首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wheat preharvest sprouting (PHS) occurs when seed germinates on the plant before harvest resulting in reduced grain quality. In wheat, PHS susceptibility is correlated with low levels of seed dormancy. A previous mapping of quantitative trait loci (QTL) revealed a major PHS/seed dormancy QTL, QPhs.cnl-2B.1, located on wheat chromosome 2B. A comparative genetic study with the related grass species rice (Oryza sativa L.) and Brachypodium distachyon at the homologous region to the QPhs.cnl-2B.1 interval was used to identify the candidate genes for marker development and subsequent fine mapping. Expressed sequence tags and a comparative mapping were used to design 278 primer pairs, of which 22 produced polymorphic amplicons that mapped to the group 2 chromosomes. Fourteen mapped to chromosome 2B, and ten were located in the QTL interval. A comparative analysis revealed good macrocollinearity between the PHS interval and 3 million base pair (mb) region on rice chromosomes 7 and 3, and a 2.7-mb region on Brachypodium Bd1. The comparative intervals in rice were found to contain three previously identified rice seed dormancy QTL. Further analyses of the interval in rice identified genes that are known to play a role in seed dormancy, including a homologue for the putative Arabidopsis ABA receptor ABAR/GUN5. Additional candidate genes involved in calcium signaling were identified and were placed in a functional protein association network that includes additional proteins critical for ABA signaling and germination. This study provides promising candidate genes for seed dormancy in both wheat and rice as well as excellent molecular markers for further comparative and fine mapping.  相似文献   

3.
4.
Pre-harvest sprouting (PHS) in sorghum is related to the lack of a normal dormancy level during seed development and maturation. Based on previous evidence that seed dormancy in maize is controlled by the vp1 gene, we used a PCR-based approach to isolate two Sorghum bicolor genomic and cDNA clones from two genotypes exhibiting different PHS behaviour and sensitivity to abscisic acid (ABA). The two 699 amino acid predicted protein sequences differ in two residues at positions 341 (Gly or Cys within the repression domain) and 448 (Pro or Ser) and show over 80, 70 and 60% homology to maize, rice and oat VP1 proteins respectively.Expression analysis of the sorghum vp1 gene in the two lines shows a slightly higher level of vp1 mRNA in the embryos susceptible to PHS than in those resistant to PHS during embryogenesis. However, timing of expression was different between these genotypes during this developmental process. Whereas for the former the main peak of expression was observed at 20 days after pollination (DAP), the peak in the latter was found at later developmental stages when seed maturation was almost complete.Under favourable germination conditions and in the presence of fluridone (an inhibitor of ABA biosynthesis), sorghum vp1 mRNA showed to be consistently correlated with sensitivity to ABA but not with ABA content and dormancy.  相似文献   

5.
By means of an RT-PCR approach we isolated a specific tyrosine phosphatase (FsPTP1) induced by abscisic acid (ABA) and correlated with seed dormancy in Fagus sylvatica seeds. To provide genetic evidence of FsPTP1 function in seed dormancy and ABA signal transduction pathway, we overexpressed this gene in Cape Verde Island ecotype of Arabidopsis thaliana, which shows the deepest degree of seed dormancy among Arabidopsis accessions. As a result, 35S:FsPTP1 transgenic seeds showed a reduced dormancy and insensitivity to ABA and osmotic stress conditions accompanied by a reduction in the level of expression of RAB18 and RD29, well-known ABA-responsive genes. Taken together, all these data are consistent with a role of this tyrosine phosphatase as a negative regulator of ABA signaling. In addition, phenotypes of FsPTP1 transgenic plants resemble those observed in ethylene constitutive mutants, accompanied by an increase in the level of expression of a key gene involved in ethylene signaling such as EIN2. All the data presented along the paper suggest that the effect of tyrosine phosphatases in ABA action during the transition from seed dormancy to germination may be through modulation of ethylene signaling.  相似文献   

