首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three assessment methods, material flow analysis (MFA), life cycle analysis (LCA), and multiattribute utility theory (MAUT) are systematically combined for supporting the choice of best end‐of‐life scenarios for polyethylene terephthalate (PET) waste in a municipality of a developing country. MFA analyzes the material and energy balance of a firm, a region, or a nation, identifying the most relevant processes; LCA evaluates multiple environmental impacts of a product or a service from cradle to grave; and MAUT allows for inclusion of other aspects along with the ecological ones in the assessment. We first systematically coupled MFA and LCA by defining “the service offered by the total PET used during one year in the region” as the functional unit. Inventory and impacts were calculated by multiplying MFA flows with LCA impacts per kilogram. We used MAUT to include social and economic aspects in the assessment. To integrate the subjective point of view of stakeholders in the MAUT, we normalized the environmental, social, and economic variables with respect to the magnitude of overall impacts or benefits in the country. The results show large benefits for recycling scenarios from all points of view and also provide information about waste treatment optimization. The combination of the three assessment methods offers a powerful integrative assessment of impacts and benefits. Further research should focus on data collection methods to easily determine relevant material flows. LCA impact factors specific to Colombia should be developed, as well as more reliable social indicators.  相似文献   

2.

Purpose

Nowadays, the intensive use of natural resources in order to satisfy the increasing energy demand suggests a threat to the implementation of the principles of sustainable development. The present study attempts to approach thermodynamically the depletion of natural resources in the methodological framework and the principles of life cycle assessment (LCA).

Methods

An environmental decision support tool is studied, the exergetic life cycle assessment (ELCA). It arises from the convergence of the LCA and exergy analysis (EA) methodologies and attempts to identify the exergetic parameters that are related to the life cycle of the examined system or process. The ELCA methodology, beside the fact that it locates the system parts which involve greater exergy losses, examines the depletion of natural resources (biotic and abiotic) and the sustainable prospective of the examined system or process, under the scope of exergy. In order to obtain concrete results, the ELCA methodology is applied to a large-scale, grid-connected, photovoltaic (PV) system with energy storage that is designed to entirely electrify the Greek island of Nisyros.

Results and discussion

Four discerned cases were studied that reflect the present state and the future development of the PV technology. The exergy flows and balance for the life cycle of the PV system, as they were formed in the ELCA study, showed that the incoming exergy (solar radiation, energy sources, and materials) is not efficiently utilized. The greater exergy losses appear at the stage of the operation of the PV installation. Due to the fact that contribution of the renewable exergy (solar radiation) to the formation of the total incoming exergy of Life Cycle is significant, it emerges that satisfaction of electric power needs with a PV system appears to be exergetic sustainable. The increase of the Life Cycle exergetic efficiency supported by the future technological scenario in contrast to present scenarios emerges from the increased electricity output of the PV system. Consequently, the increased exergetic efficiency involves decreased irreversibility (exergy losses) of the PV system’s life cycle.

Conclusions

The application of ELCA in electricity production technologies exceeds the proven sustainable prospective of the PV systems; however, it aims to show the essence of the application of ELCA methodology in the environmental decision making process. ELCA can be a useful tool for the support and formation of the environmental decision making that can illustrate in terms of exergetic sustainability the examined energy system or process.  相似文献   

3.
生命周期管理研究述评   总被引:3,自引:2,他引:3  
黄和平 《生态学报》2017,37(13):4587-4598
生命周期管理起源于生命周期思想,它是生命周期思想在实践中的具体应用,是面向可持续生产和消费,对产品、工艺和服务的全生命周期环境影响进行的综合管理,是解决复合生态系统中结构无序、效率不高和代谢冗余的有效途径,是基于生命周期评价原则与框架的一种环境管理手段或环境管理体系。全面回顾了生命周期管理的起源与内涵,阐述了生命周期管理与生命周期评价的区别与联系,梳理了生命周期管理与环境管理体系的关系。对生命周期管理在产品、企业、行业及城市等层次上的具体应用进行了总结与述评,并对其今后需深入研究的方向进行了展望。  相似文献   

