首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zou W  Li ZY  Li CL  Cui ZC 《生理科学进展》2000,31(2):120-124
蛋白激酶B(PKB)是原癌基因c-akt的表达产物,它参与由生长因子激活的经磷脂磷肌醇3-激酶(PI3K)介导的信号转导过程。与许多蛋白激酶相似,PKB分子具有一特殊的AH/PH结构域(AH/PHdomain),后者能介导信号分子间的相互作用。PKB是PI3K直接的靶蛋白。PI3K产生的脂类第二信使PI-3,4,P2和PI-3,4,5-P3等均能与PKB和磷酸肌醇依赖性蛋白激酶(PDK)的AH/P  相似文献   

2.
Kato Y  Ozaki N  Yamada T  Miura Y  Oiso Y 《Life sciences》2007,80(5):476-483
Among four kinds of protein kinase A (PKA) inhibitors tested, H-89 exhibited a unique action to remarkably enhance adipocyte differentiation of 3T3-L1 cells, whereas the other three PKA inhibitors, PKA inhibitor Fragment 14-22 (PKI), Rp-cAMP, and KT 5720, did not enhance adipocyte differentiation. H-85, which is an inactive form of H-89, exhibited a similar enhancing effect on adipocyte differentiation. H-89 also potentiated the phosphorylation of Akt and extracellular signal-regulated kinase (ERK) 1/2 in 3T3-L1 cells, which function as downstream signaling of insulin. Phosphoinositide 3-kinase (PI3K) inhibitor wortmannin and mitogen-activated protein kinase kinase (MEK) inhibitor PD 98059 suppressed both the H-89-induced promotion of adipocyte differentiation and the H-89-induced potentiation of phosphorylation of Akt and ERK1/2. Rho kinase inhibitor Y-27632 also promoted the phosphorylation of both Akt and ERK1/2 and enhanced adipocyte differentiation, although its effect was somewhat less than that of H-89. Even when cells were treated with a mixture of Y-27632 and H-89, the additive enhancing effects on both the insulin signaling and adipocyte differentiation were not detected. Therefore, it is suggested that the major possible mechanism whereby H-89 potentiates adipocyte differentiation of 3T3-L1 cells is activation of insulin signaling that is elicited mostly by inhibiting Rho/Rho kinase pathway.  相似文献   

3.
Previous studies have shown that flavonoids inhibit glucose uptake in cultured cells. In this report, we show that the grapefruit flavanone naringenin inhibited insulin-stimulated glucose uptake in 3T3-L1 adipocytes in a dose-dependent manner. Naringenin acts by inhibiting the activity of phosphoinositide 3-kinase (PI3K), a key regulator of insulin-induced GLUT4 translocation. Although naringenin did not alter the phosphotyrosine status of the insulin receptor, insulin receptor substrate proteins, or PI3K, it did inhibit the phosphorylation of the downstream signaling molecule Akt. In an in vitro kinase assay, naringenin inhibited PI3K activity. A physiologically attainable dose of 6 microM naringenin reduced insulin-stimulated glucose uptake by approximately 20%. This inhibitory effect remained 24h after the removal of naringenin from the culture medium. Collectively, our findings suggest that the regular consumption of naringenin in grapefruit may exacerbate insulin resistance in susceptible individuals via impaired glucose uptake in adipose tissue.  相似文献   

4.
Dysregulated signaling contributes to altered cellular growth, motility, and survival during cancer progression. We have evaluated the ability of several factors to stimulate migration in WM1341D, a cell line derived from an invasive human vertical growth phase melanoma. Basic fibroblast growth factor, hepatocyte growth factor, interleukin-8, and CCL27 each slightly increased migration. Insulin-like growth factor I (IGF-I), however, stimulated a 15-fold increase in migration. This response required the IGF-I receptor, which activates phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways. Both pathways have been implicated in migration in a variety of cell types, but the signaling required for IGF-I-induced melanoma cell migration is not well defined. IGF-I-stimulated activation of MAPK/ERK signaling in WM1341D cells was inhibited by U0126, but a 33-fold higher dose of U0126 was needed to inhibit IGF-I-stimulated cellular migration. In contrast, similar concentrations of either wortmannin or LY294002 were required to inhibit both IGF-I-induced PI3K activation and migration. These results indicate that IGF-I-stimulated migration of WM1341D cells requires PI3K activation but is independent of MAPK/ERK signaling. Determining the contributions of IGF-I signaling pathways to migration will help us to understand melanoma progression and may lead to new therapeutic targets of this highly metastatic cancer.  相似文献   

5.

