首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Environmental sustainability boundaries can be used as references in evaluations of the absolute sustainability of activities and for developing policy targets and strategies. Recent literature has applied boundaries for climate change in different ways in life cycle assessment and there is a need for a systematic overview of these approaches, their compatibility with different types of assessments, and their effects on assessment results. This paper addresses that need by identifying and contrasting five approaches to operationalizing the climate change boundary and applying these approaches to a common case of the EU27 + UK consumption footprint in 2019. The identified operationalization approaches are found to be either static or dynamic. Static approaches enable comparison with a boundary which is constant through time, while dynamic approaches interpret the environmental sustainability boundary as a trajectory toward reaching net-zero emissions at the right time. When applying the five operationalization approaches to the 2019 consumption footprint of the EU27 + UK, we find that emissions reduction should be more ambitious than the current European Green Deal targets. For policymaking, the static approaches can offer a highly ambitious ideal reference aiding immediate action but can lack adaptability to evolving conditions. Dynamic approaches better address long-term goals and evolving knowledge but are more complex. This study contributes to the literature on absolute sustainability assessment by unravelling model choices and their implications for assessment results and policymaking.  相似文献   

2.
    
In the light of increasing human pressures on the Earth system, the issue of sharing in the face of scarcity is more pressing than ever. The planetary boundary framework identifies and quantifies nine environmental boundaries and corresponding human pressures. However, when aiming to make the concept operational for decision support it is unclear how this safe operating space (SOS) within each of the planetary boundaries should be shared. This study proposes a two‐step approach, where the operating space is first downscaled to the individual level using ethical allocation principles and next scaled up to a higher organizational level using different upscaling methods. For the downscaling, three allocation principles are demonstrated: egalitarian (equal per capita); grandfathering (proportional to current share of the total impacts); and ability to pay (proportional to economic activity). For upscaling from the individual level final consumption expenditure is used as a proxy for the priority that the individual gives to the product or sector. In an alternative upscaling approach, an additional upscaling factor is based on the eco‐efficiency (ratio between turnover and environmental impact) of the product or sector. A demonstration of the method's application is given by applying the framework to two of the planetary boundaries, climate change and biogeochemical flows, with the Danish, Indian and global dairy sectors as cases. It is demonstrated how the choices of allocation and upscaling approaches influence the results differently in the three cases. The developed framework is shown to support an informed and transparent selection of allocation principles and upscaling methods and it provides a step toward standardization of distributing the SOS in absolute environmental sustainability assessments.  相似文献   

3.
    
Given the increasing environmental impacts associated with global agri‐food systems, operating and developing these systems within the so‐called absolute environmental boundaries has become crucial, and hence the absolute environmental sustainability concept is particularly relevant. This study introduces an approach called absolute sustainability‐based life cycle assessment (ASLCA) that informs the climate impacts of an agri‐food system (on any economic level) in absolute terms. First, a global carbon budget was calculated that is sufficient to limit global warming to below 2°C. Next, a share of the carbon budget available to the global agri‐food sector was estimated, and then it was shared between agri‐food systems on multiple economic levels using four alternative methods. Third, the climate impacts of those systems were calculated using life cycle assessment methodology and were benchmarked against those carbon budget shares. This approach was used to assess a number of New Zealand agri‐food systems (agri‐food sector, horticulture industries and products) to investigate how these systems operated relative to their carbon budget shares. The results showed that, in 2013, the New Zealand agri‐food systems were within their carbon budget shares for one of the four methods, and illustrated the scale of change required for agri‐food systems to perform within their carbon budget shares. This method can potentially be extended to consider other environmental impacts with global boundaries; however, further development of the ASLCA is necessary to account for other environmental impacts whose boundaries are only meaningful when defined at a regional or local level.  相似文献   

4.
Life cycle assessment (LCA) methods and tools are increasingly being taught in university courses. Students are learning the concepts and applications of process-based LCA, input−output-based LCA, and hybrid methods. Here, we describe a classroom simulation to introduce students to an economic input−output life cycle assessment (EIO-LCA) method. The simulation uses a simplified four-industry economy with eight transactions among the industries. Production functions for the transactions and waste generation amounts are provided for each industry. Students represent an industry and receive and issue purchase orders for materials to simulate the actual purchases of materials within the economy. Students then compare the simulation to mathematical representations of the model. Finally, students view an online EIO-LCA tool ( http://www.eiolca.net ) and use the tool to compare different products. The simulation has been used successfully with a wide range of students to facilitate conceptual understanding of one EIO-LCA method.  相似文献   

5.
陈先鹏  方恺 《生态学报》2024,44(2):511-522
人类活动已成为人类世背景下全球环境变化的主要驱动力,因此将其合理调控在地球环境边界之内是实现可持续发展的前提条件。作为全球尺度的环境边界,行星边界秉持\"地球系统观\",为统筹不同区域的环境可持续性评估提供了新视角。以行星边界为切入点,评估中国省域主要人类活动的环境可持续性状况,揭示其时空格局演变及社会经济影响因素。结果表明:(1)中国省域碳、氮、磷排放的不可持续性北部整体高于南部,分异程度随时间逐步拉大,不可持续省份数量的占比均已超出2/3;省域水、土地利用的可持续性南部整体高于北部,保持相对稳定,可持续省份数量的占比均已超出3/4。(2)中国省域环境可持续性大体受人口、经济、技术等因素的综合影响,且各类环境要素的可持续性之间存在一定的协同效应。其中,各类环境可持续性均受人口规模的正向驱动,同时氮、磷、水和土地的可持续性均受农业活动的负向驱动。(3)碳排放可持续性主要受能源消费强度的负向驱动,而磷排放可持续性同时受人口城镇化率的负向驱动,水可持续性受二产占比的负向驱动。基于行星边界的环境可持续性研究,可为区域合理界定和有效承担全球环境可持续性责任提供科学参考。  相似文献   

6.
    