4.
The life cycle environmental profile of energy‐consuming products, such as air conditioning, is dominated by the products’ use phase. Different user behavior patterns can therefore yield large differences in the results of a cradle‐to‐grave assessment. Although this variation and uncertainty is increasingly recognized, it remains often poorly characterized in life cycle assessment (LCA) studies. Today, pervasive sensing presents the opportunity to collect rich data sets and improve profiling of use‐phase parameters, in turn facilitating quantification and reduction of this uncertainty in LCA. This study examined the case of energy use in building cooling systems, focusing on global warming potential (GWP) as the impact category. In Singapore, building cooling systems or air conditioning consumes up to 37% of national electricity demand. Lack of consideration of variation in use‐phase interaction leads to the oversized designs, wasted energy, and therefore reducible GWP. Using a high‐resolution data set derived from sensor observations, energy use and behavior patterns of single‐office occupants were characterized by probabilistic distributions. The interindividual variability and use‐phase variables were propagated in a stochastic model for the life cycle of air‐conditioning systems and simulated by way of Monte Carlo analysis. Analysis of the generated uncertainties identified plausible reductions in global warming impact through modifying user interaction. Designers concerned about the environmental profile of their products or systems need better representation of the underlying variability in use‐phase data to evaluate the impact. This study suggests that data can be reliably provided and incorporated into the life cycle by proliferation of pervasive sensing, which can only continue to benefit future LCA.  相似文献   

5.
In recent literature, prospective application of life cycle assessment (LCA) at low technology readiness levels (TRL) has gained immense interest for its potential to enable development of emerging technologies with improved environmental performances. However, limited data, uncertain functionality, scale up issues and uncertainties make it very challenging for the standard LCA guidelines to evaluate emerging technologies and requires methodological advances in the current LCA framework. In this paper, we review published literature to identify major methodological challenges and key research efforts to resolve these issues with a focus on recent developments in five major areas: cross‐study comparability, data availability and quality, scale‐up issues, uncertainty and uncertainty communication, and assessment time. We also provide a number of recommendations for future research to support the evaluation of emerging technologies at low technology readiness levels: (a) the development of a consistent framework and reporting methods for LCA of emerging technologies; (b) the integration of other tools with LCA, such as multicriteria decision analysis, risk analysis, technoeconomic analysis; and (c) the development of a data repository for emerging materials, processes, and technologies.  相似文献   

6.
赵薇  孙一桢  张文宇  梁赛 《生态学报》2016,36(22):7208-7216
我国生活垃圾产量大但处理能力不足,产生多种环境危害,对其资源化利用能够缓解环境压力并回收资源。为探讨生活垃圾资源化利用策略,综合生命周期评价与生命周期成本分析方法,建立生态效率模型。以天津市为例,分析和比较焚烧发电、卫生填埋-填埋气发电、与堆肥+卫生填埋3种典型生活垃圾资源化利用情景的生态效率。结果表明,堆肥+卫生填埋情景具有潜在最优生态效率;全球变暖对总环境影响贡献最大,而投资成本对经济影响贡献最大。考虑天津市生活垃圾管理现状,建议鼓励发展生活垃圾干湿组分分离及厨余垃圾堆肥的资源化利用策略。  相似文献   

7.
Holistic understanding of nanotechnology using systems analysis tools is essential for evaluating claims about the potential benefits of this emerging technology. This article presents one of the first assessments of the life cycle energy requirements and environmental impact of carbon nanofibers (CNFs) synthesis. Life cycle inventory data are compiled with data reported in the open literature. The results of the study indicate relatively higher life cycle energy requirements and higher environmental impact of CNFs as compared to traditional materials, like primary aluminum, steel, and polypropylene, on an equal mass basis. Life cycle energy requirements for CNFs from a range of feedstock materials are found to be 13 to 50 times that of primary aluminum on an equal mass basis. Similar trends are observed from the results of process life cycle assessment (LCA), as conveyed by different midpoint and endpoint damage indicators. Savings in life cycle energy consumption and, hence, reductions in environmental burden are envisaged if higher process yields of these fibers can be achieved in continuous operations. Since the comparison of CNFs is performed on an equal mass basis with traditional materials, these results cannot be generalized for CNF‐based nanoproducts. Quantity of use of these engineered nanomaterials and resulting benefits will decide their energy and environmental impact. Nevertheless, the life cycle inventory and the results of the study can be used for evaluating the environmental performance of specific CNF‐based nanoproducts.  相似文献   