Background

Upon lipopolysaccharide (LPS) stimulation, activation of both the Toll-like receptor 4 (TLR4) and phosphoinositide 3-kinase (PI3K) pathways serves to balance proinflammatory and anti-inflammatory responses. Although the antagonist to TLR4 represents an emerging promising target for the treatment of sepsis; however, the role of the PI3K pathway under TLR4-null conditions is not well understood. This goal of this study was to investigate the effect of inhibition of PI3K on innate resistance to LPS toxicity in a murine model.

Results

The overall survival of the cohorts receiving intraperitoneal injections of 100, 500, or 1000 μg LPS from Escherichia coli serotype 026:B6 after 7 d was 100%, 10%, and 10%, respectively. In contrast, no mortality was noted after 500-μg LPS injection in Tlr4-/- mice. When the PI3K inhibitor LY294002 was injected (1 mg/25 g body weight) 1 h prior to the administration of LPS, the overall survival of the Tlr4-/- mice was 30%. In the Tlr4-/- mice, the LPS injection induced no NF-κB activation but an increased Akt phosphorylation in the lung and liver, when compared to that of the C57BL/6 mice. Injection of 500 μg LPS led to a significant induction in O2- detected by electron paramagnetic resonance (EPR) spin trapping spectroscopy in the lung and liver at 3 and 6 h in C57BL/6 but not Tlr4-/- mice. Addition of LY294002 only significantly increased the O2- level in the lung and liver of the Tlr4-/- mice but not in the C57BL/6 mice following 500-μg LPS injection. In addition, the serum IL-1β and IL-2 levels were more elevated in C57BL/6 mice than in Tlr4-/- mice. Notably, IL-1β and IL-2 were significantly increased in Tlr4-/- mice but not in the C57BL/6 mice when the PI3K pathway was inhibited by LY294002 prior to LPS injection.

Conclusions

In this study, we demonstrate that innate resistance to LPS toxicity in Tlr4-/- mice is impaired by inhibition of the PI3K pathway, with a corresponding increase in mortality and production of tissue O2- and inflammatory cytokines.  相似文献   

6.
Hepatocyte growth factor (HGF) promotes the proliferation of adult myoblasts and inhibits their differentiation, whereas insulin-like growth factor I (IGF-I) enhances both processes. Recent studies indicate that activation of the phosphoinositide 3'-kinase (PI3K) pathway promotes myoblast differentiation, whereas activation of the mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) promotes proliferation and inhibits their differentiation. This simple model is confounded by the fact that both HGF and IGF-I have been shown to activate both pathways. In this study, we have compared the ability of HGF and IGF-I to activate PI3K and MAPK/ERK in i28 myogenic cells. We find that, although the two stimuli result in comparable recruitment of the p85alpha subunit of PI3K into complexes with tyrosine-phosphorylated proteins, the p85beta regulatory subunit and p110alpha catalytic subunit of PI3K are preferentially recruited into these complexes in response to IGF-I. In agreement with this observation, IGF-I is much more potent than HGF in stimulating phosphorylation of Akt/PKB, a protein kinase downstream of PI3K. In contrast, MAPK/ERK phosphorylation was higher in response to HGF and lasted longer, relative to IGF-I. Moreover, the specific PI3K inhibitor, Wortmannin, abolished MAPK/ERK and Elk-1 phosphorylation in HGF-treated cells, suggesting the requirement of PI3K in mediating the HGF-induced MAPK pathway. UO126, a specific MAPK pathway inhibitor, had no effect on PI3K activity or Akt phosphorylation, implying that at least in muscle cells, the MAPK/ERK pathway is not required for HGF-induced PI3K activation. These results provide a biochemical rationale for the previous observations that HGF and IGF-I have opposite effects on myogenic cells, consistent with studies linking PI3K activation to differentiation and MAPK/ERK activation to proliferation in these cells. Moreover, the finding that PI3K activity is required for HGF-induced MAPK activation suggests its additional role in proliferation, rather than exclusively in the differentiation of adult myoblasts.  相似文献   

7.
Bradbury DA  Corbett L  Knox AJ 《FEBS letters》2004,560(1-3):30-34
Here we studied the role of phosphoinositide 3-kinase (PI 3-kinase) and mitogen activated protein (MAP) kinase in regulating bradykinin (BK) induced prostaglandin E2 (PGE2) production in human pulmonary artery smooth muscle cells (HPASMC). BK increased PGE2 in a three step process involving phospholipase A2 (PLA2), cyclooxygenase (COX) and PGE synthase (PGES). BK stimulated PGE2 release in cultured HPASMC was inhibited by the PI 3-kinase inhibitor LY294002 and the p38 MAP kinase inhibitor SB202190. The inhibitory mechanism used by LY294002 did not involve cytosolic PLA2 activation or COX-1, COX-2 and PGES protein expression but rather a novel effect on COX enzymatic activity. SB202190 also inhibited COX activity.  相似文献   

