首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary This study describes the neural basis of respiratory behavior in a pulmonate mollusc, Lymnaea stagnalis. We describe and identify muscles of the respiratory orifice (pneumostome) and mantle cavity as well as relevant motor neurons innervating these muscles. All of these identified motor neurons are active during spontaneously occurring respiratory behavior and a sporadically occurring synaptic input, termed Input 3, controls the activities of these motor neurons. This spontaneous input can also be recorded from isolated brain preparations, suggesting that the respiratory motor program is generated centrally. However, evidence is also presented that in semi-intact preparations the role of peripheral feedback is important for the initiation and termination of respiratory behavior in Lymnaea.  相似文献   

2.
Morphological and histochemical examination of the blood and connective tissue of the freshwater snail Lymnaea stagnalis injected with various types of foreign particulate materials has shown the existence of free as well as fixed phagocytic cells. The morphology of the fixed phagocytes is described, and the phagocytic system of the snail is compared with that of other molluscan species.  相似文献   

3.
The suction pipet method of intracellular dialysis and voltage clamp of cells has proven extremely useful in analysing the electrical properties of cells too small for the application of conventional microelectrode techniques and in larger cells for studying the effects of alterations in the internal ionic composition. Using neurons of the snail Lymnaea stagnalis, we have analysed several problems involved in the latter application of this technique and present several solutions to them. One major problem centers around the degree of control over the ionic composition of the cytoplasm achieved by altering the pipet solution. Using ion-sensitive microelectrodes during internal dialysis, we found that the efficiency of exchange between pipet and cytoplasm was much poorer for highly buffered ions such as H+ and Ca2+, than for K+, for example. Special precautions are described that can help this situation. The second problem involves the study of the effects of low internal pH on ion-channel properties. We summarize evidence for a specific voltage-dependent hydrogen ion channel, current through which becomes prominent at low internal pH. We analyse how the presence of this heretofore unrecognized current can seriously confuse the results of experiments designed to study the effects of low internal pH on other voltage-dependent currents.  相似文献   

4.
Octopamine is released by the intrinsic OC interneurons in the paired buccal ganglia and serves both as a neurotransmitter and a neuromodulator in the central feeding network of the pond snail Lymnaea stagnalis. The identified B1 buccal motoneuron receives excitatory inputs from the OC interneurons and is more excitable in the presence of 10 microM octopamine in the bath. This modulatory effect of octopamine on the B1 motoneuron was studied using the two electrode voltage clamp method. In normal physiological saline depolarising voltage steps from the holding potential of -80 mV evoke a transient inward current, presumably carried by Na(+) ions. The peak values of this inward current are increased in the presence of 10 microM octopamine in the bath. In contrast, both the transient (IA) and delayed (IK) outward currents are unaffected by octopamine application. Replacing the normal saline with a Na(+)-free bathing solution containing K(+) channel blockers (50 mM TEACl, 4 mM 4AP) revealed the presence of an additional inward current of the B1 neurons, carried by Ca(2+). Octopamine (10 microM) in the bath decreased the amplitudes of this current. These results suggest that the membrane mechanisms which underlie the modulatory effect of octopamine on the B1 motoneuron include selective changes of the Na(+)- and Ca(2+)-channels.  相似文献   

5.
The effects of lead (5 or 10 ppm) on the survival of the freshwater snail Lymnaea stagnalis (L.) collected from lead contaminated or uncontaminated environments were evaluated under controlled laboratory conditions. The animals from the contaminated environment had significantly greater survivability than those from the unpolluted environment to subsequent acute (up to 24 days) exposure to lead. Acute (72 h) exposure to lead inhibited several behavioural activities including locomotion, feeding, tentacle extension and emergence from the shell. Lead bioaccumulated in the snail tissues, especially the buccal mass and stomach. The freshwater snail provides a valuable system for studying the bioaccumulation and development of tolerance to environmental lead. Electronic Publication  相似文献   

6.
All the identified feeding motoneurons of Lymnaea respond to bath or iontophoretically applied acetylcholine (ACh). Three kinds of receptors (one excitatory, one fast inhibitory and one slow inhibitory) were distinguished pharmacologically. The agonist TMA (tetramethylammonium) activates all three receptors, being weakest at the slow inhibitory receptor. PTMA (phenyltrimethylammonium) is less potent than TMA and is ineffective at the slow inhibitory receptor, which is the only receptor sensitive to arecoline. At 0.5 mM the antagonists HMT (hexamethonium) and ATR (atropine) selectively block the excitatory response, while PTMA reduces the response to ACh at all three receptors. d-TC (curare) antagonizes only the fast excitatory and the fast inhibitory responses, but MeXCh (methylxylocholine) blocks the fast excitatory and slow inhibitory responses solely. For each of the feeding motoneurons, the sign of the cholinergic response (excitation or inhibition) is the same as the synaptic input received in the N1 phase of the feeding rhythm.  相似文献   