8.
The life cycle environmental profile of energy‐consuming products is dominated by the products’ use stage. Variation in real‐world product use can therefore yield large differences in the results of life cycle assessment (LCA). Adequate characterization of input parameters is paramount for uncertainty quantification and has been a challenge to wider adoption of the LCA method. After emphasis in recent years on methodological development, data development has become the primary focus again. Pervasive sensing presents the opportunity to collect rich data sets and improve profiling of use‐stage parameters. Illustrating a data‐driven approach, we examine energy use in domestic cooling systems, focusing on climate change as the impact category. Specific objectives were to examine: (1) how characterization of the use stage by different probability distributions and (2) how characterizing data aggregated at successively higher granularity affects LCA modeling results and the uncertainty in output. Appliance‐level electricity data were sourced from domestic residences for 3 years. Use‐stage variables were propagated in a stochastic model and analyses simulated by Monte Carlo procedure. Although distribution choice did not necessarily significantly impact the estimated output, there were differences in the estimated uncertainty. Characterization of use‐stage power consumption in the model at successively higher data granularity reduced the output uncertainty with diminishing returns. Results therefore justify the collection of high granularity data sets representing the life cycle use stage of high‐energy products. The availability of such data through proliferation of pervasive sensing presents increasing opportunities to better characterize data and increase confidence in results of LCA.  相似文献   

9.

Background, aim, and scope  

The synergistic use of life cycle assessment (LCA) and data envelopment analysis (DEA) is proposed as a new methodological approach to link environmental and socioeconomic assessments of fisheries. Therefore, the goal is to combine LCA and DEA in order to increase the assessment ability of both tools when applied to these fisheries. Specifically, the joint inclusion of economic aspects and the consideration of currently underrepresented environmental impact categories are tackled.  相似文献   

10.
Goal, Scope and Background  This paper is the second part of the publication which is devoted to comparative LCA analysis of the industrial pumps. The previous paper deals with the methodological aspects concerning quality assessment and forms an independent work. This paper uses practically only the methodological suggestions made there. The main aim of the presented study is to make a comparison between the industrial pumps which are based on two different technologies. The Life Cycle Assessment method is used to check whether the differences of the manufacturing processes influence the level of the potential environmental impact during the whole life cycle of the analysed products. Methods  The Life Cycle Assessment is carried out using the Ecoindicator99 method. Additionally, an extensive quality analysis of the LCA study is made (Part I). To make the process of an identification of the data easier and faster, they are assigned to a special data documentation form. To ensure the credibility of the LCA results different methods of interpretation are used. Results and Discussion  The LCA analysis shows clear superiority of the pumps manufactured using modern technology. It seems that this superiority results not only from the differences in the emissions, but also from different characteristics of effectiveness in the usage stage. Thanks to the uncertainty analysis, each LCA result is provided with the range of uncertainty. Conclusions  The LCA results are supported by different techniques of interpretation: the sensitivity-, the contribution-, the comparative-, the discernability- and the uncertainty analysis. There is strong evidence of the superiority of the pumps based on the modern technology. Recommendations and Outlook  The main source of the environmental impact in the case of pumps is the usage stage and the consumption of energy. That is why it should be the main area to improve. The LCA results show that actions taken in the usage stage and energy consumption can lead to a considerable reduction of the environmental impacts.  相似文献   

11.

