共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the characterization of an anaerobic swine waste treatment lagoon from a farrowing operation (approximately 2000 sows) was carried out to examine the dynamics of the system due to stratification and seasonal variability. Swine waste samples were taken at different depths with a pulley system equipped with a special sampler that allows for sampling exclusively at certain depth. Chemicals and microbial dynamics were monitored throughout a one-year-period. Results showed that nutrient (C, N, P, S) concentrations varied according to stratified lagoon layers and season. Trace minerals (Al, Ca, Fe, and Mg), on the other hand, appeared to be affected more by stratification than seasonal variability. Molecular analysis also showed that microbial community structure appeared to be affected by the stratification and seasonal variability. Based on these data, it is important to consider the effect of stratification and seasonal variability in managing these open lagoons. 相似文献
2.
C. S. Weeraratna 《Plant and Soil》1979,53(3):287-294
Summary The pattern of release of ammonium and nitrate nitrogen during decomposition of glyricidia, sunflower, centrosema, calapagonium and crotolaria under aerobic and anaerobic conditions, in an alluvial soil over a period of 7 weeks was studied. Under aerobic conditions, the NH4
+–N production reached the maximum after the 4th week. Nitrate-N and total available-N increased in all cases throughout the incubation period except in sunflower. This showed a nitrification inhibitory effect and had a relatively high C/N ratio (11.0) and low total N content (2.8%). In general the increase in NH4
+–N and NO3
––N was more rapid in the early stages of incubation.Under anaerobic conditions, the production of these nutrients was considerably low. Soil organic matter mineralized faster than the added organic material which started to decompose slowly after sometime. Nitrate-N tend to decrease during incubation attributable to denitrification. 相似文献
3.
Summary In aerobic incubation experiments, nitrogen mineralization was investigated in agricultural loess and sandy soils. Fresh, fieldmoist samples were used for incubation. Using an optimization procedure the N-mineralization was split into two nitrogen fractions: A resistant, slowly decomposable organic N-fraction (index rpm) and a fast decomposable N-fraction (index dpm).Loess- and sandy soils showed similar mean reaction coefficients for N-mineralization. The results also indicated that the amount of mineralizable nitrogen in the resistant N-fraction depended directly on clay content.Soil sampling at different times during crop growing period gave different mineralization amounts and courses.Effect of added plant residues on N-mineralization, was also studied by incubation. Variation of type and quantity of added residues changed the net N-mineralization in a characteristic way: Sugar beet leaves, added in minced form, caused an increase in mineralization; while straw caused a temporary immobilization, followed by remineralization.Incubation experiments on undisturbed soil columns showed nearly linear mineralization with time.This paper was presented in part at the 1983 Congress of the German Soil Science Society held at Trier. 相似文献
4.
Summary Net mineralization of N and net nitrification in field-moist clay soils (Evesham-Kingston series) from arable and grassland sites were measured in laboratory incubation experiments at 4, 10 and 20°C. Three depth fractions to 30 cm were used. Nitrate accumulated at all temperatures except when the soil was very dry (=0.13 cm3 cm–3). Exchangeable NH4-ions declined during the first 24 h and thereafter remained low. Net mineralization and net nitrification approximated to zero-order reactions after 24 h, with Q10 values generally <1.6. The effect of temperature on both processes was linear although some results conformed to an Arrhenius-type relationship. The dependence of net mineralization and net nitrification in the field soil on soil temperature (10 cm depth) and moisture (0–15, 15–25, 25–35 cm depths) was modelled using the laboratory incubation data. An annual net mineralization of 350 kg N ha–1 and net nitrification of 346 kg N ha–1 were predicted between September 1980 and August 1981. The model probably overstressed the effect of soil moisture relative to soil temperature. 相似文献
5.
