首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crepidorhopalon perennis is a metallophyte critically endangered by mining activities and currently known from only one site on copper‐rich soils in Katanga (Dem. Rep. Congo). It is closely related to the annual C. tenuis, also a rare metallophyte, but with a broader geographical range. We investigated the variation in morphometric traits and ecological niches (based on edaphic conditions and pollinator assemblages) of C. perennis and C. tenuis, to evaluate the risk of inter‐specific competition, and their potential for hybridization to ascertain if C. perennis might be at risk of genetic swamping by its more widespread congener. We examined whether species were found under sympatric or parapatric settings with opportunity for hybridization (or gene exchange). Such knowledge is essential for implementing restoration management protocols, including the introduction of C. perennis into substitution sites where C. tenuis might be already present. Fourteen morphological characters and 11 soil variables were measured and visiting pollinator species were identified at the site where the two species co‐occur. Our results show that the two species can be distinguished based on their morphological traits, show niche overlap based on edaphic properties, and share the same pollinator assemblage. In addition, no morphologically intermediate individuals could be detected, suggesting no hybridization, and that the two species may be reproductively isolated. We conclude that C. perennis conservation and restoration operations can be realized in substitution sites where C. tenuis may be present, with the need, however, to evaluate the potential effect of sharing a pollinator assemblage on reproductive success of both species.  相似文献   

2.
Shifts in pollination syndromes involve coordinated changes in multiple floral traits. This raises the question of how plants can cope with rapid changes in pollinator availability by the slow process of accumulation of mutations in multiple genes. Here we study the transition from bee to hawkmoth pollination in the genus Petunia. Interspecific crosses followed by single locus introgressions were used to recreate putative intermediate evolutionary stages in the evolution of moth pollination. The effect of the loss/gain of petal color was asymmetric: it had no influence on the established pollinator but enhanced visitation by the new pollinator. Therefore, shifts in pollination syndromes may proceed through intermediate stages of reduced specialization and consequently enhanced reproductive assurance. The loss of petal color in moth‐pollinated Petunia involves null mutations in a single regulatory gene, An2. Such simple genetic changes may be sufficiently rapid and frequent to ensure survival during pollinator failure.  相似文献   

3.
Abstract 1. A major question in the study of mutualism is to understand how mutualists may revert to antagonists that exploit the mutualism (i.e. switch to cheating). In the classic pollination mutualism between yuccas and yucca moths, the cheater moth Tegeticula intermedia is sister to the pollinator moth T. cassandra. These moth species have similar ovipositor morphology, but T. intermedia emerges later, oviposits into fruit rather than flowers, and does not pollinate. 2. We tested if the pollinator, T. cassandra, was pre‐adapted to evolve a cheater lineage by comparing its emergence and oviposition behaviour on yucca fruit to a distantly related pollinator, T. yuccasella, that differs in ovipositor morphology and oviposition behaviour. We predicted that if T. cassandra was pre‐adapted to cheat, then these pollinators would emerge later and be able to oviposit into fruit in contrast to T. yuccasella. 3. Contrary to expectations, a common garden‐rearing experiment demonstrated that emergence of T. cassandra was not significantly delayed relative to T. yuccasella. Moth emergence patterns overlapped broadly. 4. No choice oviposition experiments with female moths demonstrated that both pollinator species attempted to oviposit into fruit, but only T. cassandra was successful. Four out of 84 T. cassandra successfully oviposited into older fruit, whereas zero out of 79 T. yuccasella oviposited into older fruit. The rarity of the cheating behaviour in pollinators, however, meant that no significant difference in oviposition ability was detected. 5. The results suggest that a shift in emergence phenology is likely not a pre‐adaptation to the evolution of cheating, but that the ability to successfully lay eggs into fruit may be. The results also demonstrate that cheating attempts are rare in these pollinator species and, hence, the evolutionary transition rate from pollinator to cheater is likely to be low.  相似文献   

