首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The market for electric vehicles is growing rapidly, and there is a large demand for lithium-ion batteries (LIB). Studies have predicted a growth of 600% in LIB demand by 2030. However, the production of LIBs is energy intensive, thus contradicting the goal set by Europe to reduce greenhouse gas (GHG) emissions and become GHG emission free by 2040. Therefore, in this study, it was analyzed how the energy consumption and corresponding GHG emissions from LIB cell production may develop until 2030. Economic, technological, and political measures were considered and applied to market forecasts and to a model of a state-of-the art LIB cell factory. Notably, different scenarios with trend assumptions and above/below-trend assumptions were considered. It could be deduced that, if no measures are taken and if the status quo is extrapolated to the future, by 2030, ∼5.86 Mt CO2-eq will be emitted due to energy consumption from European LIB cell production. However, by applying a combination of economic, technological, and political measures, energy consumption and GHG emissions could be decreased by 46% and 56% by 2030, respectively. Furthermore, it was found that political measures, such as improving the electricity mix, are important but less dominant than improving the production technology and infrastructure. In this study, it could be deduced that, by 2030, through industrialization and application of novel production technologies, the energy consumption and GHG emissions from LIB cell production in Europe can be reduced by 24%.  相似文献   

2.
玉米秸秆基纤维素乙醇生命周期能耗与温室气体排放分析   总被引:2,自引:0,他引:2  
生命周期评价是目前分析产品或工艺的环境负荷唯一标准化工具,利用其生命周期分析方法可以有效地研究纤维素乙醇生命周期能耗与温室气体排放问题。为了定量解释以玉米秸秆为原料的纤维素乙醇的节能和温室气体减排潜力,利用生命周期分析方法对以稀酸预处理、酶水解法生产的玉米秸秆基乙醇进行了生命周期能耗与温室气体排放分析,以汽车行驶1 km为功能单位。结果表明:与汽油相比,纤维素乙醇E100 (100%乙醇) 和E10 (乙醇和汽油体积比=1∶9) 生命周期化石能耗分别减少79.63%和6.25%,温室气体排放分别减少53.98%和6.69%;生物质阶段化石能耗占到总化石能耗68.3%,其中氮肥和柴油的生命周期能耗贡献最大,分别占到生物质阶段的45.78%和33.26%;工厂电力生产过程的生命周期温室气体排放最多,占净温室气体排放量的42.06%,提升技术减少排放是降低净排放的有效措施。  相似文献   

3.
肖雅心  杨建新 《生态学报》2016,36(18):5949-5955
从生命周期角度看,建筑碳足迹与能源和建材生产系统具有密切关系。随着技术的进步和节能政策的推进,中国能源的生产和使用,以及建材生产过程中的环境排放都随着时间在持续降低,这将间接地影响到建筑的环境表现。依据1990—2010年期间每5a的中国能源与建材生命周期清单数据,对北京市20年间住宅建筑系统开展生命周期评价和碳足迹核算,以揭示北京市住宅建筑系统的环境负荷变化特征。结果表明,北京市住宅建筑生命周期碳足迹随时间推移呈现降低趋势,主要来自能源系统和建材生产系统的碳减排贡献。不同结构建筑的碳足迹尽管有差异,但也呈现了相似的下降趋势。从生命周期阶段看,建筑碳足迹主要体现在建筑使用阶段和建材生产阶段。尽管建筑使用阶段的节能对于降低建筑生命周期碳足迹具有重要贡献,但节能在经济成本及环境成本方面而言是有限度的。在可持续的环境政策管理制定中,应从生命周期角度,统筹考虑协调各行业减碳的协调发展。论文同时也验证了在生命周期评价中考虑时间变量将有助于更好地利用生命周期评价结果支持环境可持续管理。结论对于城市规划的政策制定、量化环境表现是有益的。  相似文献   

