首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Flower pigmentation patterns were scored in 185 senseChalcone synthase (Chs) transgenotes and 85 antisenseChs transgenotes; upon first flowering, 139 (75%) of sense transgenotes were found to be phenotypically altered, as were 70 (82%) of the antisense transgenotes. The observed patterns document the range of phenotypic variations that occur, as well as confirm and extend the finding that senseChs constructs produce several types of morphologybased based flower pigmentation patterns that antisenseChs constructs do not. Long-term monitoring for epigenetic variations in one population of 44 senseChs transgenotes showed that 43 (98%) were capable of producing a cosuppression phenotype. The primary determinant of sense-specific patterns of cosuppression ofChs was found to be the repetitiveness and organization pattern of the transgene, not position effects by, or readthrough from, flanking plant DNA sequences. The degree of cosuppression observed in progeny of transgenotes carrying multiple, dispersed copies as compared to that observed with a single copy of the transgene suggests that sense cosuppression ofChs is subject to a transgene dosage effect.  相似文献   

3.
4.
Summary The constitutive expression of an antisense chalcone synthase (CHS) gene in transgenic petunia plants results with high frequency in a reduced flower pigmentation due to a reduction in the CHS mRNA steady-state level in floral tissue. Here we show that this reduction is specific for CHS mRNA; chalcone flavanone isomerase (CHI) and dihydroflavonol reductase (DFR) mRNA steady-state levels are unaffected. However, in white floral tissue a severe reduction in CHI specific activity is found, accompanied by an altered signal for CHI protein on western blots. We find no correlation between the phenotypic effect of the antisense CHS gene and its chromosomal position. For some of the antisense CHS transformants the flower phenotype is highly variable. We demonstrate that pigmentation in these plants can be influenced by gibberellic acid and light, suggesting that the variable flower phenotype is caused by changes in physiological conditions during flower development. The results not only indicate that flower pigmentation in these plants reveals the variable expression of the antisense transgene, but also show that genomic sequences flanking the transgene may render its expression extremely susceptible to physiological conditions.  相似文献   

5.
We attempted to evaluate the effects of promoters on flower color modification by RNA interference (RNAi). An inverted repeat of a tobacco chalcone synthase (CHS) fragment was used as a trigger under control of three different promoters and transformed into tobacco plants. The flowers of CaMV35S:CHSir displayed a completely white color, whereas those of Agrobacterium rhizogenes rolC:CHSir kept slight pigmentation. On the other hand, gentian GtCHS:CHSir showed decreased pigmentation in the tip only but not at the base of the petal limbs, which resulted in the appearance of bicolor-like flowers. The observed suppression of flower pigmentation corresponded with tissue-specificity of each promoter activity determined by histochemical GUS assay using transgenic tobacco plants with each promoter–GUS construct. These results demonstrate for the first time that RNAi-mediated silencing can be used to produce novel-colored flowers with high horticultural value. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
7.
Methods for silencing genes in Phytophthora transformants have been demonstrated previously, but wide variation in effectiveness was reported in different studies. To optimize this important tool for functional genomics, we compared the abilities of sense, antisense, and hairpin transgenes introduced by protoplast, electroporation, and bombardment methods to silence the inf1 elicitin gene in Phytophthora infestans. A hairpin construct induced silencing three times more often than sense or antisense vectors, and protoplast transformation twice as much as electroporation. Using hairpins introduced into protoplasts, 61% of strains were silenced, and transgene copy number was positively correlated with silencing. The utility of bombardment was reduced by the occurrence of heterokaryons containing silenced and non-silenced nuclei, but silenced strains were obtainable from about 20% of primary transformants by single-nuclear purification. Most inf1-deficient strains were fully silenced, however some exhibited partial suppression. These produced inf1-derived RNAs of about 21-nt which correspond to both the sense and antisense strands of inf1, implicating an RNAi-like mechanism in silencing.  相似文献   