4.
The potential for interspecific genetic exchange was examined by monitoring flowering patterns, pollinator movement, and gene flow among experimental populations of the Texas gourd (Cucurbita texana) and cultivars of Cucurbita pepo. While flowering patterns and pollinator movement tended to maximize self-pollination and local gene exchange, movement of effective pollen exceeded 1,300 m. This movement, mediated by the solitary bee Xenoglossa strenua and monitored by tracking allozyme variants, produced interspecific hybrids in 5% of the progeny from experimental plants. Interspecific gene exchange occurred in either direction with either species serving as staminate or pistillate parent. No obvious constraints to gene flow among plants representing C. texana and distinctive cultivars (vars. ovifera, medullosa, melopepo) of C. pepo were detected. Genetic exchange among different species and cultivars is enhanced by the foraging behavior of Xenoglossa. Multiple visits to either staminate (pollen carryover) or pistillate (multiple pollinations) flowers often result in the deposition of mixed pollen on receptive stigmas. The wild type (C. texana) can donate and receive effective pollen when growing under both weedy and natural conditions. The observed lack of interspecific reproductive isolation supports treatment of cultivars and wild types as a single species and, in conjunction with available data concerning temporal/geographical relationships among bees, squash, gourds, and humans in eastern North America, suggests the possibility of long-term genetic interaction between wild types and domesticates.  相似文献   

5.
1. Mutualisms are relationships of mutual exploitation, in which interacting species receive a net benefit from their association. In obligate pollination mutualisms (OPMs), female pollinators move pollen between the flowers of a single plant species and oviposit eggs within the female flowers that they visit. 2. Competition between co‐occurring pollinator species is predicted to increase pollinator virulence, i.e. laying more eggs or consuming more seeds per fruit. Plants involved in OPMs frequently host various non‐pollinating seed parasites and parasitoids that may influence the outcome of the mutualism. Quantifying the prevalence of parasites and parasitoids and competition between pollinators is important for understanding the factors that influence OPM evolutionary stability. 3. This study investigated the pollination mutualism occurring between the leaf flower plant, Breynia oblongifolia, and its co‐pollinating Epicephala moths. A third moth, Herpystis, also occurs in B. oblongifolia fruits as a non‐pollinating seed parasite. 4. Breynia oblongifolia fruits were collected to quantify seed predation and compare seed predation costs between the three moth species. Results showed that the larvae of the two pollinator species consume similar numbers of seeds, and that adults deposit similar numbers of eggs per flower. As such, no evidence of increases in virulent behaviours was detected as a result of competition between co‐pollinators. 5. By contrast, the seed parasite Herpystis consumed more seeds than either pollinator species, and fruit crops with a high proportion of Herpystis had significantly lower net seed production. 6. This work adds to the growing understanding of the ecology and dynamics of plant–pollinator mutualisms.  相似文献   

6.
Pollination of Cyclamen persicum (Primulaceae) was studied in two wild populations in Israel. Buzz-pollination proved to be extremely rare, and performed by a large Anthophora bee only. The most frequent pollinators were various unspecialized species of thrips (Thysanoptera) and hoverflies (Syrphidae). In the Winter-flowering populations the commonest visitor was a small primitive moth, Micropteris elegans (Micropterigidae, Lepidoptera). These moths feed on pollen, copulate and oviposit within the flowers. From the rarity of buzz-pollination it is concluded that the genus Cyclamen co-evolved with large bees capable of buzz-pollination, but lost its original pollinators for unknown historical reasons. The vacant niche was then open to various unspecialized pollen consumers such as thrips, hoverflies and small solitary bees. While these insects are not specific to C. persicum and seem to play a minor role only, the moth strictly relies upon Cyclamen and seems to be the most efficient pollinator.  相似文献   

7.
Calotropis procera (Ait.) R.Br. (Apocynaceae), an invasive woody milkweed, has expanded its range in northern Australia affecting rangeland and pastoral productivity. While self‐compatibility should enhance the species range expansion, spread of C. procera is limited by the availability of larger wasp and bee species that are able to vector its solid pollinia. Pollination efficiency is thus likely dependent on both pollinator abundance and plant density. Calotropis procera flowers year round in Australia but fruiting is limited to the warm months of the year when pollinators are most abundant, indicating that seasonal regulation of reproduction may be due to pollinator limitation. We examine the propositions that C. procera reproduction is regulated by the interaction between plant population density and pollinator pressure and that low pollinator pressure causes low per capita plant fecundity. All pollinators belonged to Order Hymenoptera and pollinator composition was similar at six of the seven sites. Fruit production per plant (fecundity) was lower above and below intermediate densities (350–550 plants ha?1) of flowering plants with evidence of a weak Allee effect at lower plant density. Pollinator visitation rates per plant were low at high and low plant densities, and greatest at intermediate densities, while pollen supplementation experiments showed that C. procera is pollen limited (Pollen Limitation Indexfruit = 0.9) even at intermediate densities. Pollen limitation caused by low pollinator pressure at low plant densities and pollinator satiation at high plant densities may account for these fruit production trends. Management should be conducted in the colder months when pollinator pressure is low and plants are not reproducing. In addition, where stand eradication cannot be achieved in one attempt, management should reduce flowering plants to below intermediate densities where the fecundity per plant is low.  相似文献   