4.
Recirculating aquaculture systems (RAS) are an alternative technology to tackle the major environmental challenges associated with conventional cage culture systems. In order to systematically assess the environmental performance of RAS farming, it is important to take the whole life cycle into account so as to avoid ad hoc and suboptimal environmental measures. So far, the application of life cycle assessment (LCA) in aquaculture, especially to indoor RAS, is still in progress. This study reports on an LCA of Atlantic salmon harvested at an indoor RAS farm in northern China. Results showed that 1 tonne live‐weight salmon production required 7,509 kWh farm‐level electricity and generated 16.7 tonnes of CO2 equivalent (eq), 106 kg of SO2 eq, 2.4 kg of P eq, and 108 kg of N eq (cradle‐to‐farm gate). In particular, farm‐level electricity use and feed product were identified as primary contributors to eight of nine impact categories assessed (54–95% in total), except the potential marine eutrophication (MEU) impact (dominated by the grow‐out effluents). Among feed ingredients (on a dry‐weight basis), chicken meal (5%) and krill meal (8%) dominated six and three, respectively, of the nine impact categories. Suggested environmental improvement measures for this indoor RAS farm included optimization of stocking density, feeding management, grow‐out effluent treatment, substitution of feed ingredients, and selection of electricity generation sources. In a generic context, this study can contribute to a better understanding of the life cycle environmental impacts of land‐based salmon RAS operations, as well as science‐based communication among stakeholders on more eco‐friendly farmed salmon.  相似文献   

5.
Battery energy storage systems (BESS) are expected to fulfill a crucial role in the renewable energy systems of the future. Within current regulatory frameworks, assessing the sustainability as well as the social risks for BESS should be considered. In this research we conducted a social life cycle assessment (S-LCA) of two BESS: the vanadium redox flow battery (VRFB) and the lithium-ion battery (LIB). The S-LCA was conducted based on the guidelines set by UNEP/SETAC and using the PSILCA v.3 database. It was found that most social risks related to the life cycle of the batteries are associated with the raw material extraction stage, while sectors related to chemicals also entail considerable risks. Workers are the stakeholder group affected most. These results apply to supply chains located in both China and Germany, but risks were lower for similar supply chains in Germany. An LIB with a nickel manganese cobalt oxide cathode is associated with considerably larger risks compared to a LIB with lithium manganese oxide cathode. For a VRFB life cycle with an increased vanadium price, the social risks were higher than those of the VRFB supply chain with a regular vanadium price. Our paper shows that S-LCA through the PSILCA database can provide interesting insights into the potential social risks associated with a certain product's life cycle. Generalizations of the results are not recommended, and one should be careful with assessments for technologies that have not yet matured due to the cost sensitivity of the methodology.  相似文献   

6.
In recent years, liquid biofuels for transport have benefited from significant political support due to their potential role in curbing climate change and reducing our dependence on fossil fuels. They may also participate to rural development by providing new markets for agricultural production. However, the growth of energy crops has raised concerns due to their high consumption of conventional fuels, fertilizers and pesticides, their impacts on ecosystems and their competition for arable land with food crops. Low-input species such as Jatropha curcas , a perennial, inedible crop well adapted to semiarid regions, has received much interest as a new alternative for biofuel production, minimizing adverse effects on the environment and food supply. Here, we used life-cycle assessment to quantify the benefits of J. curcas biofuel production in West Africa in terms of greenhouse gas emissions and fossil energy use, compared with fossil diesel fuel and other biofuels. Biodiesel from J. curcas has a much higher performance than current biofuels, relative to oil-derived diesel fuels. Under West Africa conditions, J. curcas biodiesel allows a 72% saving in greenhouse gas emissions compared with conventional diesel fuel, and its energy yield (the ratio of biodiesel energy output to fossil energy input) is 4.7. J. curcas production studied is eco-compatible for the impacts under consideration and fits into the context of sustainable development.  相似文献   