8.
Conditional gene knockout using the Cre/loxP system is instrumental in advancing our understanding of the function of genes in a wide range of disciplines. It is becoming increasingly apparent in the literature that recombination mediated by some Cre transgenes can occur in unexpected tissues. Dermo1‐Cre (Twist2‐Cre) has been widely used to target skeletal lineage cells as well as other mesoderm‐derived cells. Here we report that Dermo1‐Cre exhibits spontaneous male germline recombination activity leading to a Cre‐mediated recombination of a floxed Ptk2 (Protein tyrosine kinase 2, also known as Fak [Focal adhesion kinase]) allele but not a floxed Rb1cc1 (RB1 inducible coiled‐coil 1, also known as Fip200 [FAK‐family Interacting Protein of 200 kDa]) allele at high frequency. This ectopic germline activity of Dermo1‐Cre occurred in all or none manner in a given litter. We demonstrated that the occurrence of germline recombination activity of Dermo1‐Cre transgene can be avoided by using female mice as parental Dermo1‐Cre carriers.  相似文献   

9.
Embryonic deletion of mouse Chk1 is lethal; however, whether Chk1 is essential in all individual tissues is unknown. By breeding C57Bl/ 6 mice homozygous for a conditional allele of Chk1 (Chk1fl/fl) and bearing melanocyte‐specific Tyr::Cre and DCT:: LacZ transgenes, we investigated the consequences of Chk1 deletion in the melanocytic lineage. We show that adult Tyr::Cre; Chk1fl/fl mice lack coat pigmentation and epidermal melanocytes in the hair follicles, but retain eye pigmentation in the retinal pigmented epithelium (RPE). Melanoblasts formed normally during embryogenesis in Tyr::Cre; Chk1fl/fl mice at early times (embryonic day 10.5; E10.5) but were completely absent by stage E13.5, most probably as a consequence of spontaneous DNA damage and apoptosis. By contrast, melanoblast numbers were only slightly reduced in heterozygous Tyr::Cre; Chk1fl/ + embryos, and these mice exhibited normal coat pigmentation as adults. Thus, Chk1 is essential for the developmental formation of murine epidermal melanocytes but hemizygosity has little, if any, permanent developmental consequence in this cell type.  相似文献   

10.
Cre recombinase has become a ubiquitous tool in transgenic strategies for regulation of transgene expression in a tissue-specific manner. We report analysis of two SM22αCre lines and their ability to mediate genomic recombination in five independent Cre-responsive transgenic lines. One of the SM22αCre lines developed was a tet-on system based on the reverse tetracycline transactivator. Our goal was to use this strategy to inhibit the Notch signaling pathway specifically in smooth muscle cells. Our responder transgenes contained a constitutively expressed marker gene (chloramphenicol acetyltransferase, CAT), flanked by loxP sites in direct orientation, upstream of Notch-related transgenes. We developed two dominant negative Notch transgenic responder lines activated by Cre-mediated DNA recombination. The first is the extracellular domain of human Jagged1, and the second is the extracellular domain of the human Notch2 receptor. Despite high expression of the marker gene in all responder lines, we found that Cre-mediated genomic recombination between these five lines was highly variable, ranging from 46 to 93% of individuals using an SM22αCre activating strain, or 8–58% of individuals using an inducible SM22αrtTACre. In all cases examined, detection of recombination by PCR correlated with expression of the transgene as determined by Western blot analysis. Our studies reflect the variability in recombination success based on the responder strain, presumably due to inaccessibility of the locus of integration of the responder allele.  相似文献   