8.
Comparative analyses of spatial genetic structure of populations of plants and the insects they interact with provide an indication of how gene flow, natural selection and genetic drift may jointly influence the distribution of genetic variation and potential for local co‐adaptation for interacting species. Here, we analysed the spatial scale of genetic structure within and among nine populations of an interacting species pair, the white campion Silene latifolia and the moth Hadena bicruris, along a latitudinal gradient across Northern/Central Europe. This dioecious, short‐lived perennial plant inhabits patchy, often disturbed environments. The moth H. bicruris acts both as its pollinator and specialist seed predator that reproduces by laying eggs in S. latifolia flowers. We used nine microsatellite markers for S. latifolia and eight newly developed markers for H. bicruris. We found high levels of inbreeding in most populations of both plant and pollinator/seed predator. Among populations, significant genetic structure was observed for S. latifolia but not for its pollinator/seed predator, suggesting that despite migration among populations of H. bicruris, pollen is not, or only rarely, carried over between populations, thus maintaining genetic structure among plant populations. There was a weak positive correlation between genetic distances of S. latifolia and H. bicruris. These results indicate that while significant structure of S. latifolia populations creates the potential for differentiation at traits relevant for the interaction with the pollinator/seed predator, substantial gene flow in H. bicruris may counteract this process in at least some populations.  相似文献   

9.
10.
Among plants visited by many pollinator species, the relative contribution of each pollinator to plant reproduction is determined by variation in both pollinator and plant traits. Here we evaluate how pollinator movement among plants, apparent pollen carryover, ovule number, resource limitation of seed set, and pollen output affect variation in contribution of individual pollinator species to seed set in Lithophragma parviflorum (Saxifragaceae), a species visited by a broad spectrum of visitors, including beeflies, bees and a moth species. A previous study demonstrated differences among visitor species in their single-visit pollination efficacy but did not evaluate how differences in visitation patterns and pollen carryover affect pollinator efficacy. Incorporation of differential visitation patterns and pollen carryover effects —commonly cited as potentially important in evaluating pollinator guilds — had minor effects (0–0.6% change) on the estimates of relative contribution based on visit frequency and single-visit efficacy alone. Beeflies visited significantly more flowers per inflorescence than the bees and the moth. Seed set remained virtually constant during the first three visited flowers for beeflies and larger bees, indicating that apparent pollen carryover did not reduce per-visit efficacy of these taxa. In contrast, Greya moth visits showed a decrease in seed set by 55.4% and the smaller bees by 45.4% from first to second flower. The larger carryover effects in smaller bees and Greya were diminished in importance by their small overall contribution to seed set. Three variable plant traits may affect seed set: ovule number, resource limitation on seed maturation, and pollen output. Ovule number per flower declined strongly with later position within inflorescences. Numbers were much higher in first-year greenhouse-grown plants than in field populations, and differences increased during 3 years of study. Mean pollen count by position varied 7-fold among flowers; it paralleled ovule number variation, resulting in a relatively stable pollen:ovule ratio. Resource limitation of seed set increased strongly with later flowering, with seed set in hand-pollinated flowers ranging from 66% in early flowers to 0% in the last two flowers of all plants. Variation in ovule number and resource limitation of seed maturation jointly had a strong effect on the number of seeds per flower. Visitation to early flowers had the potential to cause more seed set than visitation to later flowers. Overall, the most important sources of variation to seed production contribution were differences among pollinators in abundance and absolute efficacy (ovules fertilized on a single visit) and potentially differential phenology among visitor species. These effects are likely to vary among populations and years.  相似文献   