8.
Little is known about the physiological role and mechanism of activation of class II phosphoinositide 3-kinases (PI3Ks), although it has been shown that the PI3K-C2alpha isoform is activated by insulin. Using chimaeric receptor constructs which can be activated independently of endogenous receptors in transfected cells, we found that PI3K-C2alpha activity was stimulated to a greater extent by insulin receptors than IGF receptors in 3T3-L1 adipocytes. Activation of PI3K-C2alpha required an intact NPEY motif in the receptor juxtamembrane domain. We conclude that PI3K-C2alpha is a candidate for participation in insulin-specific intracellular signalling.  相似文献   

9.
We previously showed that lovastatin, an HMG-CoA reductase inhibitor, suppresses cell growth by inducing apoptosis in rat brain neuroblasts. Our aim was to study intracellular signalling induced by lovastatin in neuroblasts. Lovastatin significantly decreases the phosphoinositide 3-kinase (PI3-K) activity in a concentration-dependent manner. Expression of p85 subunit and its association with phosphotyrosine-containing proteins are unaffected by lovastatin. Lovastatin decreases protein kinase B (PKB)/Akt phosphorylation, and its downstream effectors, p70S6K and the eukaryotic initiation factor 4E (eIF4E) regulatory protein 1, 4E-BP1, in a concentration-dependent manner, and reduces p70S6K expression. Lovastatin effects are fully prevented with mevalonate. Only the highest dose of PI3-K inhibitors that significantly reduce PI3-K kinase activity induces apoptosis in neuroblasts but to a lower degree than lovastatin. In summary, this work shows that treatment of brain neuroblasts with lovastatin leads to an inhibition of the main pathway that controls cell growth and survival, PI3-K/PKB and the subsequent blockade of downstream proteins implicated in the regulation of protein synthesis. This work suggests that inactivation of the antiapoptotic PI3-K appears insufficient to induce the degree of neuroblasts apoptosis provoked by lovastatin, which must necessarily involve other intracellular pathways. These findings might contribute to elucidate the molecular mechanisms of some statins effects in the central nervous system.  相似文献   

10.
The Class I phosphoinositide 3-kinases (PI3Ks) are lipid kinases that phosphorylate the 3-hydroxyl group of the inositol ring of phosphatidylinositides. Although closely related, experimental evidence suggests that the four Class I PI3Ks may be functionally distinct. To further study their unique biochemical properties, the three human Class Ia PI3K (alpha, beta, and delta) p110 catalytic domains were cloned and co-expressed with the p85alpha regulatory domain in Sf9 cells. None of the p110 subunits were successfully expressed in the absence of p85alpha. Successful expression and purification of each p85alpha/p110 protein required using an excess of the p110 vector over the p85 vector during co-infection of Sf9 cells. Proteins were purified as the p85alpha/p110 complex by nickel affinity chromatography through an N-terminal His-tag on the p110 subunit using an imidazole gradient. The purification yields were high using the optimized ratio of p85/p110 vector and small culture volumes, with 24mg/L cell culture media for p85alpha/p110alpha, 17.5mg/L for p85alpha/p110delta, and 3.5mg/L for p85alpha/p110beta. The identity of each purified isoform was confirmed by mass spectral analysis and immunoblotting. The activities of the three p85alpha/p110 proteins and the Class Ib p110gamma catalytic domain were investigated using phosphatidylinositol 4,5-bisphosphate (PIP2) as the substrate in a PIP2/phosphatidylserine (PS) liposome. All four enzymes exhibited reaction velocities that were dependent on the surface concentration of PIP2. The surface concentrations that gave maximal activity for each human isoform with 0.5mM PIP2 were 2.5mol% PIP2 for p110gamma, 7.5mol% for p85alpha/p110beta, and 10mol% PIP2 for p85alpha/p110alpha and p85alpha/p110delta. The specific activity of p85alpha/p110alpha was three to five times higher than that of the other human isoforms. These kinetic differences may contribute to the unique roles of these isoforms in cells.  相似文献   