Short- and Long-term Tannin Induced Carbon, Nitrogen and Phosphorus Dynamics in Corsican Pine Litter
Klaas G. J. Nierop Jacobus M. Verstraten Albert Tietema Joke W. Westerveld Piet E. Wartenbergh 《Biogeochemistry》2006,79(3):275-296
Pine litter amended with either tannic acid (TA) or condensed tannins (CTs) was studied to assess the effects on C, N and
P mineralization in relation to the fate of tannins by incubation experiments during various time intervals. TA induced a
rapid short-term effect resulting in high C respiration and net N and P immobilisation. After one week of incubation, TA was
decomposed and net C, N and P mineralization and net nitrification resembled that of the control (non-amended litter). CTs
exhibited effects on net mineralization on longer terms, i.e. after several weeks of incubation until the end of the experiment
(84 days). While net N and P mineralization were greatly reduced, net nitrification was only slightly affected. Most likely
CTs formed complexes with organic N of the substrate thereby reducing net N mineralization, while such complexes were not
involved in net nitrification processes. The reduction of net P mineralization is due to the lack of need for P by microbes
when they cannot get access to N. The fact that decreasing amounts of extractable CTs were accompanied by increasing effects
on mineralization processes with incubation time strongly suggests that CTs were incorporated into the litter in such a way
that they were inextricable by the common solvents needed to measure tannins, such as for the Folin–Ciocalteu and HCl–butanol
assays. 相似文献
6.
Shiv Chandra Dubey G. Venkatesh Diwakar D. Kulkarni 《Indian journal of microbiology》2009,49(4):324-331
The 2009 H1N1 pandemic has slowed down its spread after initial speed of transmission. The conventional swine influenza H1N1
virus (SIV) in pig populations worldwide needs to be differentiated from pandemic H1N1 influenza virus, however it is also
essential to know about the exact role of pigs in the spread and mutations taking place in pig-to-pig transmission. The present
paper reviews epidemiological features of classical SIV and its differentiation with pandemic influenza. 相似文献
7.
Siddhesh Aras Ashok Aiyar Angela M. Amedee William R. Gallaher 《Indian journal of microbiology》2009,49(4):339-347
The world is experiencing a pandemic of influenza that emerged in March 2009, due to a novel strain designated influenza A/H1N1 2009. This strain is closest in molecular sequence to swine influenza viruses, but differs from all previously known influenza by a minimum of 6.1%, and from prior “seasonal” H1N1 by 27.2%, giving it great potential for widespread human infection. While spread into India was delayed for two months by an aggressive interdiction program, since 1 August 2009 most cases in India have been indigenous. H1N1 2009 has differentially struck younger patients who are naïve susceptibles to its antigenic subtype, while sparing those >60 who have crossreactive antibody from prior experience with influenza decades ago and the 1977 “swine flu” vaccine distributed in the United States. It also appears to more severely affect pregnant women. It emanated from a single source in central Mexico, but its precise geographical and circumstantial origins, from either Eurasia or the Americas, remain uncertain. While currently a mild pandemic by the standard of past pandemics, the seriousness of H1N1 2009 especially among children should not be underestimated. There is potential for the virus, which continues to adapt to humans, to change over time into a more severe etiologic agent by any of several foreseeable mutations. Mass acceptance of the novel H1N1 2009 vaccine worldwide will be essential to its control. Having spread globally in a few months, affecting millions of people, it is likely to remain circulating in the human population for a decade or more. 相似文献
8.
以主要的生态过程之一——N循环为对象,论述了土壤动物不仅对凋落物的分解有重要影响,而且在N素矿化和植物对N的吸收过程中也起着重要作用。同时,日益严重的全球变化问题之一——N沉降对土壤动物的多样性及其在生态系统中的功能构成了极大的威胁。另还对土壤动物与N循环研究的方法、土壤动物在N循环过程中的作用机制、热带地区的需求及N沉降下土壤动物的响应作了探讨,并提出,开展大尺度的专类研究及长期定位研究成为下一步研究的需要。 相似文献
9.
Summary Mobilization of soil-borne N, N fertilization and N removal by crops influence EUF-NO3-N contents as well as EUF-Norg contents in the course of a vegetation period. N mobilization alone (no N fertilization) increases the EUF-Norg contents only temporarily (mainly in May and July), while in December they are almost the same as in March (Table 1). The EUF-NO3 contents, on the contrary, increase during the vegetation period, so that an increment in NO3 is registered in unplanted pots in December. This increment is larger the higher the EUF-Norg contents are in March (Table 2).N fertilization increases the contents of both EUF-Norg and EUF-NO3, so that there is an increment in EUF-Norg as well as EUF-NO3 in December (Table 2). This finding also applies to field experiments under fallow (Figs. 4 and 5). However, in contrast to the pot experiment, the EUF-N contents in the field experiment were only temporarily increased by N mobilization alone. This means that N immobilization had taken place which had not been observed in the pot experiment under stable moisture conditions (Fig. 4 and Table 1).A close correlation between hot-water-soluble N contents and EUF-Norg is found only under uniform management conditions (uniform N-fertilizer rates). Depending on the time of sampling different regression equations are, however, obtained because of changes in EUF-Norg due to N mobilization, whereas the hot-water-soluble N contents hardly show any variations during the vegetation period (Fig. 6 and Table 3). 相似文献
10.
