首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mosquitocidal crystals of Bacillus thuringiensis subsp. fukuokaensis were isolated and bioassayed against fourth-instar larvae of two mosquito species. The 50% lethal concentration values of the crystals to Aedes aegypti and Culex quinquefasciatus were 4.1 and 2.9 micrograms/ml, respectively. In addition, the solubilized crystals had hemolytic activity; 50 micrograms/ml was the lowest detectable level. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that the crystals consisted of polypeptides of 90, 86, 82, 72, 50, 48, 37, and 27 kDa. When the solubilized inclusion was treated with C. quinquefasciatus midgut brush border membrane vesicles or Manduca sexta gut juice, only one major protein was detected. This protein retained mosquitocidal activity but had no detectable hemolytic activity. Immunological analysis of this subspecies and the subspecies israelensis, kyushuensis and darmstadiensis by using polyclonal antisera raised against the whole-crystal protein of B. thuringiensis subsp. fukuokaensis revealed that the proteins in subsp. fukuokaensis are distinct from proteins in the other subspecies because little cross-reaction was observed. Analysis of the plasmid pattern showed that the crystal protein genes are located on a plasmid of 130 MDa. Analysis of plasmid and chromosomal DNA from subsp. fukuokaensis showed little homology to the 72-kDa toxin gene (PG-14) of B. thuringiensis subsp. morrisoni. However, some of the proteins of B. thuringiensis subsp. fukuokaensis are homologous to other B. thuringiensis toxins because N-terminal amino acid analysis revealed that the 90-kDa protein is encoded by a cryIV gene type.  相似文献   

2.
H K Lee  S S Gill 《Applied microbiology》1997,63(12):4664-4670
A novel mosquitocidal protein gene, cry20Aa, was cloned from Bacillus thuringiensis subsp. fukuokaensis (H-3a: 3d: 3e). The gene product, Cry20Aa, was naturally truncated and had a molecular mass of 86,138 Da. The Cry20Aa protein possessed five conserved sequence blocks, as do most other insecticidal Cry toxins. However, an amino acid comparison of Cry20Aa with other mosquitocidal toxins, including Cry4A, Cry4B, Cry10A, Cry11A, and Cry11B, demonstrated that Cry20Aa was quite different from other toxins except for the conserved blocks. The N terminus of Cry20Aa was, however, homologous to the N termini of Cry4A and Cry10A. Interestingly, an inverted repeat (IR1) sequence in the open reading frame of the cry20Aa gene caused incomplete expression of Cry20Aa. When this internal IR1 sequence was altered with no change of amino acid sequence, acrystalliferous B. thuringiensis cells transformed with cry20Aa gene dramatically produced crystal inclusions. However, the intact 86-kDa Cry20Aa protein is highly labile, and it is rapidly degraded to polypeptides of 56 and 43 kDa. To increase expression of the cry20Aa gene, the p20 chaperonelike protein and the cyt1Aa promoter were utilized. While p20 did not increase Cry20Aa expression or stability, chimeric constructs in which the cry20Aa gene was under control of the cyt1Aa promoter overexpressed the Cry20Aa protein in acrystalliferous B. thuringiensis. The expressed Cry20Aa protein showed larvicidal activity against Aedes aegypti and Culex quinquefasciatus. However, the mosquitocidal activity was low, probably due to rapid proteolysis to inactive 56- and 43-kDa proteins.  相似文献   

3.
Bacillus thuringiensis NTB-1 isolated from soil samples in Korea produces ovoidal parasporal inclusions with proteins of approximately 24–40 kDa in size. Although serological study indicated that the isolate has a flagella (H) antigen identical with subsp. israelensis , it seemed to be non-insecticidal against Lepidoptera and Coleoptera as well as Diptera. To investigate the activity of non-insecticidal B. thuringiensis transformed with insecticidal crystal protein genes, cryIVD and cytA genes of B. thuringiensis subsp. morrisoni PG-14, highly toxic to mosquito larvae, were introduced into the isolate NTB-1. The expression of mosquitocidal crystal protein genes in NTB-1 was characterized by SDS–PAGE analysis and electron microscopy. The results showed that crystalline inclusions of host, CryIVD and CytA were stably expressed in the transformant. However, the mosquitocidal activity of transformant was similar to that of B. thuringiensis subsp. kurstaki Cry B harbouring cryIVD and cytA genes, demonstrating that a synergistic effect by an interaction of both introduced insecticidal and resident non-insecticidal crystal proteins was not observed.  相似文献   