11.
Modification of flower colour in torenia (Torenia fournieriLind.) by reintroduction of the chalcone synthase (CHS) or dihydroflavonol-4-reductasegenes has been reported (Aida et al., 2000.Plant Science153:33–42). The typical modified phenotype among plants withan introduced antisense gene is a uniformly lighter-colouredcorolla. Of the 67 plants in which an antisense CHS gene wasintroduced, only a single line (411-7) showed a wavy patternon the flower lip. In flowers of this plant, the inner partof the corolla lip was pigmented more deeply than the outerpart in a wave-like pattern—a pattern that does not existin normal cultivars. The segregation ratio of the flower colourpatterns of the offspring and Southern blot analysis demonstratedthat one of the two transgene loci detected may cause the wavyphenotype; the other locus is never associated with the wavyphenotype but alone it could produce the typical antisense typepattern. Copyright 2001 Annals of Botany Company Torenia fournieri Lind., transformation, flower colour, ornamental plants, pigmentation pattern  相似文献   

12.
13.
Flavonoid-3',5'-hydroxylase (F3'5'H) is the key enzyme in the synthesis of 3',5'-hydroxylated anthocyanins, which are generally required for the expression of blue or purple flower color. It has been predicted that the introduction of this enzyme into a plant species that lacks it would enable the production of blue or purple flowers by altering the anthocyanin composition. We present here the results of the genetic engineering of petunia flower color, pigmentation patterns and anthocyanin composition with sense or antisense constructs of the F3'5'H gene under the control of the CaMV 35S promoter. When sense constructs were introduced into pink flower varieties that are deficient in the enzyme, transgenic plants showed flower color changes from pink to magenta along with changes in anthocyanin composition. Some transgenic plants showed novel pigmentation patterns, e.g. a star-shaped pattern. When sense constructs were introduced into blue flower petunia varieties, the flower color of the transgenic plants changed from deep blue to pale blue or even pale pink. Pigment composition analysis of the transgenic plants suggested that the F3'5'H transgene not only created or inhibited the biosynthetic pathway to 3',5'-hydroxylated anthocyanins but switched the pathway to 3',5'-hydroxylated or 3'-hydroxylated anthocyanins.  相似文献   

14.
As a dual function protein, β‐catenin affects both cell adhesion and mediates canonical Wnt/β‐catenin cell signaling. β‐Catenin is prominently expressed in somatic Sertoli cells in the testis and postmeiotic germ cells, suggesting an additional role in spermatogenesis. It was reported previously that Cre/loxP‐mediated conditional inactivation of the β‐catenin gene (Ctnnb1) in male gonads using a protamine promoter‐driven Cre transgene (Prm‐cre) resulted in partial infertility, reduced sperm count, and abnormal spermatogenesis. In this report, we demonstrated that the conditional deletion of Ctnnb1 using a germ cell specific Cre transgene (Stra8‐icre) had no effect on male fertility. We have shown that the Stra8‐icre transgene was highly efficient in generating deletion in early pre‐meiotic and post‐meiotic cells. No differences in anatomical or histological presentation were found in the mutant testis, the production of viable sperm was similar, and no abnormalities in DNA sperm content were detected. We concluded that β‐catenin is fully dispensable in germ cells for spermatogenesis. The conflicting results from the earlier study may have been due to off‐target expression of Prm‐cre in testicular somatic cells. In future studies, the analysis of conditional mutants using several Cre‐transgenes should be encouraged to reduce potential errors. genesis 52:328–332, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
Wang CR  Yang AF  Yue GD  Gao Q  Yin HY  Zhang JR 《Planta》2008,227(5):1127-1140
Phosphatidylinositol-specific phospholipase C (PI-PLC) plays an important role in a variety of physiological processes in plants, including drought tolerance. It has been reported that the ZmPLC1 gene cloned from maize (Zea mays L.) encoded a PI-PLC and up-regulated the expression in maize roots under dehydration conditions (Zhai SM, Sui ZH, Yang AF, Zhang JR in Biotechnol Lett 27:799–804, 2005). In this paper, transgenic maize expressing ZmPLC1 transgenes in sense or antisense orientation were generated by Agrobacterium-mediated transformation and confirmed by Southern blot analysis. High-level expression of the transgene was confirmed by real-time RT-PCR and PI-PLC activity assay. The tolerance to drought stress (DS) of the homogenous transgenic maize plants was investigated at two developmental stages. The results demonstrated that, under DS conditions, the sense transgenic plants had higher relative water content, better osmotic adjustment, increased photosynthesis rates, lower percentage of ion leakage and less lipid membrane peroxidation, higher grain yield than the WT; whereas those expressing the antisense transgene exhibited inferior characters compared with the WT. It was concluded that enhanced expression of sense ZmPLC1 improved the drought tolerance of maize.  相似文献   