7.
基于生命周期评价的上海市水稻生产的碳足迹   总被引:12,自引:0,他引:12  
碳足迹是指由企业、组织或个人引起的碳排放的集合。参照PAS2050规范并结合生命周期评价方法对上海市水稻生产进行了碳足迹评估。结果表明:(1)目前上海市水稻生产的碳排放为11.8114 t CO2e/hm2,折合每吨水稻生产周期的碳足迹为1.2321 t CO2e;(2)稻田温室气体排放是水稻生产最主要的碳排放源,每吨水稻生产的总排放量为0.9507 t CO2e,占水稻生产全部碳排放的77.1%,其中甲烷(CH4)又是最主要的温室气体,对稻田温室气体碳排放的贡献率高达96.6%;(3)化学肥料的施用是第二大碳排放源,每吨水稻生产的总排放量为0.2044 t CO2e,占水稻生产总碳排放的16.5%,其中N最高,排放量为0.1159 t CO2e。因此,上海低碳水稻生产的关键在降低稻田甲烷的排放,另外可通过提高氮肥利用效率,减少氮肥施用等方法减少种植过程中碳排放。  相似文献   

8.
Nanomaterials are expected to play an important role in the development of sustainable products. The use of nanomaterials in solar cells has the potential to increase their conversion efficiency. In this study, we performed a life cycle assessment (LCA) for an emerging nanowire‐based solar technology. Two lab‐scale manufacturing routes for the production of nanowire‐based solar cells have been compared—the direct growth of GaInP nanowires on silicon substrate and the growth of InP nanowires on native substrate, peel off, and transfer to silicon substrate. The analysis revealed critical raw materials and processes of the current lab‐scale manufacturing routes such as the use of trifluoromethane (CHF3), gold, and an InP wafer and a stamp, which are used and discarded. The environmental performance of the two production routes under different scenarios has been assessed. The scenarios include the use of an alternative process to reduce the gold requirements—electroplating instead of metallization, recovery of gold, and reuse of the InP wafer and the stamp. A number of suggestions, based on the LCA results—including minimization of the use of gold and further exploration for upscaling of the electroplating process, the increase in the lifetimes of the wafer and the stamp, and the use of fluorine‐free etching materials—have been communicated to the researchers in order to improve the environmental performance of the technology. Finally, the usefulness and limitations of lab‐scale LCA as a tool to guide the sustainable development of emerging technologies are discussed.  相似文献   

9.
Across the energy sector, alternatives to fossil fuels are being developed, in response to the dual drivers of climate change and energy security. For transport, biofuels have the greatest potential to replace fossil fuels in the short‐to medium term. However, the ecological benefits of biofuels and the role that their deployment can play in mitigating climate change are being called into question. Life Cycle Assessment (LCA) is a widely used approach that enables the energy and greenhouse gas (GHG) balance of biofuel production to be calculated. Concerns have nevertheless been raised that published data show widely varying and sometimes contradictory results. This review describes a systematic review of GHG emissions and energy balance data from 44 LCA studies of first‐ and second‐generation biofuels. The information collated was used to identify the dominant sources of GHG emissions and energy requirements in biofuel production and the key sources of variability in published LCA data. Our analysis revealed three distinct sources of variation: (1) ‘real’ variability in parameters e.g. cultivation; (2) ‘methodological’ variability due to the implementation of the LCA method; and (3) ‘uncertainty’ due to parameters rarely included and poorly quantified. There is global interest in developing a sustainability assessment protocol for biofuels. Confidence in the results of such an assessment can only be assured if these areas of uncertainty and variability are addressed. A more defined methodology is necessary in order to allow effective and accurate comparison of results. It is also essential that areas of uncertainty such as impacts on soil carbon stocks and fluxes are included in LCA assessments, and that further research is conducted to enable a robust calculation of impacts under different land‐use change scenarios. Without the inclusion of these parameters, we cannot be certain that biofuels are really delivering GHG savings compared with fossil fuels.  相似文献   

10.
Climate change is expected to impact both the operational and structural performance of infrastructures such as roads, bridges, and buildings. However, most past life cycle assessment (LCA) studies do not consider how the operational/structural performance of infrastructure will be affected by a changing climate. The goal of this research was to develop a framework for integrating climate change impacts into LCA of infrastructure systems. To illustrate this framework, a flexible pavement case study was considered where life‐cycle environmental impacts were compared across a climate change scenario and several time horizons. The Mechanistic‐Empirical Pavement Design Guide (MEPDG) was utilized to capture the structural performance of each pavement performance scenario and performance distresses were used as inputs into a pavement LCA model that considered construction and maintenance/rehabilitation materials and activities, change in relative surface albedo, and impacts due to traffic. The results from the case study suggest that climate change will likely call for adaptive design requirements in the latter half of this century but in the near‐to‐mid term, the international roughness index (IRI) and total rutting degradation profile was very close to the historical climate run. While the inclusion of mechanistic performance models with climate change data as input introduces new uncertainties to infrastructure‐based LCA, sensitivity analyses runs were performed to better understand a comprehensive range of result outcomes. Through further infrastructure cases the framework could be streamlined to better suit specific infrastructures where only the infrastructure components with the greatest sensitivity to climate change are explicitly modeled using mechanistic‐empirical modeling routines.  相似文献   