6.
Resistance to pre-harvest sprouting (PHS) is an important objective for the genetic improvement of many cereal crops, including wheat. Resistance, or susceptibility, to PHS is mainly influenced by seed dormancy, a complex trait. Reduced seed dormancy is the most important aspect of seed germination on a spike prior to harvesting, but it is influenced by various environmental factors including light, temperature and abiotic stresses. The basic genetic framework of seed dormancy depends on the antagonistic action of abscisic acid (ABA) and gibberellic acid (GA) to promote dormancy and germination. Recent studies have revealed a role for epigenetic changes, predominantly histone modifications, in controlling seed dormancy. To investigate the role of DNA methylation in seed dormancy, we explored the role of ARGONAUTE4_9 class genes in seed development and dormancy in wheat. Our results indicate that the two wheat AGO4_9 class genes i.e. AGO802 and AGO804 map to chromosomes 3S and 1S are preferentially expressed in the embryos of developing seeds. Differential expressions of AGO802-B in the embryos of PHS resistant and susceptible varieties also relates with DNA polymorphism in various wheat varieties due to an insertion of a SINE-like element into this gene. DNA methylation patterns of the embryonic tissue from six PHS resistant and susceptible varieties demonstrate a correlation with this polymorphism. These results suggest a possible role for AGO802-B in seed dormancy and PHS resistance through the modulation of DNA methylation.  相似文献   

7.
8.
Pre‐harvest sprouting (PHS) is one of the major problems in cereal production worldwide, which causes significant losses of both yield and quality; however, the molecular mechanism underlying PHS remains largely unknown. Here, we identified a dominant PHS mutant phs9‐D. The corresponding gene PHS9 encodes a higher plant unique CC‐type glutaredoxin and is specifically expressed in the embryo at the late embryogenesis stage, implying that PHS9 plays some roles in the late stage of seed development. Yeast two‐hybrid screening showed that PHS9 could interact with OsGAP, which is an interaction partner of the abscicic acid (ABA) receptor OsRCAR1. PHS9‐ or OsGAP overexpression plants showed reduced ABA sensitivity in seed germination, whereas PHS9 or OsGAP knock‐out mutant plants showed increased ABA sensitivity in seed germination, suggesting that PHS9 and OsGAP acted as negative regulators in ABA signaling during seed germination. Interestingly, the germination of PHS9 and OsGAP overexpression or knock‐out plant seeds was weakly promoted by H2O2, implying that PHS9 and OsGAP could affect reactive oxygen species (ROS) signaling during seed germination. These results indicate that PHS9 plays an important role in the regulation of rice PHS through the integration of ROS signaling and ABA signaling.  相似文献   

9.
EARLY FLOWERING 3 (ELF3), a light zeitnehmer (time-taker) gene, regulates circadian rhythm and photoperiodic flowering in Arabidopsis, rice, and barley. The three orthologs of ELF3 (TaELF3-1AL, TaELF3-1BL, and TaELF3-1DL) have been identified in wheat too, and one gene, TaELF3-1DL, has been associated with heading date. However, the basic characteristics of these three genes and the roles of the other two genes, TaELF3-1BL and, TaELF3-1AL, remain unknown. Therefore, the present study obtained the coding sequences of the three orthologs (TaELF3-1AL, TaELF3-1BL, and TaELF3-1DL) of ELF3 from bread wheat and characterized them and investigated the role of TaELF3-1BL in Arabidopsis. Protein sequence comparison revealed similarities among the three TaELF3 genes of wheat; however, they were different from the Arabidopsis ELF3. Real-time quantitative PCR revealed TaELF3 expression in all wheat tissues tested, with the highest expression in young spikes; the three genes showed rhythmic expression patterns also. Furthermore, the overexpression of the TaELF3-1BL gene in Arabidopsis delayed flowering, indicating their importance in flowering. Subsequent overexpression of TaELF3-1BL in the Arabidopsis ELF3 nonfunctional mutant (elf3 mutant) eliminated its early flowering phenotype, and slightly delayed flowering. The wild-type Arabidopsis overexpressing TaELF3-1BL demonstrated reduced expression levels of flowering-related genes, such as CONSTANS (AtCO), FLOWERING LOCUS T (AtFT), and GIGANTEA (AtGI). Thus, the study characterized the three TaELF3 genes and associated TaELF3-1BL with flowering in Arabidopsis, suggesting a role in regulating flowering in wheat too. These findings provide a basis for further research on TaELF3 functions in wheat.  相似文献   