16.
17.
18.
We have generated a transgenic mouse that expresses Cre recombinase only in skeletal muscle and only following tetracycline treatment. This spatiotemporal specificity is achieved using two transgenes. The first transgene uses the human skeletal actin (HSA) promoter to drive expression of the reverse tetracycline‐controlled transactivator (rtTA). The second transgene uses a tetracycline responsive promoter to drive the expression of Cre recombinase. We monitored transgene expression in these mice by crossing them with ROSA26 loxP‐LacZ reporter mice, which express β‐galactosidase when activated by Cre. We find that the expression of this transgene is only detectable within skeletal muscle and that Cre expression in the absence of tetracycline is negligible. Cre is readily induced in this model with tetracycline analogs at a range of embryonic and postnatal ages and in a pattern consistent with other HSA transgenic mice. This mouse improves upon existing transgenic mice in which skeletal muscle Cre is expressed throughout development by allowing Cre expression to begin at later developmental stages. This temporal control of transgene expression has several applications, including overcoming embryonic or perinatal lethality due to transgene expression. This mouse is especially suited for studies of steroid hormone action, as it uses tetracycline, rather than tamoxifen, to activate Cre expression. In summary, we find that this transgenic induction system is suitable for studies of gene function in the context of hormonal regulation of skeletal muscle or interactions between muscle and motoneurons in mice. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

19.
DNA sequences homologous to single-copy genes were labelled with biotinylated dUTP or digoxygenin-labelled dUTP and hybridized to chromosome spreads. The hybridization signals were visualized with fluorescent avidin- or antibody-conjugates. This method allowed the detection of DNA targets on metaphase chromosomes as small as 1.4 kb. The hybridization signals were identified as fluorescent spots on both sister chromatids. Using an 18S rDNA probe as marker to identify chromosomes II and III it was possible to assign single-copy genes to these chromosomes. In the line V30 the endogenous chalcone synthase gene (chsA) was mapped at the distal end of the short arm of chromosome 5. The cDNA probe for this single-copy gene was 1.4 kb. In contrast, in the lines Mitchell and V26 chsA was localized at the distal end of the long arm of chromosome 3, suggesting that a chromosomal rearrangement had taken place. In a transformed Petunia uidA, transgenes were detected using a 2.7 kb probe. One transgene was mapped on one of the homologues of chromosome II proximal to the ribosomal genes. This homologue could be distinguished from the other by having the ribosomal genes at the distal end of the long arm. Using multicolour fluorescence in situ hybridization it was shown that it is possible to detect the endogenous chsA genes and both transgenes simultaneously.  相似文献   

20.
This study investigated fertility selection on a flower petal pigmentation polymorphism in Clarkia gracilis ssp. sonomensis. Natural populations are typically composed of nearly 100% spotted-petal plants, although rare populations contain a majority of unspotted plants. I compared fitness values for the two morphs using a simple fertility model to estimate selection for experimental arrays of plants placed into existing populations of different phenotypic frequencies. Both male and female reproductive success were estimated as well as the pattern of mating among phenotypes. Although the separate fitness components varied from no differences to a strong advantage for spotted plants, for every situation the selection calculations predicted an increase in the frequency of the spotted allele. Pollinator behavior and postpollination mechanisms may be responsible for the fitness differences. The apparent inability of the unspotted allele to spread though most natural populations is consistent with its selective disadvantage in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号