11.
Plants are expected to emit floral scent when their pollinators are most active. In the case of long‐tubed flowers specialised for pollination by crepuscular or nocturnal moths, scent emissions would be expected to peak during dawn. Although this classic idea has existed for decades, it has rarely been tested quantitatively. We investigated the timing of flower visitation, pollination and floral scent emissions in six long‐spurred Satyrium species (Orchidaceae). We observed multiple evening visits by pollinaria‐bearing moths on flowers of all study species, but rarely any diurnal visits. The assemblages of moth pollinators differed among Satyrium species, even those that co‐flowered, and the lengths of moth tongues and floral nectar spurs were strongly correlated, suggesting that the available moth pollinator fauna is partitioned by floral traits. Pollinarium removal occurred more frequently during the night than during the day in four of the six species. Scent emission, however, was only significantly higher at dusk than midday in two species. Analysis of floral volatiles using gas chromatography coupled with mass spectrometry yielded 168 scent compounds, of which 112 were species‐specific. The scent blends emitted by each species occupy discrete clusters in two‐dimensional phenotype space, based on multivariate analysis. We conclude that these long‐spurred Satyrium species are ecologically specialised for moth pollination, yet the timing of their scent emission is not closely correlated with moth pollination activity. Scent composition was also more variable than expected from a group of closely related plants sharing the same pollinator functional group. These findings reveal a need for greater understanding of mechanisms of scent production and their constraints, as well as the underlying reasons for divergent scent chemistry among closely related plants.  相似文献   

12.
Re-evaluating the role of selective abscission in moth/yucca mutualisms   总被引:3,自引:0,他引:3  
Conflicts of interest are common to mutualisms, particularly those derived from exploitative interactions. Conflicts of interest are particularly pronounced in pollination/seed predation mutualisms, such as moth/yucca interactions, where consumption of seeds by larvae of a plant's pollinator will raise the fitness of the pollinator but lower the fitness of the plant. A central question in these mutualisms is, therefore, “what limits seed predation?” If plants with excess flowers selectively abscise flowers containing many eggs, they may reduce seed predation and overall increase their fecundity. If eggs in abscised flowers die, selective abscission may additionally contribute to the limitation or regulation of pollinator populations, thereby decreasing the probability of future overexploitation. We examined the effect of selective abscission in the mutualism between Yucca kanabensis and one of its pollinating moths, Tegeticula altiplanella. Per capita mortality of moth eggs due to abscission was high (95.5%), but did not increase on inflorescences with more ovipositions per flower. Overall mortality was partitioned into two components based upon the proportion of visited flowers abscised (i.e. resource‐limitation) and additional mortality (=selective abscission). Resource‐limitation per se inflicted 93.9% egg mortality, or most of the mortality due to abscission. But, the average number of eggs in fruit was lower than the average number of eggs in flowers, indicating that there was some selectivity of abscission. However, neither source of mortality increased on inflorescences with more ovipositions per visited flower. Egg mortality resulting from selective abscission was not as high as possible, because the yuccas appeared to use oviposition‐damaged ovules as a cue for selective abscission, and there was considerable variation in the relationship between oviposition number and damaged ovules. However, even if yuccas had retained the flowers containing the fewest eggs, selective abscission still would not have been higher on inflorescences with more ovipositions per flower. Considering also that, 1) number of ovipositions is a poor predictor of the number of larvae that hatch and feed on the developing seeds in a fruit and that, 2) there are several moth/yucca interactions in which selective abscission does not occur, we conclude that abscission, and particular selective abscission, may have density‐limiting effects on moth populations, but will fail as general explanations for regulating the dynamics of moth populations.  相似文献   

13.
In animal‐pollinated plants, local adaptation to pollinator behaviour or morphology can restrict gene flow among plant populations; but gene flow may also prevent divergent adaptation. Here, we examine possible effects of gene flow on plant–pollinator trait matching in two varieties of Joshua tree (Agavaceae: Yucca brevifolia). The two varieties differ in strikingly in floral morphology, which matches differences in the morphology of their pollinators. However, this codivergence is not present at a smaller scale: within the two varieties of Joshua tree, variation in floral morphology between demes is not correlated with differences in moth morphology. We use population genetic data for Joshua tree and its pollinators to test the hypotheses that gene flow between Joshua tree populations is structured by pollinator specificity, and that gene flow within the divergent plant–pollinator associations ‘swamps’ fine‐scale coadaptation. Our data show that Joshua tree populations are structured by pollinator association, but the two tree varieties are only weakly isolated – meaning that their phenotypic differences are maintained in the face of significant gene flow. Coalescent analysis of gene flow between the two Joshua tree types suggests that it may be shaped by asymmetric pollinator specificity, which has been observed in a narrow zone of sympatry. Finally, we find evidence suggesting that gene flow among Joshua tree sites may shape floral morphology within one plant–pollinator association, but not the other.  相似文献   