Background, aim and scope  

In the context of environmental life cycle assessment (LCA), life cycle impact assessment (LCIA) is one of the central issues with respect to modelling and methodological data collection. The thesis described in this paper focusses on the assessment of toxicity-related impacts, and on the collection of normalisation data. A view on the complementary roles of LCA toxicity assessment on the one hand and human and environmental risk assessment (HERA) on the other is presented, and the global, spatially differentiated LCA toxicity assessment model GLOBOX for the assessment of organics and metals is described. Normalisation factors for the year 2000 are calculated on a global as well as on a European level.  相似文献   

12.

Purpose  

This paper describes part of the first detailed environmental life cycle assessment (LCA) of Australian red meat (beef and sheep meat) production. The study was intended to assist the methodological development of life cycle impact assessment by examining the feasibility of new indicators for natural resource management (NRM) issues relevant to soil management in agricultural LCA. This paper is intended to describe the NRM indicators directly related to agricultural soil chemistry.  相似文献   

13.

Purpose

In Poland, coal is the main fuel used for heat production. Innovative clean coal technologies, which include underground coal gasification (UCG), are widely developed. This paper presents the analysis results of life cycle assessment (LCA) and material flow analysis (MFA) of using synthesis gas from UCG for heat production. The paper presents the results of a comparative analysis of MFA and LCA for four variants of heat production, which differed in the choice of gasifying agent and heat production installations.

Methods

Environmental analysis was made based on LCA with ReCiPe Midpoint and ReCiPe Endpoint H/A method, which allowed to analyse of different categories of the environmental impact. LCA was performed based on the ISO 14040 standard using SimaPro 8.0 software with Ecoinvent 3.1 database (Ecoinvent 2014). Umberto NXT Universal software was used to develop MFA for heat production. LCA analyses included hard coal from a Polish mine and synthesis gas obtained in the experimental installations in the Central Mining Institute in Poland.

Results and discussion

MFA performed for technology of utilizing gases from UCG have made it possible to visualize materials and energy flow between different unit processes in the whole technological chain. Moreover, the analyses enabled identification of unit processes with the largest consumption of raw materials, energy and the biggest emissions into the environment. It has been shown that the lowest environmental burden is attributed to the technology, which uses high-pressure chamber with gas turbine in which the synthesis gas from UCG is burned and oxygen was a gasifying agent. Analysis of LCA results showed that the major environmental burden includes greenhouse gas (GHG) emission and the fossil fuels depletion. GHG emission results primarily from the direct emission of CO2 from gas combustion for heat production and electricity consumption used in gasifying agents preparation phase.

Conclusions

In order to increase the environmental efficiency of heat production technology using UCG, the most important activity to be considered is limitation of dust-gas emissions, including primarily CO2 removal process and efficiency increase of the installation, which is reflected in the reduction of coal consumption. It is important to highlight that this is the first attempt of MFA and LCA of heat production from UCG gas. Since no LCA has ever been conducted on the heat production from underground coal gasification, this study is the first work about LCA of the heat production from UCG technology. This is the first approach which contains a whole chain of unconventional heat production including preparation stages of gasifying agents, underground coal gasification, gas purification and heat production.
  相似文献   

14.
Purpose

The social aspects of municipal solid waste management (MSWM) systems are underpinning their sustainability and effectiveness. The assessment of these systems from a life cycle perspective is widespread throughout environmental life cycle assessment (LCA), but few studies have used social life cycle assessment (S-LCA). The present study is an innovative review with the objective to analyse and describe the current level of development of S-LCA applications in MSWM, and to identify the main methodological challenges and best practices, aiming at recommending approaches to harmonise future S-LCA applications in MSWM.

Materials and methods

A systematic review of the literature found 36 relevant scientific articles. These were submitted to bibliometric and content analysis, which includes an analysis of how methodological aspects of the four phases of S-LCA were applied in comparison with best practice and existing guidelines.