11.
生命周期管理研究述评   总被引:3,自引:2,他引:3  
黄和平 《生态学报》2017,37(13):4587-4598
生命周期管理起源于生命周期思想,它是生命周期思想在实践中的具体应用,是面向可持续生产和消费,对产品、工艺和服务的全生命周期环境影响进行的综合管理,是解决复合生态系统中结构无序、效率不高和代谢冗余的有效途径,是基于生命周期评价原则与框架的一种环境管理手段或环境管理体系。全面回顾了生命周期管理的起源与内涵,阐述了生命周期管理与生命周期评价的区别与联系,梳理了生命周期管理与环境管理体系的关系。对生命周期管理在产品、企业、行业及城市等层次上的具体应用进行了总结与述评,并对其今后需深入研究的方向进行了展望。  相似文献   

12.
This study investigates the life cycle GHG emissions of jet fuel produced via the hydroprocessed esters and fatty acids (HEFA) pathway from canola grown in western Canada, with a focus on characterizing regional influences on emissions. We examine the effects of geographic variations in soil type, agricultural inputs, farming practices, and direct land use changes on life cycle GHG emissions. We utilize GREET 2016 but replace default feedstock production inputs with geographically representative data for canola production across eight western Canadian regions (representing 99% of Canada's canola production) and replace the default conversion process with data from a novel process model previously developed in ASPEN in our research group wherein oil extraction is integrated with the HEFA‐based fuel production process. Although canola production inputs and yields vary across the regions, resulting life cycle GHG emissions are similar if effects of land use and land management changes (LMC) are not included; 44–48 g CO2e/MJ for the eight regions (45%–50% reduction compared to petroleum jet fuel). Results are considerably more variable, 16–58 g CO2e/MJ, when including effects of land use and LMC directly related to conversion of lands from other uses to canola production (34%–82% reduction compared to petroleum jet fuel). We establish the main sources of emissions in the life cycle of canola jet fuel (N‐fertilizer and related emissions, fuel production), identify that substantially higher emissions may occur when using feedstock sourced from regions where conversion of forested land to cropland had occurred, and identify benefits of less intense tillage practices and increased use of summerfallow land. The methods and findings are relevant in jurisdictions internationally that are incorporating GHG emissions reductions from aviation fuels in a low carbon fuel market or legislating carbon intensity reduction requirements.  相似文献   

13.
We develop an alternative input–output approach and apply it to the determination of key sectors in emissions. This methodology allows us to assess and classify the different productive sectors according to their greenhouse gas emissions and the role that they play in the productive structure, as well as the participation of their output in the total volume of production. In contrast with previous approaches, we do not focus on the responsibility of final demand, but on the responsibility of the total production of each sector. We apply our methodology to the 2014 input–output table for Spain provided by the World Input–Output Database (2016). The results show that the sectors that induce more emissions from other sectors are manufacture of food products, wholesale and retail trade, and construction. Those that are pulled to emit coincide with those that are relevant for their own final demand, being the most important electricity and gas provision, agriculture, and transportation. The classification obtained allows to orient the design of greenhouse gas emission mitigation policies for the different sectors.  相似文献   