14.
Althoff DM  Segraves KA  Sparks JP 《Oecologia》2004,140(2):321-327
Yucca moths are most well known for their obligate pollination mutualism with yuccas, where pollinator moths provide yuccas with pollen and, in exchange, the moth larvae feed on a subset of the developing yucca seeds. The pollinators, however, comprise only two of the three genera of yucca moths. Members of the third genus, Prodoxus, are the bogus yucca moths and are sister to the pollinator moths. Adult Prodoxus lack the specialized mouthparts used for pollination and the larvae feed on plant tissues other than seeds. Prodoxus larvae feed within the same plants as pollinator larvae and have the potential to influence yucca reproductive success directly by drawing resources away from flowers and fruit, or indirectly by modifying the costs of the mutualism with pollinators. We examined the interaction between the scape-feeding bogus yucca moth, Prodoxus decipiens, and one of its yucca hosts, Yucca filamentosa, by comparing female reproductive success of plants with and without moth larvae. We determined reproductive success by measuring a set of common reproductive traits such as flowering characteristics, seed set, and seed germination. In addition, we also quantified the percent total nitrogen in the seeds to determine whether the presence of larvae could potentially reduce seed quality. Flowering characteristics, seed set, and seed germination were not significantly different between plants with and without bogus yucca moth larvae. In contrast, the percent total nitrogen content of seeds was significantly lower in plants with P. decipiens larvae, and nitrogen content was negatively correlated with the number of larvae feeding within the inflorescence scape. Surveys of percent total nitrogen at three time periods during the flowering and fruiting of Y. filamentosa also showed that larval feeding decreased the amount of nitrogen in fruit tissue. Taken together, the results suggest that although P. decipiens influences nitrogen distribution in Y. filamentosa, this physiological effect does not appear to impact the female components of reproductive success.  相似文献   

15.
Impact of pollinator shift on differentiation of floral morphology has attracted the interest of naturalists for many years. A comparative investigation was conducted for determining the pollination characteristics, including pollinator assemblage, floral morphology, flowering phenology, and self‐compatibility, of two closely related Clerodendrum species—insular C. izuinsulare and widespread C. trichotomum. Japanese black swallowtail butterflies were the predominant flower visitors in mainland Japan, whereas diurnal hawk moths were predominantly found on the Izu Islands, a chain of oceanic islands located off the southeastern coast of the main Japanese island of Honshu in the west Pacific Ocean. The corolla tube of C. izuinsulare was longer than that of C. trichotomum, whereas the filaments and petals of C. izuinsulare were shorter than those of C. trichotomum. The flowering season of C. izuinsulare was later than that of C. trichotomum. The self‐compatibility of C. izuinsulare was higher than that of C. trichotomum. These differences might be associated with the low density of Japanese black swallowtail butterflies and dominance of diurnal hawk moths on the Izu Islands.  相似文献   

16.
Coevolution is thought to be especially important in diversification of obligate mutualistic interactions such as the one between yuccas and pollinating yucca moths. We took a three-step approach to examine if plant and pollinator speciation events were likely driven by coevolution. First, we tested whether there has been co-speciation between yuccas and pollinator yucca moths in the genus Tegeticula (Prodoxidae). Second, we tested whether co-speciation also occurred between yuccas and commensalistic yucca moths in the genus Prodoxus (Prodoxidae) in which reciprocal evolutionary change is unlikely. Finally, we examined the current range distributions of yuccas in relationship to pollinator speciation events to determine if plant and moth speciation events likely occurred in sympatry or allopatry. Co-speciation analyses of yuccas with their coexisting Tegeticula pollinator and commensalistic Prodoxus lineages demonstrated phylogenetic congruence between both groups of moths and yuccas, even though moth lineages differ in the type of interaction with yuccas. Furthermore, Yucca species within a lineage occur primarily in allopatry rather than sympatry. We conclude that biogeographic factors are the overriding force in plant and pollinator moth speciation and significant phylogenetic congruence between the moth and plant lineages is likely due to shared biogeography rather than coevolution.  相似文献   