Results and discussion

There was a predominance of case studies in developing countries (59%) and evaluation of the stages of collection/transportation, pre-processing (sorting) and landfilling (55%). There were more studies focusing on stakeholders, “workers” and “local communities” and in the impact subcategories “employment”, “working hours”, “health and safety/working conditions”, “community involvement/participation” and “health and safety/living conditions of community”. There was great variability in the application of the method (47% of the studies included methodological developments). However, the 39% based on UNEP guidelines were closer to a methodological consensus.

Conclusion

In general, studies need more detail and clarity in describing the methodological decisions used. Improvements are needed for issues that limit the S-LCA method, including the difficulties of covering the entire life cycle, relating impacts to the functional unit, standardizing impact assessment methods, addressing allocation and data quality issues and interpretation of results and their limitations. Improvements can be achieved by using participatory methods in the selection of categories, subcategories and impact indicators, as well as by clarifying the definition of a product system and detailing “cut-off criteria” of processes/organizations and the impact of these decisions on results.

  相似文献   

15.

Purpose

The purpose of the study was to perform a comparative life cycle assessment of current and future electricity generation systems in the Czech Republic and Poland. The paper also outlines the main sources of environmental impact for the different impact categories for the electricity generation technologies analyzed. The analyses covered the years 2000–2050, and were conducted within the framework of the international programme Interreg V-A Czech Republic-Poland, Microprojects Fund 2014–2020 in the Euroregion Silesia.

Methods

Environmental assessment was done using the life cycle assessment (LCA) and ReCiPe Midpoint and Endpoint methods, which allowed the presentation of different categories of environmental impact and damage. The LCA was based on ISO 14040 and ISO 14044, using SimaPro 8.2.3 software with the Ecoinvent 3.2 database. The analyses cover both the current electricity production structures in the Czech Republic and Poland, and the projected energy production.

Results and discussion

The LCA analyses performed for the energy systems under consideration in the Czech Republic and Poland enabled a comparative analysis of current and forecast energy systems in these countries, as well as identification of the main sources of environmental impact. Comparative analysis of the LCA results showed that current and future electricity generation systems in Poland caused higher environmental impact there, than in the Czech Republic.

Conclusions

The assessment of the life cycle of electricity sources showed that the main determinant of the negative impact on the environment of energy systems in both Poland and the Czech Republic was the consumption of solid fuels, and in particular, the consumption of lignite. It is important to highlight that this is the first attempt of a comparative LCA of electricity production in the Czech Republic and Poland. This is also the first approach that contains analyses of the life cycle assessment of both present and future energy systems. The economic assessment and eco-efficiency of current and future electricity generation systems in European Union countries will be addressed in future research.
  相似文献   

16.
We present a life cycle assessment (LCA) of the operation of Casey Station in Antarctica. The LCA included quantifying material and energy flows, modeling of elementary flows, and subsequent environmental impacts. Environmental impacts were dominated by emissions associated with freight operations and electricity cogeneration. A participatory design approach was used to identify options to reduce environmental impacts, which included improving freight efficiency, reducing the temperature setpoint of the living quarters, and installing alternative energy systems. These options were then assessed using LCA, and have the potential to reduce environmental impacts by between 2% and 19.1%, depending on the environmental indicator.  相似文献   

17.
Life cycle assessment of contaminated sites remediation   总被引:1,自引:0,他引:1  
For the federal state of Baden-Wiirttemberg, Germany, the decision tool “Umweltbilanz von Altlastensanierungsverfahren” has been developed and found suitable for the quantification and evaluation of environmental impacts caused by remediation of contaminated sites. The developed tool complements the remediation toolbox of Baden-Wiirttemberg. The tool includes a streamlined life cycle assessment (LCA) and a synopsis of the LCA results with the results of a risk assessment of the contaminated site. The risk assessment tool is not explained here. The data base for the life cycle inventory includes several techniques used in remedial actions. The life cycle impact assessment utilises 14 impact categories. The method allows comparisons between remedial options for specific contaminated sites. A software tool has been developed to be available in 1999.  相似文献   