4.
The cytolytic and mosquitocidal proteins of Bacillus thuringiensis subsp. israelensis were isolated from parasporal crystals and subsequently separated from each other. The proteins were separated by gel filtration chromatography and their molecular weights were estimated by both gel filtration chromatography and SDS-polyacrylamide gel electrophoresis. The apparent molecular weights of the mosquitocidal protein and the cytolytic protein were estimated to be 65,000 daltons and 28,000 daltons, respectively.  相似文献   

5.
Two proteins from parasporal crystals of Bacillus thuringiensis subsp. israelensis were purified to electrophoretic homogeneity by gel filtration and anion-exchange chromatography. The larger of the two proteins (molecular weight, 68,000) was not cytolytic, whereas the smaller protein (molecular weight, 28,000) was highly cytolytic when assayed against rat erythrocytes. When these proteins were assayed against larvae of the yellow fever mosquito, Aedes aegypti, the larger protein was at least 100-fold more toxic than the smaller protein. Although proteolytic activity was not detected in solubilized crystals nor in purified protein preparations, the toxin (molecular weight, 68,000) was readily degraded to smaller, nontoxic molecules, even when maintained at 4 degrees C. Mixtures of the two purified proteins were significantly more toxic to mosquito larvae than was either protein alone. Thus, it is likely that both the mosquitocidal and the cytolytic protein play roles in the overall insecticidal action of the parasporal crystal produced by this bacterium.  相似文献   

6.
杀蚊苏云金芽孢杆菌及其晶体蛋白研究进展   总被引:3,自引:0,他引:3  
自从发现苏云金芽孢杆菌Bacillusthuringiensis(Bt)具有杀蚊活性以来,目前已发现多种Bt亚种或血清型对蚊虫具有杀虫活性,同时也发现了一些新的杀蚊晶体蛋白。在对杀蚊晶体蛋白的分子结构进行研究的基础上,对其的作用机理有了一定的了解。近年来利用DNA重组技术显著提高杀蚊晶体蛋白的合成和将不同菌种的杀蚊晶体蛋白进行联合表达,为有效控制蚊虫危害展示广阔前景。  相似文献   

7.
J M Hurley  L A Bulla  Jr    R E Andrews  Jr 《Applied microbiology》1987,53(6):1316-1321
Two proteins from parasporal crystals of Bacillus thuringiensis subsp. israelensis were purified to electrophoretic homogeneity by gel filtration and anion-exchange chromatography. The larger of the two proteins (molecular weight, 68,000) was not cytolytic, whereas the smaller protein (molecular weight, 28,000) was highly cytolytic when assayed against rat erythrocytes. When these proteins were assayed against larvae of the yellow fever mosquito, Aedes aegypti, the larger protein was at least 100-fold more toxic than the smaller protein. Although proteolytic activity was not detected in solubilized crystals nor in purified protein preparations, the toxin (molecular weight, 68,000) was readily degraded to smaller, nontoxic molecules, even when maintained at 4 degrees C. Mixtures of the two purified proteins were significantly more toxic to mosquito larvae than was either protein alone. Thus, it is likely that both the mosquitocidal and the cytolytic protein play roles in the overall insecticidal action of the parasporal crystal produced by this bacterium.  相似文献   

8.
9.
A mosquitocidal toxin gene, cloned from Bacillus thuringiensis subsp. israelensis, was introduced into mutant crystal-negative B. thuringiensis subsp. israelensis cells. Partial toxicity to mosquitos was restored. The 58-kilodalton cloned gene product is a minor protein component of B. thuringiensis subsp. israelensis crystals and is structurally related to a major, 135-kilodalton crystal toxin.  相似文献   