7.
In the pond snail, Lymnaea stagnalis, the paired buccal ganglia contain 3 octopamine-immunoreactive neurons, which have previously been shown to be part of the feeding network. All 3 OC cells are electrically coupled together and interact with all the known buccal feeding motoneurons, as well as with all the modulatory and central pattern generating interneurons in the buccal ganglia. N1 (protraction) phase neurons: Motoneurons firing in this phase of the feeding cycle receive either single excitatory (depolarising) synaptic inputs (B1, B6 neurons) or a biphasic response (hyperpolarisation followed by depolarisation) (B5, B7 motoneurons). Protraction phase feeding interneurons (SO, N1L, NIM) also receive this biphasic synaptic input after OC stimulation. All of protraction phase interneurons inhibit the OC neurons. N2 (retraction) phase neurons: These motoneurons (B2, B3, B9, B10) and N2 interneurons are hyperpolarised by OC stimulation. N2 interneurons have a variable (probably polysynaptic) effect on the activity of the OC neurons. N3 (swallowing) phase: OC neurons are strongly electrically coupled to both N3 phase (B4, B4cluster, B8) motoneurons and to the N3p interneurons. In case of the interneuronal connection (OC<->N3) the electrical synapse is supplemented by reciprocal chemical inhibition. However, the synaptic connections formed by the OC neurons or N3p interneurons to the other members of the feeding network are not identical. CGC: The cerebral, serotonergic CGC neurons excite the OC cells, but the OC neurons have no effect on the CGC activity. In addition to direct synaptic effects, the OC neurons also evoke long-lasting changes in the activity of feeding neurons. In a silent preparation, OC stimulation may start the feeding pattern, but when fictive feeding is already occurring, OC stimulation decreases the rate of the fictive feeding. Our results suggest that the octopaminergic OC neurons form a sub-population of N3 phase feeding interneurons, different from the previously identified N3p and N3t interneurons. The long-lasting effects of OC neurons suggest that they straddle the boundary between central pattern generator and modulatory neurons.  相似文献   

8.
We examined the mechanical properties of Butterhead and Iceberg lettuce leaves, and the rate at which they were eaten by the pond snail Lymnaea stagnalis. The outer part of Butterhead leaves were less robust than either the inner Butterhead or outer Iceberg leaves (Young’s modulus 2.8, 5.2, 7.7 MPa respectively; ultimate tensile stress 0.18, 0.34 0.51 MPa) which were also thicker. Snails ingested inner Butterhead and Iceberg strips more slowly (36 and 32%) than outer Butterhead. This was not due to differences in latency to first bite or biting rate. Rather, the drop was due to a decrease in the proportion of successful bites (inner Butterhead 84%; Iceberg 86%), to a shorter length ingested per bite (inner Butterhead 55%; Iceberg 45%) and to increased handling time (inner Butterhead 30%). We conclude that sensory input from the mechanically more robust lettuce slows the buccal central pattern generator.  相似文献   

9.
10.
11.
Summary Electron micrographs of pore cells of Lymnaea stagnalis suggest that these cells produce and store haemocyanin.  相似文献   

12.
The attachment of the body of the snail Lymnaea stagnalis to the shell was studied by histochemistry and light and electron microscopy. Muscles of the body wall insert into the connective tissue by way of long thin projections of sarcolemma. The muscle cells end under the basement membrane of a specialised area of the epidermis, the adhesive epithelium. The cells of this epithelium are filled with microfilaments and possess characteristic knob-like microvilli. The epithelium is attached to the shell by way of an adhesive substance containing proteins and mucopolysaccharides.This research was made possible by a grant from the Netherlands Organization for Pure Research (Z.W.O.)  相似文献   

13.
The disturbance of plasma membrane carbohydrates and of lipopolysaccharide (LPS) ligands in relation to cytoskeletal transformations of haemocytes has been investigated after chronic exposure of pond snails (Lymnaea stagnalis) to the peroxidizing toxicant fomesafen. Neither of the two lectins used (concanavalin A and wheat germ agglutinin) showed any binding modification after incubation of the snails in the presence of the toxicant. However, after exposure of the snails to fomesafen, a clear and persistent reduction in LPS labelling of haemocytes occurred. The actin cytoskeleton of the same cells also appeared to be sensitive to the toxicant. The reduction in LPS-binding sites was related to actin staining, leading to the hypothesis that LPS ligands and actin could be similarly modulated by the toxicant. Damaged cells showed non-adherent membrane portions with reduced filopodial extrusions, exhibiting a smooth surface free of microvilli. These changes could lower the spreading and adhesion of the cells and could therefore account for the loss in their phagocytic capabilities.  相似文献   

14.
Temperature dependence of lung respiration, defensive behavior and locomotion of Lymnaea stagnalis snail was studied. At the temperature in the range of 4-6 degrees C the rates of locomotion and respiration were reduced (as compared to control temperature of 14-16 degrees C), whereas defensive reactions were much more intense. Vice versa, the temperature rise to 24-26 degrees C activates respiration and locomotion but inhibits defensive behavior. It is suggested that the observed changes in Lymnaea behavior result from temperature-dependent reactions of neurons underlying these activities.  相似文献   

