gene expression, except that the EBNAs appeared together and more rapidly. EBERs were not apparent in one BL cell line converted by B95-8. The only products detected after infection of primary B lymphocytes with the HR-1 deletion mutant were the EBNA-4 (LP) family and trace amounts of EBER1. Although HR-1 could express neither EBNA-1, EBNA-3, nor EBER2 in primary cells, all these products were expressed rapidly after HR-1 infection of EBV genome-negative BL cell lines. The results indicate that the mutation in HR-1 virus affects immortalization not only through failure to express EBNA-2, a gene which is deleted, but also indirectly by curtailing expression of several other EBV genes whose coding regions are intact in the HR-1 virus and normally expressed during latency. The pattern of latent EBV gene expression after HR-1 infection is dependent on the host cell, perhaps through products specific for the cell cycle or the state of B-cell differentiation.  相似文献   

18.
EBER 1, a small noncoding viral RNA abundantly expressed in all cells transformed by Epstein-Barr virus (EBV), has been shown to associate with the human ribosomal protein L22. Here we present in vitro binding studies using purified RNAs and recombinant proteins. Electrophoretic mobility-shift assays (EMSAs) show that recombinant L22 (rL22) and maltose-binding protein (MBP)-tagged L22 protein bind EBER 1 in vitro, both forming three specific protein-dependent mobility shifts. Use of a mixture of rL22 and MBP-L22 indicates that these three shifts contain one, two, or three L22 proteins per EBER 1 molecule. EMSAs performed with EBER 1 deletion constructs and EBER 1 stem-loops inserted into a nonbinding RNA, HSUR 3, identify stem-loops I, III, and IV as L22 binding sites. The existence of multiple L22 binding sites on EBER 1 inside cells is demonstrated by in vivo UV cross-linking. Our results are discussed with respect to the function of EBER 1 in EBV-infected human B cells.  相似文献   

19.
Most of the Epstein-Barr virus genome in latently infected cells is in a standard nucleosomal structure, but the region encompassing oriP and the Epstein-Barr virus-encoded small RNA (EBER) genes shows a distinctive pattern when digested with micrococcal nuclease. This pattern corresponds to a previously mapped nuclear matrix attachment region. Although the EBER genes are adjacent to oriP, there is only a two- to fourfold effect of oriP on EBER expression. However, sequences containing a consensus ATF site upstream of EBER1 are important for EBER1 expression.  相似文献   

20.
The ribonucleoprotein (RNP) particles containing the Epstein-Barr virus-associated small RNAs EBER1 and EBER2 were analyzed to determine their RNA secondary structures and sites of RNA-protein interaction. The secondary structures were probed with nucleases and by chemical modification with single-strand-specific reagents, and the sites of modification or cleavage were mapped by primer extension. These data were used to develop secondary structures for the two RNAs, and likely sites of close RNA-protein contact were identified by comparing modification patterns for naked RNA and RNA in RNP particles. In addition, sites of interaction between each Epstein-Barr virus-encoded RNA (EBER) and the La antigen were identified by analyzing RNA fragments resistant to digestion by RNase A or T1 after immunoprecipitation by an anti-La serum sample from a lupus patient. Our results confirm earlier findings that the La protein binds to the 3' terminus of each molecule. Possible functions for the EBER RNPs are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号