Madhu Khanna Binod Kumar Neha Gupta Prashant Kumar Ankit Gupta V. K. Vijayan Harpreet Kaur 《Indian journal of microbiology》2009,49(4):365-369
“Survival of the fittest” is an old axiom laid down by the great evolutionist Charles Darwin and microorganisms seem to have
exploited this statement to a great extent. The ability of viruses to adapt themselves to the changing environment has made
it possible to inhabit itself in this vast world for the past millions of years. Experts are well versed with the fact that
influenza viruses have the capability to trade genetic components from one to the other within animal and human population.
In mid April 2009, the Centers for Disease Control and Prevention and the World Health Organization had recognized a dramatic
increase in number of influenza cases. These current 2009 infections were found to be caused by a new strain of influenza
type A H1N1 virus which is a re-assortment of several strains of influenza viruses commonly infecting human, avian, and swine
population. This evolution is quite dependent on swine population which acts as a main reservoir for the reassortment event
in virus. With the current rate of progress and the efforts of heath authorities worldwide, we have still not lost the race
against fighting this virus. This article gives an insight to the probable source of origin and the evolutionary progress
it has gone through that makes it a potential threat in the future, the current scenario and the possible measures that may
be explored to further strengthen the war against pandemic. 相似文献
11.
Direct measurement of ammonium excretion in soil microarthropods 总被引:4,自引:0,他引:4
12.
Net N mineralization rates were measured in heathlands still dominated by ericaceous dwarf shrubs (Calluna vulgaris or Erica tetralix) and in heathlands that have become dominated by grasses (Molinia caerulea or Deschampsia flexuosa). Net N mineralization was measuredin situ by sequential soil incubations during the year. In the wet area (gravimetric soil moisture content 74–130%), the net N mineralization rates were 4.4 g N m–2 yr–1 in the Erica soil and 7.8 g N m–2 yr–1 in the Molinia soil. The net nitrification rate was negligibly slow in either soil. In the dry area (gravimetric soil moisture content 7–38%), net N mineralization rates were 6.2 g N M-2 yr–1 in the Calluna soil, 10.9 g N m–2 yr–1 in the Molinia soil and 12.6 g N m–2 yr–1 in the Deschampsia soil. The Calluna soil was consistently drier throughout the year, which may partly explain its slower mineralization rate. Net nitrification was 0.3 g N m–2 yr–1 in the Calluna soil, 3.6 g N m–2 yr–1 in the Molinia soil and 5.4 g N m–2 yr–1 in the Deschampsia soil. The net nitrification rate increased proportionally with the net N mineralization rate suggesting ammonium availability may control nitrification rates in these soils. In the dry area, the faster net N mineralization rates in sites dominated by grasses than in the site dominated by Calluna may be explained by the greater amounts of organic N in the soil of sites dominated by grasses. In both areas, however, the net amount of N mineralized per gram total soil N was greater in sites dominated by Molinia or Deschampsia than in sites dominated by Calluna or Erica. This suggests that in heathlands invaded by grasses the quality of the soil organic matter may be increased resulting in more rapid rates of soil N cycling. 相似文献
13.
采用同位素15N库稀释技术研究了 3种不同利用类型羊草草地土壤氮的总矿化、硝化速率以及无机氮总消耗速率 ,3种类型草地分别为 :保护区 (无人为扰动 )、割草场、过度放牧地。结果表明 :4月份过度放牧场的总矿化速率最高 ,为2 1 .3μg N/ ( g土· d) ,7月份割草场的值最高 ,为 38.5μg N/ ( g土· d) ,9月份保护区最高 ,值为 1 5 .6μg N/ ( g土· d) ,总的来看 ,保护区的总矿化速率高于其它利用类型草地 ,这与土壤有机氮的含量较高有关 ,3种类型草地铵态氮的消耗速率与总矿化速率有类似的趋势。 3种利用类型草地的氮总矿化速率均以 7月份为最高 ,分别为 36 .5、38.5、2 9.8μg N/ ( g土· d)。总硝化速率放牧场最高 ,保护区、割草场、放牧场 7月份的总硝化速率分别为 1 8.6、2 1 .4 5、35 .4 5 μg N/ ( g土·d)。 3种利用类型草地中放牧场的硝态氮含量最高 ,其消耗的速率也高于其它两种利用类型草地 相似文献
14.