11.
3-phosphoinositide-dependent protein kinase-1 (PDK1) is a central mediator of cellular signaling between phosphoinositide-3 kinase and various intracellular serine/threonine kinases, including protein kinase B, p70 ribosomal S6 kinase, serum and glucocorticoid-inducible kinase, and protein kinase C. PDK1 activates members of the AGC family of protein kinases by phosphorylating serine/threonine residues in the activation loop. Here, we review the regulatory mechanisms of PDK1 and its roles in cancer. PDK1 is activated by autophosphorylation in the activation loop and other serine residues, as well as by phosphorylation of Tyr-9 and Tyr-373/376. Src appears to recognize PDK1 following tyrosine phosphorylation. The role of heat shock protein 90 in regulating PDK1 stability and PDK1-Src complex formation are also discussed. Furthermore, we summarize the subcellular distribution of PDK1. Finally, an important role for PDK1 in cancer chemotherapy is proposed. In conclusion, a better understanding of its molecular regulatory mechanisms in various signaling pathways will help to explain how PDK1 acts as an oncogenic kinase in various cancers, and will contribute to the development of novel cancer chemotherapies.  相似文献   

12.
Abstract The change from pentose phosphate pathway to glycolysis plays a significant role in the physiology of Aspergillus niger during the induction of citric acid accumulation. Evidence is shown for the importance of 6-phophofructo-1-kinase in this process since it is activated by phosphorylation. By incubating a purified active form of enzyme together with commercially available alkaline phosphatase, 6-phosphofructo-1-kinase activity was lost after a certain time suggesting that the enzyme was dephosphorylated. Inactive 6-phosphofructo-1-kinase could be isolated from the cells in the early stage of growth in a high citric acid yielding medium. The enzyme was 'in vitro' activated by isolated protein kinase in the presence of cAMP, ATP and Mg2+ ions. Additional evidence for covalent phosphorylation of inactive 6-phosphofructo-1-kinase was obtained by incubating both enzymes together with labelled [ γ −32P]ATP. The activating enzyme was partially purified from A. niger mycelium.  相似文献   

13.
14.
Unravelling the activation mechanisms of protein kinase B/Akt   总被引:17,自引:0,他引:17  
Scheid MP  Woodgett JR 《FEBS letters》2003,546(1):108-112
Over the past decade, protein kinase B (PKB, also termed Akt) has emerged as an important signaling mediator between extracellular cues and modulation of gene expression, metabolism, and cell survival. The enzyme is tightly controlled and consequences of its deregulation include loss of growth control and oncogenesis. Recent work has better characterized the mechanism of PKB activation, including upstream regulators and secondary binding partners. This minireview refreshes some old concepts with new twists and highlights current outstanding questions.  相似文献   

15.
Cancer cells depend on chemotaxis for invasion and frequently overexpress and/or activate Src. We previously reported that v-Src accelerates motility by promoting phosphoinositide 3-kinase (PI3-K) signalling but abrogates chemotaxis. We here addressed the mechanism of the loss of chemotactic response to platelet-derived growth factor (PDGF) gradients in fibroblasts harbouring a thermosensitive v-Src kinase. At non-permissive temperature, PDGF receptor (PDGFR) signalling, assessed by phosphoY(751)-specific antibodies (a docking site for PI3-K), was not detected without PDGF and showed a concentration-dependent PDGF response. Both immunolabeling of PI3-K (p110) and live cell imaging of its product (phosphatidylinositol 3,4,5 tris-phosphate) showed PI3-K recruitment and activation at lamellipodia polarized towards a PDGF gradient. Centrosomes and PDGFR- and Src-bearing endosomes were also oriented towards this gradient. Upon v-Src thermoactivation, (i) Y(751) phosphorylation was moderately induced without PDGF and synergistically increased with PDGF; (ii) PI3-K was recruited and activated all along the plasma membrane without PDGF and did not polarize in response to a PDGF gradient; and (iii) polarization of centrosomes and of PDGFR-bearing endosomes were also abrogated. Thus, PDGF can further increase PDGFR auto-phosphorylation despite strong Src kinase activity, but diffuse downstream activation of PI3-K by Src abrogates cell polarization and chemotaxis: "signalling requires silence".  相似文献   

16.
Modulation of interactions among proteins is an important mechanism for regulating both the subcellular location and the function of proteins. An example of the importance of protein-protein interaction is the reversible association of eukaryotic initiation factor eIF4E with the eIF4E binding proteins 4E-BP1 and eIF4G. When bound to 4E-BP1, eIF4E cannot bind to eIF4G to form the active eIF4F complex, an event that is required for the binding of mRNA to the ribosome. Thus, association of eIF4E with 4E-BP1 represses mRNA translation by preventing the binding of mRNA to the ribosome. Previous studies have measured the amount of 4E-BP1 or eIF4G bound to eIF4E by either affinity chromatography or immunoprecipitation of eIF4E followed by Western blot analysis for quantitation of 4E-BP1 and eIF4G. Both of these techniques have significant limitations. In the present study, we describe a microtiter plate-based assay for quantitation of the amount of 4E-BP1 and eIF4G bound to eIF4E that obviates many of the limitations of the earlier approaches. It also has the advantage that absolute amounts of the individual proteins can be easily estimated. The approach should be applicable to the study of a wide variety of protein-protein interactions.  相似文献   