10.
Wheat pre-harvest sprouting (PHS) can cause significant reduction in yield and end-use quality of wheat grains in many wheat-growing areas worldwide. To identify a quantitative trait locus (QTL) for PHS resistance in wheat, seed dormancy and sprouting of matured spikes were investigated in a population of 162 recombinant inbred lines (RILs) derived from a cross between the white PHS-resistant Chinese landrace Totoumai A and the white PHS-susceptible cultivar Siyang 936. Following screening of 1,125 SSR primers, 236 were found to be polymorphic between parents, and were used to screen the mapping population. Both seed dormancy and PHS of matured spikes were evaluated by the percentage of germinated kernels under controlled moist conditions. Twelve SSR markers associated with both PHS and seed dormancy were located on the long arm of chromosome 4A. One QTL for both seed dormancy and PHS resistance was detected on chromosome 4AL. Two SSR markers, Xbarc 170 and Xgwm 397, are 9.14 cM apart, and flanked the QTL that explained 28.3% of the phenotypic variation for seed dormancy and 30.6% for PHS resistance. This QTL most likely contributed to both long seed dormancy period and enhanced PHS resistance. Therefore, this QTL is most likely responsible for both seed dormancy and PHS resistance. The SSR markers linked to the QTL can be used for marker-assisted selection of PHS-resistant white wheat cultivars. Shi-Bin Cai and Cui-Xia Chen contributed equally to this work.  相似文献   

11.
12.
该研究采用PCR和半定量RT-PCR方法,对乌拉尔图小麦(Triticum urartu)休眠基因Viviparous-1A(Vp-1A)的单倍型进行分析,并通过建立系统进化树,对Vp-1A基因在乌拉尔图小麦、普通小麦和其他近缘种间的系统发育关系进行分析。结果表明:(1)在20份乌拉尔图小麦中共发现4种新等位变异类型,分别命名为TuVp-1Abgi、TuVp-1Adfi、TuVp-1Aefi和TuVp-1Acgh。与普通小麦的TaVp-1Aa(AJ400712)基因相比,这4种单倍型主要是在第3内含子中有多个TTC不同重复,在第2和第5内含子中存在序列的缺失以及SNPs;(2)用ABA处理种子胚后,4种不同单倍型材料的mRNA表达水平发生变化,表明这4种单倍型对ABA敏感性不同;(3)乌拉尔图小麦中Vp-1A基因不同单倍型,在第2、第3和第5内含子中碱基序列的插入和缺失,影响了Vp-1A基因的表达特性及对ABA的敏感性,从而影响种子休眠特性;(4)鉴定和分析发现,乌拉尔图小麦TuVp-1Adfi单倍型可作为小麦穗发芽抗性资源。  相似文献   

13.
Light and abiotic stress both strongly modulate plant growth and development. However, the effect of light‐responsive factors on growth and abiotic stress responses in wheat (Triticum aestivum) is unknown. G–box binding factors (GBFs) are blue light‐specific components, but their function in abiotic stress responses has not been studied. Here we identified a wheat GBF1 gene that mediated both the blue light‐ and abiotic stress‐responsive signaling pathways. TaGBF1 was inducible by blue light, salt and exposure to abscisic acid (ABA). TaGBF1 interacted with a G–box light‐responsive element in vitro and promoted a blue‐light response in wheat and Aradidopsis thaliana. Both TaGBF1 over‐expression in wheat and its heterologous expression in A. thaliana heighten sensitivity to salinity and ABA, but its knockdown in wheat conferred resistance to high salinity and ABA. The expression of AtABI5, a key component of the ABA signaling pathway in A. thaliana, and its homolog Wabi5 in wheat was increased by transgenic expression of TaGBF1. The hypersensitivity to salt and ABA caused by TaGBF1 was not observed in the abi5 mutant background, showing that ABI5 is the mediator in TaGBF1‐induced abiotic stress responses. However, the hypersensitivity to salt conferred by TaGBF1 is not dependent on light. This suggests that TaGBF1 is a common component of blue light‐ and abiotic stress‐responsive signaling pathways.  相似文献   