14.
Data acquisition to perform LCA is time and capital consuming. There is already international data about environmental aspects in several processes. This study aims to verify the possibility of adapting international data to Brazilian conditions. Therefore, a Life Cycle Inventory was conducted to compare the use of national and international data for steel used in automobiles. This was done in three steps: objective and scope definition, inventory analysis and interpretation. LCI is a simplification of Life Cycle Assessment (LCA) as impact assessment is not taken into account. Even so, LCI takes into account all life cycle stages of a product, that is, from its extraction through its deposition. In this study, three phases of the life cycle were considered: steel manufacturing, automobile use and disposal. In the case studied, the amount of steel evaluated was 263 kg, which would be possible to be replaced by other materials in a 1,300 kg automobile. Resources and energy consumption, atmospheric emissions and solid residues production were taken into account within the analysis done. Results show that automobile use and materials manufacturing are responsible for the bulk of energy and resources consumption. Solid residues occur mainly in the discard phase, due to the low level of recycling. Several differences were also achieved between national and international data, which implies the need of environmental databases development.  相似文献   

15.
When software is used to facilitate life cycle assessments (LCAs), the implicit assumption is that the results obtained are not a function of the choice of software used. LCAs were done in both SimaPro and GaBi for simplified systems of creation and disposal of 1 kilogram each of four basic materials (aluminum, corrugated board, glass, and polyethylene terephthalate) to determine whether there were significant differences in the results. Data files and impact assessment methodologies (Impact 2002, ReCiPe, and TRACI 2) were ostensibly identical (although there were minor variations in the available ReCiPe version between the programs that were investigated). Differences in reported impacts of greater than 20% for at least one of the four materials were found for 9 of the 15 categories in Impact 2002+, 7 of the 18 categories in ReCiPe, and four of the nine categories in TRACI. In some cases, these differences resulted in changes in the relative rankings of the four materials. The causes of the differences for 14 combinations of materials and impact categories were examined by tracing the results back to the life cycle inventory data and the characterization factors in the life cycle impact assessment (LCIA) methods. In all cases examined, a difference in the characterization factors used by the two programs was the cause of the differing results. As a result, when these software programs are used to inform choices, the result can be different conclusions about relative environmental preference that are functions purely of the software implementation of LCIA methods, rather than of the underlying data.  相似文献   

16.
The palm oil industry constantly attempts to increase the sustainability along the entire palm oil value chain. One important strategy is to utilize all co‐products. Oil palm trunks, which become available upon replanting of existing plantations, represent an important and increasing flow of underexploited biomass. In recent years, innovative technologies are emerging to use them for producing furniture or plywood or providing bioenergy. We assessed the life cycle greenhouse gas emissions of such products and the greenhouse gas emission savings due to replaced alternative products. Although challenging material properties result in a relatively high energy demand and related greenhouse gas emissions in the oil palm wood processing, substantial reductions in greenhouse gas emissions can arise from producing furniture or bioenergy from oil palm trunks, especially if the process energy demand is met by the energy recovery from oil palm wood‐processing residues.  相似文献   

17.
The supply of water, food, and energy in our global economy is highly interlinked. Virtual blue water embedded into internationally traded food crops has therefore been extensively researched in recent years. This study focuses on the often neglected energy needed to supply this blue irrigation water. It provides a globally applicable and spatially explicit approach to the watershed level for water source specific quantification of energy consumption and related greenhouse gas (GHG) emissions of irrigation water supply. The approach is applied to Israel's total domestic and imported food crop supply of 105 crops by additionally including import-related transportation energy and emissions. Total energy use and related emissions of domestic crop production were much lower (551 GWh/422 kt CO2-equivalents [CO2e]) than those embedded into crop imports (1639 GWh/649 kt CO2e). Domestic energy and emissions were mainly attributable to the irrigation water supply with artificial water sources (treated domestic wastewater and desalinated water, 84%). Transport accounted for 79% and 66% of virtually imported energy and emissions, respectively. Despite transport, specific GHG emissions (CO2e per ton of crop) were significantly lower for several crops (e.g., olives, almonds, chickpeas) compared to domestic production. This could be attributed to the high share of energy-intensive artificial water supply in combination with higher irrigation water demands in Israel. In the course of an increasing demand for artificial water supply in arid and semi-arid regions, our findings point to the importance of including “energy for water” into comparative environmental assessment of crop supply to support decision-making related to the water–energy–food nexus.  相似文献   