17.
18.
3-Phosphoinositide-dependent protein kinase 1 (PDK1), a member of the serine/threonine kinase family, has been demonstrated to be crucial for cellular survival, differentiation, and metabolism. Here, we present evidence that PDK1 is associated with caveolin-1, a 22-kDa integral membrane protein, which is the principal structural and regulatory component of the caveolae membranes in COS-1. First, we noted the presence of two potential caveolin-1 binding motifs (141FFVKLYFTF149 and 299YDFPEKFF306) in the PDK1 catalytic domain. Using a pull-down approach, we observed that PDK1 interacts physically with caveolin-1 both in vivo and in vitro. Second, we detected the co-localization of PDK1 and caveolin-1 via confocal microscopy. The localization of PDK1 to the plasma membrane was disrupted by caveolin binding. Third, in transient transfection assays, interaction with caveolin-1 induced a substantial reduction in the in vivo serine/threonine phosphorylation of PDK1, whereas the caveolin-1 binding site mutant (141FFVKLYFTF149 and 299YDFPEKFF306 change to 141AFVKLAFTA149 and 299ADAPEFLA306) did not. Furthermore, a caveolin-1 scaffolding peptide (amino acids 82-101) functionally suppressed the self-phosphorylation and kinase activities of purified recombinant PDK1 protein. Thus, our observations indicated that PDK1 binds to caveolin-1 through its caveolin-binding motifs, and also that the protein-protein interaction between PDK1 and caveolin-1 regulates PDK1 self-phosphorylation, kinase activity, and subcellular localization.  相似文献   

19.
We have investigated the molecular mechanisms of neurotrophin-mediated cell survival in HT22 cells, a murine cell line of hippocampal origin, expressing the brain-derived neurotrophic factor (BDNF) receptor TrkB as well as the TrkB.T1 splice variant. Stimulation with BDNF protected HT22-TrkB cells, but not HT22-TrkB.T1 cells, against programmed cell death induced by serum deprivation. BDNF did not, however, provide protection against oxidative glutamate toxicity, indicating that serum deprivation-induced cell death differs substantially from glutamate-induced cell death. Using a pharmacological strategy to block either the extracellular signal-regulated protein kinase (ERK) or the phosphatidylinositol 3-kinase (PI3) pathway, we show that activation of PI3 kinase is required for the neuroprotective activity of BDNF in HT22 cells. To further analyse the role of ERK in neuroprotection we expressed an inducible deltaRaf-1:ER fusion protein in HT22 cells. Activation of this conditionally active form of Raf-1 induced a sustained phosphorylation of ERK, and protected the cells from serum withdrawal-induced cell death. Inhibition of ERK activation at different time points revealed that a prolonged activation of ERK is essential to protect HT22 cells from cell death triggered by the withdrawal of serum, indicating that the duration of ERK activation is of major importance for its neuroprotective biological function.  相似文献   

20.
We used cultured cerebellar granule cells to examine whether native group-III metabotropic glutamate (mGlu) receptors are coupled to the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI-3-K) pathways. Cultured granule cells responded to the group-III mGlu receptor agonist, L-2-amino-4-phosphonobutanoate (l-AP4), with an increased phosphorylation and activity of MAPKs (ERK-1 and -2) and an increased phosphorylation of the PI-3-K target, protein kinase B (PKB/AKT). These effects were attenuated by the group-III antagonists, alpha-methyl-serine-O -phosphate (MSOP) and (R,S )-alpha-cyclopropyl-4-phosphonophenylglycine (CPPG), or by pretreatment of the cultures with pertussis toxin. l-AP4 also induced the nuclear translocation of beta-catenin, a downstream effector of the PI-3-K pathway. To assess the functional relevance of these mechanisms we examined the ability of l-AP4 to protect granule cells against apoptosis by trophic deprivation, induced by lowering extracellular K(+) from 25 to 10 mm. Neuroprotection by l-AP4 was attenuated by MSOP and abrogated by the compounds PD98059 and UO126, which inhibit the MAPK pathway, or by the compound LY294002, which inhibits the PI-3-K pathway. Taken together, these results show for the first time that native group-III mGlu receptors are coupled to MAPK and PI-3-K, and that activation of both pathways is necessary for neuroprotection mediated by this particular class of receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号