14.
Pre-harvest sprouting (PHS) is a complex trait controlled by multiple genes with strong interaction between environment and genotype that makes it difficult to select breeding materials by phenotypic assessment. One of the most important genes for pre-harvest sprouting resistance is consistently identified on the long arm of chromosome 4A. The 4AL PHS tolerance gene has therefore been targeted by Australian white-grained wheat breeders. A new robust PCR marker for the PHS QTL on wheat chromosome 4AL based on candidate genes search was developed in this study. The new marker was mapped on 4AL deletion bin 13-0.59-0.66 using 4AL deletion lines derived from Chinese Spring. This marker is located on 4AL between molecular markers Xbarc170 and Xwg622 in the doubled-haploid wheat population Cranbrook × Halberd. It was mapped between molecular markers Xbarc170 and Xgwm269 that have been previously shown to be closely linked to grain dormancy in the doubled haploid wheat population SW95-50213 × Cunningham and was co-located with Xgwm269 in population Janz × AUS1408. This marker offers an additional efficient tool for marker-assisted selection of dormancy for white-grained wheat breeding. Comparative analysis indicated that the wheat chromosome 4AL QTL for seed dormancy and PHS resistance is homologous with the barley QTL on chromosome 5HL controlling seed dormancy and PHS resistance. This marker will facilitate identification of the gene associated with the 4A QTL that controls a major component of grain dormancy and PHS resistance.  相似文献   

15.
Abscisic acid (ABA) sensitivity in embryos is one of the key factors in the seed dormancy of wheat. Many ABA signaling genes have been isolated in Arabidopsis, while only a few wheat homologues have been identified. In the present study, diploid wheat homologues to Arabidopsis ABA signaling genes were identified by in silico analysis, and mapped them using a population of diploid wheat recombinant inbred lines derived from a cross between Triticum monococcum (Tm) and T. boeoticum (Tb). Four diploid wheat homologues, TmVP1, TmABF, TmABI8 and TmERA1 were located on chromosome 3Am and TmERA3 was on the centromere region of chromosome 5Am. In two consecutive year trials, one major QTL on the long arm of 5Am, two minor QTLs on the long arm of 3Am and one minor QTL on the long arm of 4Am were detected. The 5Am QTL explained 20–27% of the phenotypic variations and the other three QTLs each accounted for approximately 10% of the phenotypic variations. Map positions of the loci of TmABF and TmABI8 matched the LOD peaks of the two QTLs on 3Am, indicating that these two homologues are possible candidate genes for seed dormancy QTLs. Moreover, we have found two SNPs result in amino acid substitutions in TmABF between Tb and Tm. Comparison of the marker positions of QTLs for seed dormancy of barley revealed that the largest QTL on 5Am may be orthologous to the barley seed dormancy QTL, SD1, whereas there seems no orthologous QTL to the corresponding barley SD2 locus. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Wheat pre-harvest sprouting (PHS) is an undesired trait, which often reduces yield and downgrades end-use quality of grain. Viviparous-1B (Vp-1B), a regulator gene located on chromosome 3B, has previously been proved to be involved in inducing grain dormancy of wheat. In order to obtain some new or useful alleles associated with PHS tolerance of white-grained wheat, we developed a gene-specific marker (Vp1-b2) to identify allelic variations of Vp-1B using denaturing PAGE in micro-core collections of Chinese wheat and landraces. As a main component observed genetic variation for PHS, seed dormancy evaluated by germination index (GI) was determined at dough-yellow ripening stage in the present study. The results indicated that six alleles of Vp-1B, in our study, were discovered among 276 Chinese wheat varieties. Of these alleles, two variants were validated to be novel alleles and designated as Vp-1Be and Vp-1Bf, respectively. By investigating the association between allelic variations of Vp-1B and seed dormancy, we found allele of Vp-1Ba always inclined to weak seed dormancy and susceptibility to PHS. Up to 62.2% genotypes carrying the allele had high GI value with a range of 0.51–1.00, only 14.4% genotypes had low GI value under 0.30. On the contrary, other variants such as Vp-1Bb, Vp-1Bc, Vp-1Bd, Vp-1Be and Vp-1Bf mostly occurred in varieties with higher PHS tolerance, which average of GI values were 0.204, 0.227, 0.296, 0.256 and 0.186, respectively. In Chinese wheat germplasms, Vp-1Ba and Vp-1Bc showed the most widespread distribution followed by Vp-1Bb; other alleles fell into less used varieties. Our research confirmed rich allelic variation of Vp-1B occurred in micro-core collections of Chinese wheat and landraces, which may be useful for improving PHS tolerance as breeding parents.  相似文献   