Simulating the effects of N availability, straw particle size and location in soil on C and N mineralization 总被引:2,自引:0,他引:2
Predicting the C and N mineralization of straw added to soil is important for forecasting subsequent soil N availability during
and between crop growth cycles. The decomposition module of the STICS model, parameterized under optimal conditions, was used
to predict straw decomposition in sub-optimal conditions, i.e. when contact between soil and residue was poor (due to large
size residues or surface placement) or when mineral N availability was restricted. The data used in the simulations were obtained
from published studies of effects of residue size, location and N availability on C and N mineralization from straw under
controlled laboratory conditions. We selected studies in which the dynamics of C and N mineralization were measured simultaneously.
The dynamics of straw mineralization could be well predicted by the model under optimal conditions with standard parameter
values as derived from measured C/N ratios of the residues, but not under sub-optimal conditions which required a new parameterization. A good fit could be obtained
on these treatments by a marked reduction in the rate constants of residue and microbial biomass decomposition and a marked
increase in the microbial biomass C/N ratio. Our results show the need to include in decomposition models routines for simulating effects of spatial heterogeneity
of residue distribution, different particle sizes and limiting N availability. 相似文献
15.
Legumes managed as green manures provide a good alternative to the use of commercial N-fertilizer for non-legume crop production. A laboratory procedure based on the aerobic incubation (35 °C) of soil samples taken from plots with legumes incorporated was proposed for predicting the N supplying potential of legumes to succeeding non-legume crops. This procedure was evaluated by comparing the amount of inorganic N determined in the soil samples after incubation with N content of aboveground dry matter of maize or with inorganic N found in the soil of an adjacent fallow plot. The soil samples (0.00 to 0.15 m and 0.15 to 0.30 m) were obtained from two field experiments conducted in similar soils of the Cerrado Region of central Brazil during 1984–85 and 1986–87. Although incubation results were affected by the different pretreatments, soil samples prepared and incubated as soon as possible after being taken from the field gave the best correlations. The most convenient incubation procedure was the one-week aerobic incubation of samples previously oven dried at 50°C. The results obtained by this procedure were significantly correlated with N content in aboveground dry matter of maize and with the inorganic N accumulated in an adjacent fallow plot. 相似文献
16.
Temperature and moisture effects on C and N mineralization from surface applied clover residue 总被引:11,自引:0,他引:11
A better understanding of the effect of temperature (T) and moisture on soil microbial activity should improve our ability to predict N mineralization from soil organic matter and crop residues. The objective of this study was to evaluate the effects of water potential () and T on C and N mineralization from unamended Cecil loamy sand soil (clayey, kaolinitic, thermic Typic Kanhapludult) and from crimson clover (Trifolium incarnatum L.) residues applied on the soil surface. Cecil soil was packed into acrylic plastic cylinders, adjusted to -5.0, -1.5, -0.03, or -0.003 MPa, treated with clover residues on the surface or left unamended, and incubated at 10, 20, 28, or 35°C for 21 d. Headspace gas samples for CO2 and N2O determinations were taken periodically and NH3 evolved was trapped. Inorganic N in soil and residue extracts was analyzed after 21 d. When increased from -5.0 to -0.003 MPa, total CO2 evolved from unamended soil increased linearly with ln(-), whereas total CO2 evolved from clover residue increased exponentially with . In both cases the effect of was enhanced as T increased. Two-dimensional (T, ) equations were developed to describe these effects. Apparent net mineralized N from the clover residue increased with until it reached a maximum between -0.5 and -0.03 Mpa. 相似文献
17.
Mohammed I Alhazmi 《Bioinformation》2015,11(4):196-202
The H1N1 influenza virus is a serious threat to human population. Oseltamivir and Zanamivir are known antiviral drugs for
swine flu with observed side effects. These drugs are viral neuraminidase and hemagglutinin inhibitor prevents early virus
multiplication by blocking sialic acid cleavage on host cells. Therefore, it is of interest to identify naturally occurring novel
compounds to control viral growth. Thus, H1N1 proteins (neuraminidase and hemagglutinin) were screened with
phytocompounds isolated from Tulsi plant (Ocimum sanctum L.) using molecular docking tools. This identified Apigenin as an
alternative to Oseltamivir and Zanamivir with improved predicted binding properties. Hence, it is of interest to consider this
compound for further in vitro and in vivo evaluation. 相似文献
18.