18.
- Goal, Scope, Background. As of July 1st, 2006, lead will be banned in most solder pastes used in the electronics industry. This has called for environmental evaluation of alternatives to tin-lead solders. Our life cycle assessment (LCA) has two aims: (i) to compare attributional and consequential LCA methodologies, and (ii) to compare a SnPb solder (62% tin, 36% lead, 2% silver) to a Pb-free solder (95.5% tin, 3.8% silver, 0.7% copper). Methods An attributional LCA model describes the environmental impact of the solder life cycle. Ideally, it should include average data on each unit process within the life cycle. The model does not include unit processes other than those of the life cycle investigated, but significant cut-offs within the life cycle can be avoided through the use of environmentally expanded input-output tables. A consequential LCA model includes unit processes that are significantly affected irrespective of whether they are within or outside the life cycle. Ideally, it should include marginal data on bulk production processes in the background system. Our consequential LCA model includes economic partial equilibrium models of the lead and scrap lead markets. However, both our LCA models are based on data from the literature or from individual production sites. The partial equilibrium models are based on assumptions. The life cycle impact assessment is restricted to global warming potential (GWP). Results and Discussion The attributional LCA demonstrates the obvious fact that the shift from SnPb to Pb-free solder means that lead is more or less eliminated from the solder life cycle. The attributional LCA results also indicate that the Pb-free option contributes 10% more to the GWP than SnPb. Despite the poor quality of the data, the consequential LCA demonstrates that, when lead use is eliminated from the solder life cycle, the effect is partly offset by increased lead use in batteries and other products. This shift can contribute to environmental improvement because lead emissions are likely to be greatly reduced, while batteries can contribute to reducing GWP, thereby offsetting part of the GWP increase in the solder life cycle. Conclusions The shift from SnPb to Pb-free solder is likely to result in reduced lead emissions and increased GWP. Attributional and consequential LCAs yield complementary knowledge on the consequences of this shift in solder pastes. At present, consequential LCA is hampered by the lack of readily available marginal data and the lack of input data to economic partial equilibrium models. However, when the input to a consequential LCA model is in the form of quantitative assumptions based on a semi-qualitative discussion, the model can still generate new knowledge. Recommendations and Outlook Experts on partial equilibrium models should be involved in consequential LCA modeling in order to improve the input data on price elasticity, marginal production, and marginal consumption.  相似文献   

19.
The private sector decision making situations which LCA addresses mustalso eventually take theeconomic consequences of alternative products or product designs into account. However, neither the internal nor external economic aspects of the decisions are within the scope of developed LCA methodology, nor are they properly addressed by existing LCA tools. This traditional separation of life cycle environmental assessment from economic analysis has limited the influence and relevance of LCA for decision-making, and left uncharacterized the important relationships and trade-offs between the economic and life cycle environmental performance of alternative product design decision scenarios. Still standard methods of LCA can and have been tightly, logically, and practically integrated with standard methods for cost accounting, life cycle cost analysis, and scenario-based economic risk modeling. The result is an ability to take both economic and environmental performance — and their tradeoff relationships — into account in product/process design decision making.  相似文献   

20.
The overall reduction of the environmental impact by the use of selective catalytic reduction (SCR) of nitrogen oxide emissions in power plants was determined by strict application of ISO 14040 and ISO/DIS 14041. Special emphasis was placed on the implementation of the total product life cycle (PLC) of ammonium molybdate as a key input material. The environmental impact was generated by application of the life cycle assessment (LCA) concept of “ecoscarcity” and integrated in the life cycle inventory analysis (LCI) of SCR systems. The LCI was used to generate the life cycle impact assessment (LC1A) by use of different quantitative valuation methods. Under consideration of the overall LCIA results and the environmental protection costs of the SCR variants, the Ecological Effectiveness of the SCR alternatives was determined. The results enable plausible conclusions with regard to the ecological advantages of the use of deNOx catalysts in the SCR used in hard-coal fired power plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号