10.
A mosquitocidal toxin gene, cloned from Bacillus thuringiensis subsp. israelensis, was introduced into mutant crystal-negative B. thuringiensis subsp. israelensis cells. Partial toxicity to mosquitos was restored. The 58-kilodalton cloned gene product is a minor protein component of B. thuringiensis subsp. israelensis crystals and is structurally related to a major, 135-kilodalton crystal toxin.  相似文献   

11.
A 25,000-dalton cytolytic protein was isolated from the parasporal crystal ofBacillus thuringiensis subsp.israelensis. Hemolytic activity of this protein decreased with increasing pHs and was totally inhibited at pH 10.0. No mosquito larvacidal activity was observed with this protein either in the solubilized form or when the protein was adsorbed to latex beads.  相似文献   

12.
13.
Abstract A glycine-histidine tag (Gly3His6) was added to the C-terminus of a fusion protein consisting of the cholera toxin B-subunit (CtxB) and the IgA protease β-domain (Iga β). The aim was to facilitate single-step purification and to create a suitable tool for kinetic and structural studies on Iga β-driven protein translocation across the outer membrane of Gram-negative bacteria. We demonstrate that the glycine-histidine tag does not interfere with the assembly of Iga β in the outer membrane and that the translocator function of the modified Iga β is maintained. The applicability of the new construct for the dissection of the Iga β mediated translocation process and general aspects of C-terminal histidine tagging of outer membrane proteins are discussed.  相似文献   

14.
Insecticidal crystal proteins of Bacillus thuringiensis.   总被引:148,自引:2,他引:148       下载免费PDF全文
  相似文献   

15.
16.
Two recombinant plasmid pFZ1 and pFZ2 containing Bti 130kDa mosquitocidal protein gene in opposite insertion orientation were constructed. The expression of 130kDa mosquitocidal protein of Bti in Bacillus subtilis was confirmed by western blotting. The mosquito-larvicidal activity against the larvae of Aedes albopictus was shown by the bioassay.  相似文献   

17.
A cytolytic toxin gene encoding a 30.1-kDa Cyt2Bb1 toxin protein from B. thuringiensis subsp. jegathasan was cloned employing a limited-growth PCR screening method with forward and reverse oligonucleotide primers designed from N-terminal amino acid sequences of native and trypsin-cleaved protein, respectively. The expressed protein showed little cross-reactivity to the antibody raised against the Cyt1Aa protein. Unlike Cyt1Aa and Cyt2Aa expression, there was little or no visible crystal inclusion formation under microscopic observation. The amino acid sequence alignment indicated 31 and 66% identity to Cyt1Aa and Cyt2Aa, respectively. The sequence alignment for five known cytolytic proteins indicated three highly conserved regions, two in the loop regions between alpha-helices and beta-sheets and one in the loop region between beta-sheets 5 and 6. beta-Blocks 4 to 7 are also conserved, not only structurally but also among the amino acids in the hydrophobic faces. Mosquitocidal activity assays indicated that the Cyt2Bb toxin had less toxicity than Cyt1Aa and had about 600-times-lower toxicity than the wild-type whole toxin crystal. However, both the Cyt2Bb and the Cyt1Aa toxin showed comparable levels of hemolytic activity.  相似文献   