17.
Barley is used for food and feed, and brewing. Nondormant seeds are required for malting, but the lack of dormancy can lead to preharvest sprouting (PHS), which is also undesired. Here, we report several new loci that modulate barley seed dormancy and PHS. Using genome‐wide association mapping of 184 spring barley genotypes, we identified four new, highly significant associations on chromosomes 1H, 3H, and 5H previously not associated with barley seed dormancy or PHS. A total of 71 responsible genes were found mostly related to flowering time and hormone signalling. A homolog of the well‐known Arabidopsis Delay of Germination 1 (DOG1) gene was annotated on the barley chromosome 3H. Unexpectedly, DOG1 appears to play only a minor role in barley seed dormancy. However, the gibberellin oxidase gene HvGA20ox1 contributed to dormancy alleviation, and another seven important loci changed significantly during after‐ripening. Furthermore, nitric oxide release correlated negatively with dormancy and shared 27 associations. Origin and growth environment affected seed dormancy and PHS more than did agronomic traits. Days to anthesis and maturity were shorter when seeds were produced under drier conditions, seeds were less dormant, and PHS increased, with a heritability of 0.57–0.80. The results are expected to be useful for crop improvement.  相似文献   

18.
Seed germination or dormancy status is strictly controlled by endogenous phytohormone and exogenous environment signals. Abscisic acid (ABA) is the important phytohormone to suppress seed germination. Ambient high temperature (HT) also suppressed seed germination, or called as secondary seed dormancy, through upregulating ABI5, the essential component of ABA signal pathway. Previous result shows that appropriate nitric oxide (NO) breaks seed dormancy through triggering S-nitrosoglutathion reductase (GSNOR1)-dependent S-nitrosylation modification of ABI5 protein, subsequently inducing the degradation of ABI5. Here we found that HT induced the degradation of GSNOR1 protein and reduced its activity, thus accumulated more reactive nitrogen species (RNS) to damage seeds viability. Furthermore, HT increased the S-nitrosylation modification of GSNOR1 protein, and triggered the degradation of GSNOR1, therefore stabilizing ABI5 to suppress seed germination. Consistently, the ABI5 protein abundance was lower in the transgenic line overexpressing GSNOR1, but higher in the gsnor mutant after HT stress. Genetic analysis showed that GSNOR1 affected seeds germination through ABI5 under HT. Taken together, our data reveals a new mechanism by which HT triggers the degradation of GSNOR1, and thus stabilizing ABI5 to suppress seed germination, such mechanism provides the possibility to enhance seed germination tolerance to HT through genetic modification of GNSOR1.  相似文献   

19.
Seed is vital to the conservation of germplasm and plant biodiversity. Seed dormancy is an adaptive trait in numerous seed‐plant species, enabling plants to survive under stressful conditions. Seed dormancy is mainly controlled by abscisic acid (ABA) and gibberellin (GA) and can be classified as primary and secondary seed dormancy. The primary seed dormancy is induced by maternal ABA. Here we found that AtPER1, a seed‐specific peroxiredoxin, is involved in enhancing primary seed dormancy. Two loss‐of‐function atper1 mutants, atper1‐1 and atper1‐2, displayed suppressed primary seed dormancy accompanied with reduced ABA and increased GA contents in seeds. Furthermore, atper1 mutant seeds were insensitive to abiotic stresses during seed germination. The expression of several ABA catabolism genes (CYP707A1, CYP707A2, and CYP707A3) and GA biosynthesis genes (GA20ox1, GA20ox3, and KAO3) in atper1 mutant seeds was increased compared to wild‐type seeds. The suppressed primary seed dormancy of atper1‐1 was completely reduced by deletion of CYP707A genes. Furthermore, loss‐of‐function of AtPER1 cannot enhance the seed germination ratio of aba2‐1 or ga1‐t, suggesting that AtPER1‐enhanced primary seed dormancy is dependent on ABA and GA. Additionally, the level of reactive oxygen species (ROS) in atper1 mutant seeds was significantly higher than that in wild‐type seeds. Taken together, our results demonstrate that AtPER1 eliminates ROS to suppress ABA catabolism and GA biosynthesis, and thus improves the primary seed dormancy and make the seeds less sensitive to adverse environmental conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号