17.
Pollinators of two Cynanchum , five Tylophora , and 16 Vincetoxicum species were observed in 26 populations in Japan. The following pollination systems were observed in 18 species: moth pollination, generalized insect pollination, wasp pollination, dipteran pollination, both dipteran and moth pollination, and autogamy. Principal component analysis based on 13 floral characters indicated that the size of the pollinator tended to increase with sizes of all characters measured. Furthermore, species that have developed interstaminal parts of the corona and concealed stigmatic chambers tend to be pollinated by long-tongued insects. The phylogenetic distribution of pollinator types showed that species belonging to Clade I are pollinated exclusively by Diptera, whereas those of Clade II are pollinated by four insect orders. The most prominent pollinator transition in the Tylophora–Vincetoxicum complex is dipteran to moth pollination. The most common morphological change of the plants from dipteran pollination to moth pollination, or vice versa, is modification of the corolla. In the Tylophora–Vincetoxicum complex, pollination mode shifts are generally accompanied by modifications of the corona and the structure of gynostegium. One hypothesis for the rapid radiation observed in Clade II is that a widely distributed species may have partitioned its distribution in the relatively near past and adapted to various environments, in which the dominant pollinators were different, and that the local races may then have diverged from each other after they were isolated.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 325–341.  相似文献   

18.
Yucca filamentosa and its species-specific pollinator, the yucca moth, Tegeticula yuccasella (Lepidoptera: Prodoxidae), form a relationship that is often cited as a classic example of a coevolved plant-pollinator mutualism. Observations of the moth's behavior have led to predictions that moth dispersal is relatively limited and that, as a consequence, the self-compatible Y. filamentosa should experience relatively high rates of self-fertilization. In contrast, analyses of its mating system indicated that Y. filamentosa was predominantly outcrossed. To better understand effective breeding patterns in Y. filamentosa populations, 10 polymorphic allozyme loci were investigated to analyze the breeding structure of a natural Y. filamentosa population. Analyses revealed that Y. filamentosa is predominantly outcrossed, has multiply sired fruits, and that each fruit was sired by a different set of pollen donors. The effective number of pollen donors per fruit ranged from 1.56 to 3.13, indicating that some correlated mating exists within fruits. Paternity analyses revealed that pollen moved from 6 m to 293 m (mean = 118 m) within the study population and that a minimum of 10% of the progeny were sired by pollen originating outside of the population. These results are discussed in the context of the yucca–yucca moth mutualism.  相似文献   

19.
We review North American research on Compsilura concinnata (Meigen), a highly generalist tachinid parasitoid that was introduced in 1906 to control two invasive forest insects: gypsy moth and browntail moth. The impact on gypsy moth in natural populations in North America has long thought to be minor, a view confirmed by recent work in Canada and Wisconsin, USA. However, research with experimentally created populations of gypsy moth suggests that it may be more important than previously realized. Studies on browntail moth in both naturally occurring and experimental populations suggest that C. concinnata is probably the main reason browntail moth disappeared from most of its former range in North America. Research on giant silk moths suggests that C. concinnata has become the major source of mortality among several species and may be responsible for the notable decline in their densities that has occurred over the last century. C. concinnata has been touted as a premier example of the generalist natural enemy that should be avoided in classical biological control introductions, yet in the case of browntail moth its effect has been extremely beneficial.  相似文献   

20.
The angiosperms are by far the largest group of terrestrial plants. Their spectacular diversity is often attributed to specialized pollination. Obligate pollination mutualisms where both a plant and its pollinator are dependent upon one another for reproduction are thought to be prone to rapid diversification through co‐evolution and pollinator isolation. However, few studies have evaluated the degree to which pollinators actually mediate reproductive isolation in these systems. Here, we examine evidence for hybridization and gene flow between two subspecies of Joshua tree (Yucca brevifolia brevifolia and Yucca brevifolia jaegeriana) pollinated by two sister species of yucca moth. Previous work indicated that the pollinators differ in host specificity, and DNA sequence data suggested asymmetric introgression between the tree subspecies. Through intensive sampling in a zone of sympatry, a large number of morphologically intermediate trees were identified. These included trees with floral characters typical of Y. b. jaegeriana, but vegetative features typical of Y. b. brevifolia. The opposite combination—Y. b. brevifolia flowers with Y. b. jaegeriana vegetative morphologynever occurred. Microsatellite genotyping revealed a high frequency of genetically admixed, hybrid trees. Coalescent‐based estimates of migration indicated significant gene flow between the subspecies and that the direction of gene flow matches differences in pollinator host fidelity. The data suggest that pollinator behaviour determines the magnitude and direction of gene flow between the two subspecies, but that specialized pollination alone is not sufficient to maintain species boundaries. Natural selection may be required to maintain phenotypic differences in the face of ongoing gene flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号