18.
A 3.7-kilobase (kb) XbaI fragment harboring the cryIVB gene (L. Thorne, F. Garduno, T. Thompson, D. Decker, M. A. Zounes, M. Wild, A. M. Walfield, and T. J. Pollock, J. Bacteriol. 166:801-811, 1986) which encoded a 130-kilodalton (kDa) mosquitocidal toxin from a 110-kb plasmid of Bacillus thuringiensis subsp. israelensis 4Q2-72 was cloned into pUC12 and transformed into Escherichia coli. The clone with a recombinant plasmid (designated pBT8) was toxic to Aedes aegypti larvae. The fragment (3.7 kb) was ligated into pBC16 (tetracycline resistant [Tcr]) and transformed by the method of protoplast transformation into Bacillus sphaericus 1593 and 2362, which were highly toxic to Anopheles and Culex mosquito larvae but less toxic to Aedes larvae. After cell regeneration on regeneration medium, the Tcr plasmids from transformants (pBTC1) of both strains of B. sphaericus were prepared and analyzed. The 3.7-kb XbaI fragment from the B. thuringiensis subsp. israelensis plasmid was shown to be present by agarose gel electrophoresis and Southern blot hybridization. In addition, B. sphaericus transformants produced a 130-kDa mosquitocidal toxin which was detected by Western (immuno-) blot analysis with antibody prepared against B. thuringiensis subsp. israelensis 130-kDa mosquitocidal toxin. The 50% lethal concentrations of the transformants of strains 1593 and 2362 against A. aegypti larvae were 2.7 X 10(2) and 5.7 X 10(2) cells per ml, respectively. This level of toxicity was comparable to the 50% lethal concentration of B. thuringiensis subsp. israelensis but much higher than that of B. sphaericus 1593 and 2362 (4.7 X 10(4) cells per ml) against A. aegypti larvae.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Both Bacillus sphaericus and Bacillus thuringiensis subsp. israelensis produce mosquitocidal toxins during sporulation and are extensively used in the field for control of mosquito populations. All the known toxins of the latter organism are known to be encoded on a large plasmid, pBtoxis. In an attempt to combine the best properties of the two bacteria, an erythromycin resistance-marked pBtoxis plasmid was transferred to B. sphaericus by a mating technique. The resulting transconjugant bacteria were significantly more toxic to Aedes aegypti mosquitoes and were able to overcome resistance to B. sphaericus in a resistant colony of Culex quinquefasciatus, apparently due to the production of Cry11A but not Cry4A or Cry4B. The stability of the plasmid in the B. sphaericus host was moderate during vegetative growth, but segregational instability was observed, which led to substantial rates of plasmid loss during sporulation.  相似文献   

20.
A 3.7-kilobase (kb) XbaI fragment harboring the cryIVB gene (L. Thorne, F. Garduno, T. Thompson, D. Decker, M. A. Zounes, M. Wild, A. M. Walfield, and T. J. Pollock, J. Bacteriol. 166:801-811, 1986) which encoded a 130-kilodalton (kDa) mosquitocidal toxin from a 110-kb plasmid of Bacillus thuringiensis subsp. israelensis 4Q2-72 was cloned into pUC12 and transformed into Escherichia coli. The clone with a recombinant plasmid (designated pBT8) was toxic to Aedes aegypti larvae. The fragment (3.7 kb) was ligated into pBC16 (tetracycline resistant [Tcr]) and transformed by the method of protoplast transformation into Bacillus sphaericus 1593 and 2362, which were highly toxic to Anopheles and Culex mosquito larvae but less toxic to Aedes larvae. After cell regeneration on regeneration medium, the Tcr plasmids from transformants (pBTC1) of both strains of B. sphaericus were prepared and analyzed. The 3.7-kb XbaI fragment from the B. thuringiensis subsp. israelensis plasmid was shown to be present by agarose gel electrophoresis and Southern blot hybridization. In addition, B. sphaericus transformants produced a 130-kDa mosquitocidal toxin which was detected by Western (immuno-) blot analysis with antibody prepared against B. thuringiensis subsp. israelensis 130-kDa mosquitocidal toxin. The 50% lethal concentrations of the transformants of strains 1593 and 2362 against A. aegypti larvae were 2.7 X 10(2) and 5.7 X 10(2) cells per ml, respectively. This level of toxicity was comparable to the 50% lethal concentration of B. thuringiensis subsp. israelensis but much higher than that of B. sphaericus 1593 and 2362 (4.7 X 10(4) cells per ml) against A. aegypti larvae.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号