15.
Variation in and amplification conditions for nine polymorphic microsatellite loci identified from Lymnaea stagnalis, a hermaphroditic pulmonate snail, are described. Eight populations from central Finland were studied, which varied in terms of both observed polymorphism and heterozygosity. The number of alleles at each locus is moderate (two to seven), except for one exceptional locus having 16 alleles, and for which null alleles are possible. There is no evidence for genotypic disequilibrium in the populations for all pairs of loci. Heterozygosity levels are indicative of outcrossing in L. stagnalis, whose mating system will be characterized further using these markers.  相似文献   

16.
InLymnaea stagnalis, oral uptake of ambient medium was studied using51Cr-ethylenediaminetetra-acetic acid. In normal snails Cr-ethylenediaminetetra-acetic acid uptake showed two components: a high uptake rate within the first hour followed by moderate uptake proportional with time. The tracer accumulated mainly in the digestive system. All animals showed initial, transient uptake. Moderate uptake proportional with time did not occur in snails in which the buccal ganglia had been extirpated, in which both the buccal ganglia had been extirpated and the oesophagus was sectioned, or in snails provided with an oesophageal fistula. These snails did not accumulate tracer in the intestinal system. This type of tracer accumulation clearly represented oral ingestion of surrounding water. The oral water ingestion rate ranged from 8 to 12 μl·h−1·g−1. Assuming complete absorption, this accounts for 20–30% of the urine production rate. At low external concentrations the contribution of oral water ingestion to Na+ balance is negligible. However, its importance will grow with increasing external concentrations and becomes a major factor at higher concentrations. The ingestion rate increased almost sixfold when starving snails were allowed to feed. It is suggested that oral water ingestion is a consequence of making bite cycles and swallowing.  相似文献   

17.
Nicotinamide-adenine-dinucleotide-phosphate-diaphorase (NADPH-d) histochemistry has been applied in the present study to determine the distribution of putative nitric oxide (nitric oxide synthase)-producing cells during embryonic and early postembryonic development in the pond snail, Lymnaea stagnalis L., with special reference to the nervous system. The first NADPH-d-positive structures appear as early as 18% of development (E18, trochophore stage) and correspond to the pair of protonephridia. These structures later show disintegration, although after metamorphosis (E26=75%) staining of their individually spreading cells can be observed until hatching. Peripheral sensory neurons in the foot, mantle edge and lips, and their afferents projecting to the central nervous system reveal NADPH-d activity in the postmetamorphosis period (E25–E27=E60%–E80%) of embryogenesis. After hatching (P1–P3), a number of stained sensory cells appear in the pharynx and esophagus. Some NADPH-d positive neuronal perikarya occur in the pedal and pleural ganglia, and a few weakly stained cells in the cerebral and buccal ganglia of juvenile snails. At the same time, a continuous bundle of reactive fibers is formed in the neuropil both through and through around the circumesophageal ganglion ring. The localization of NADPH-d activity in the developing nervous system of Lymnaea suggests that nitric oxide participates mainly in sensory processes. However, its role in specific intraganglionic integrative events cannot be excluded following embryonic metamorphosis.  相似文献   

18.
The osphradium of molluscs is assumed to be a sensory organ. The present investigation in Lymnaea stagnalis has established two ultrastructurally different types of dendrites in the sensory epithelium. Cells immunoreactive to leucine-enkephalin and FMRFamide send processes to the sensory epithelium. These neurons of the osphradial ganglion are thus considered to be part of the sensory system, as are methionine-enkephalin-immunoreactive cells in the mantle wall in the vicinity of the osphradium. The complexity of the osphradial ganglion is further demonstrated by serotonin-immunoreactive neurons innervating the muscular coat around the osphradial canal and methionine-enkephalin-immunoreactive cells sending projections to the central nervous system.  相似文献   

19.
The feeding activity of the pond snail Lymnaea stagnalis was stimulated by depolarization of a modulatory interneuron (SO) or of a N1 pattern-generating interneuron. The cholinergic antagonists phenyltrimethylammonium (PTMA), methylxylocholine (MeXCh), hexamethonium (HMT) and atropine (ATR) were applied at 0.5 mM in the bath and their effects on the rhythmic feeding pattern were monitored. Each of the antagonists slowed or blocked the feeding rhythm. The block was due to interference in the pattern generating network, not to disturbance of modulatory inputs. The experimental results favour a model in which the alternation of protraction (N1) and retraction (N2) phases occurs by recurrent inhibition. The results would be more difficult to explain on the reciprocal inhibition model. When all the N1 output was blocked, the N1 neurons fired rhythmic bursts endogenously.  相似文献   

20.
It is well known that most rhythm-generating neuronal ensembles are multifunctional and can generate different motor rhythms in different contexts. This implies that coordination of multifunctional networks must also be flexible or multistable. Coordination of radula movements and gut contractions was studied in semi-intact preparations of L. stagnalis using video registration and an event recorder. Several context-dependent stable variants of radula-gut coordination were detected. Our data suggest that this preparation is a promising model for studying mechanisms of multistable motor rhythm coordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号