Effects of elevated CO2 , temperature and N fertilization on nitrogen fluxes in a temperate grassland ecosystem 总被引:2,自引:0,他引:2
The soil nitrogen cycle was investigated in a pre‐established Lolium perenne sward on a loamy soil and exposed to ambient and elevated atmospheric CO2 concentrations (350 and 700 μL L?1) and, at elevated [CO2], to a 3 °C temperature increase. At two levels of mineral nitrogen supply, N– (150 kgN ha?1 y?1) and N+ (533 kgN ha?1 y?1), 15N‐labelled ammonium nitrate was supplied in split applications over a 2.5‐y period. The recovery of the labelled fertilizer N was measured in the harvests, in the stubble and roots, in the macro‐organic matter fractions above 200 μm in size (MOM) and in the aggregated organic matter below 200 μM (AOM). Elevated [CO2] reduced the total amount of N harvested in the clipped parts of the sward. The harvested N derived from soil was reduced to a greater extent than that derived from fertilizer. At both N supplies, elevated [CO2] modified the allocation of the fertilizer N in the sward, in favour of the stubble and roots and significantly increased the recovery of fertilizer N in the soil macro‐organic matter fractions. The increase of fertilizer N immobilization in the MOM was associated with a decline of fertilizer N uptake by the grass sward, which supported the hypothesis of a negative feedback of elevated [CO2] on the sward N yield and uptake. Similar and even more pronounced effects were observed for the native N mineralized in the soil. At N–, a greater part of the fertilizer N organized in the root phytomass resulted in an underestimation of N immobilized in dead roots and, in turn, an underestimation of N immobilization in the MOM. The 3 °C temperature increase alleviated the [CO2] effect throughout much of the N cycle, increasing soil N mineralization, N derived from soil in the harvests, and the partitioning of the assimilated fertilizer N to shoots. In conclusion, at ambient temperature, the N cycle was slowed down under elevated [CO2], which restricted the increase in the aboveground production of the grass sward, and apparently contributed to the sequestration of carbon belowground. In contrast, a temperature increase under elevated [CO2] stimulated the soil nitrogen cycle, improved the N nutrition of the sward and restricted the magnitude of the soil C sequestration. 相似文献
19.
Assimilation of N by heterotrophic soil microbial biomass is associated with decomposition of organic matter in the soil. The form of N assimilated can be either low molecular weight organic N released from the breakdown of organic matter (direct assimilation), or NH+ 4 and NO− 3 from the soil inorganic N pool, into which mineralized organic N is released (mineralization immobilization turnover). The kinetics of C and N turnover in soil is quantifiable by means of computer simulation models. NCSOIL was constructed to represent the two assimilation schemes. The rate of N assimilation depends on the rate of C assimilation and microbial C/N ratio, thereby rendering it independent of the assimilation scheme. However, if any of the N forms is labeled, a different amount of labeled N assimilation will be simulated by the different schemes. Experimental data on inorganic N and 15 N and on organic 15 N dynamics in soils incubated with 15 N added as NH+ 4 or organic N were compared with data simulated by different model schemes. Direct assimilation could not account for the amount of 15 N assimilated in any of the experimental treatments. The best fit of the model to experimental data was obtained for the mineralization immobilization turnover scheme when both NH+ 4 and NO− 3 were assimilated, in proportion to their concentration in the soil. 相似文献
20.
Land disposal of poultry litter is an environmental concern often associated to excess phosphorus (P) in soils and potential water pollution in regions with intense poultry production. Although poultry litter can be moved off the farm and traded as fertilizer, its transportation becomes less economical with increasing distances from the farm. Thus, new litter management alternatives are needed to reduce the environmental impact of P litter application to land. This paper summarizes established and emerging alternative technologies in the U.S. that facilitate handling, concentration, and transporting of litter P. Furthermore, it examines the potential integration of technologies into poultry litter management systems that could reduce poultry litter volume and increase P content in litter byproducts. The adoption of alternative technologies may encourage new opportunities to produce bio-energy, fertilizer, and other valuable P byproducts from poultry litter while reducing environmental impact and promoting sustainable poultry production. 相似文献