18.
Anaerobic digestion to produce biogas is an important decentralised renewable energy technology. Production varies extensively between different countries and within countries, as biogas production is heavily dependent on local and regional feedstocks. In Germany, distinct regional differences can be observed. Therefore, understanding the kinds of biogas systems operating within a region is crucial to determine their greenhouse gas (GHG) mitigation potential and carbon neutrality. This is the first study to conduct an integrated life cycle assessment of biogas configurations in the landscape (biogas plants and their biomass catchments) for an entire region. RELCA a ‘REgional Life Cycle inventory Assessment’ approach was used to model the GHG mitigation potential of 425 biogas plants in the region of Central Germany (CG), aggregated to nine biogas clusters, based on feedstock mix (e.g. animal manures and energy crops) and installed capacity. GHG emission profiles were generated to compare and to identify the role of GHG credits and size of installed capacity on the mitigation performance of the regional biogas clusters. We found that smaller scaled slurry dominant clusters had significantly better GHG mitigation performance (?0.1 to ?0.2 kg CO2eq kWhel?1), than larger energy crop dominant (ECdom) clusters (0.04–0.16 kg CO2eq kWhel?1), due to lower cultivation emissions and larger credits for avoided slurry storage. Thus, for the CG region larger ECdom clusters should be targeted first, to support GHG mitigation improvements to the overall future electricity supplied by the regional biogas systems. With the addition of GHG credits, the CG region is producing biogas with GHG savings (?0.15 kg CO2eq kWhel?1, interquartile range: 0.095 kg CO2eq kWhel?1). This infers that biogas production, as a waste management strategy for animal manures, could have important ramifications for future policy setting and national inventory accounting.  相似文献   

19.
Life cycle assessment (LCA) has only had limited application in the geotechnical engineering discipline, though it has been widely applied to civil engineering systems such as pavements and roadways. A review of previous geotechnical LCAs showed that most studies have tracked a small set of impact categories, such as energy and global warming potential. Accordingly, currently reported environmental indicators may not effectively or fully capture important environmental impacts and tradeoffs associated with geotechnical systems, including those associated with land and soil resources. This research reviewed previous studies, methods, and models for assessment of land use and soil‐related impacts to understand their applicability to geotechnical LCA. The results of this review show that critical gaps remain in current knowledge and practice. In particular, further development or refinement of environmental indicators, impact categories, and cause–effect pathways is needed as they pertain to geotechnical applications—specifically those related to soil quality, soil functions, and the ecosystem services soils provide. In addition, many existing methods emerge from research on land use and land use change related to other disciplines (e.g., agriculture). For applicability to geotechnical projects, the resolution of many of these methods and resulting indicators need to be downscaled from the landscape/macro scale to the project scale. In the near term, practitioners of geotechnical LCA should begin tracking changes to soil properties and report impacts to land and soil resources qualitatively.  相似文献   

20.
Life cycle assessment of biofuels: Energy and greenhouse gas balances   总被引:1,自引:0,他引:1  
The promotion of biofuels as energy for transportation in the industrialized countries is mainly driven by the perspective of oil depletion, the concerns about energy security and global warming. However due to sustainability constraints, biofuels will replace only 10 to 15% of fossil liquid fuels in the transport sector. Several governments have defined a minimum target of GHG emissions reduction for those biofuels that will be eligible to public incentives, for example a 35% emissions reduction in case of biofuels in Members States of the European Union. This article points out the significant biases in estimating GHG balances of biofuels stemming from modelling choices about system definition and boundaries, functional unit, reference systems and allocation methods. The extent to which these choices influence the results is investigated. After performing a comparison and constructive criticism of various modelling choices, the LCA of wheat-to-bioethanol is used as an illustrative case where bioethanol is blended with gasoline at various percentages (E5, E10 and E85). The performance of these substitution options is evaluated as well. The results show a large difference in the reduction of the GHG emissions with a high sensitivity to the following factors: the method used to allocate the impacts between the co-products, the type of reference systems, the choice of the functional unit and the type of blend. The authors come out with some recommendations for basing the estimation of energy and GHG balances of biofuels on principles such as transparency, consistency and accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号