Under the dual pressure of environmental constraints and increasingly thin profit margins, the cement industry in China is in a predicament. To alleviate the environmental and the economic pressure of the cement industry and to tackle the problem of delayed environmental infrastructure construction, this article introduced an urban ecosystem in which the cement industry was transformed into an effective complement to environmental infrastructure. The Xinfeng Cement Industrial Park in China, which has a production capacity of 5 million tonnes per annum (Mt/a) of clinker, was chosen as a case study. Our methodology involved proposing technologies to develop an efficient cement plant‐centered urban ecosystem; evaluating its environmental and economic performance; identifying barriers in its promotion; and proposing supportive policies. Results showed that the city's waste recycling ratio rose from about 50% to 70%, saving 0.6 Mt/a of coal equivalent and reducing about 3.0 Mt/a of resulting carbon dioxide (CO2) emissions. The life span of the city's landfill site was extended by about 30 years. The total investment was 3.2 billion yuan (about US$480 million), 1 with an average payback period of 3 years. The Xinfeng Cement Industrial Park was transformed from an energy‐intensive consumer and a significant CO2 emitter to a key industrial waste recycler, a crucial municipal waste co‐processor, an important new building material supplier, and a potential energy producer. Last, the “not‐in‐my‐back‐yard” (NIMBY) effect from constructing new environmental infrastructure was also avoided.  相似文献   

7.
    
Life cycle assessment (LCA) has enabled consideration of environmental impacts beyond the narrow boundary of traditional engineering methods. This reduces the chance of shifting impacts outside the system boundary. However, sustainability also requires that supporting ecosystems are not adversely affected and remain capable of providing goods and services for supporting human activities. Conventional LCA does not account for this role of nature, and its metrics are best for comparing alternatives. These relative metrics do not provide information about absolute environmental sustainability, which requires comparison between the demand and supply of ecosystem services (ES). Techno‐ecological synergy (TES) is a framework to account for ES, and has been demonstrated by application to systems such as buildings and manufacturing activities that have narrow system boundaries. This article develops an approach for techno‐ecological synergy in life cycle assessment (TES‐LCA) by expanding the steps in conventional LCA to incorporate the demand and supply of ecosystem goods and services at multiple spatial scales. This enables calculation of absolute environmental sustainability metrics, and helps identify opportunities for improving a life cycle not just by reducing impacts, but also by restoring and protecting ecosystems. TES‐LCA of a biofuel life cycle demonstrates this approach by considering the ES of carbon sequestration, air quality regulation, and water provisioning. Results show that for the carbon sequestration ecosystem service, farming can be locally sustainable but unsustainable at the global or serviceshed scale. Air quality regulation is unsustainable at all scales, while water provisioning is sustainable at all scales for this study in the eastern part of the United States.  相似文献   

8.
A key requirement for those in industry and elsewhere who wish to reduce the environmental impact of a product is to develop priorities for action. Life cycle assessment (LCA) is increasingly used to identify such priorities but can be misleading. This article draws attention to two effects that can occur when the system boundary for a product LCA is not defined correctly. We illustrate the washing machine effect by showing that in separate life cycle studies of clothing, detergents, and washing machines, the use of energy is dominated by operation of the washing machine. All three studies prioritize the use phase for action, but in an aggregated study, double counting of the use-phase impact occurs. We demonstrate the inverse washing machine effect with an example related to energy used in transport. We show that some activities that are significant on a cumulative basis consistently fall outside the chosen system boundary for individual products. A consequence is that when LCA studies are used for prioritization, they are in danger of overemphasizing the use-phase impacts and overlooking the impacts from indirect activities. These effects, which are broadly understood by LCA developers, appear not to be understood properly by those who use LCA to direct priorities for action. Therefore, practitioners should be wary of using LCA for prioritizing action, and LCA guidance documents should reflect this caution.  相似文献   

9.
    
Robust monitoring and assessment methods are required to assess circular economy (CE) concepts in terms of their degree of circularity and their contribution to sustainability. This research aimed to develop an integrated framework for the CE context—considering both the technical circularity and the complexity of the three dimensions of sustainability (environment, economy, and social). Two existing methods were identified as an appropriate foundation: CE indicators and life cycle sustainability assessment (LCSA), combining life cycle assessment (LCA), life cycle costing (LCC), and social life cycle assessment (S-LCA). The developed circular life cycle sustainability assessment (C-LCSA) framework added circularity assessment (CA) as an additional dimension to LCSA (C-LCSA = LCA + LCC + S-LCA + CA). The abundance of CE indicators required a systematic selection process to identify the most appropriate indicators for the framework which was built on criteria levels, performance, loops, unit, dimension, and transversality. The material circularity indicator, product circularity indicator, and longevity indicator were identified as most suited for C-LCSA. Being developed for a single life cycle, the traditional life cycle approaches needed refinements for application to CE concepts, derived from discussions and proposed adaptions presented in the academic literature. The cut-off approach was identified as the most suitable end-of-life allocation method for C-LCSA, being in line with the technical system boundaries. C-LCSA can be used by LCA practitioners to identify trade-offs between an improved circularity and resulting impacts on the environmental, economic, and social pillars to provide a basis for decision making in industrial ecology.  相似文献   

10.
    
Government agencies, companies, and other entities are using environmental assessments, like life cycle assessment (LCA), as an input to decision‐making processes. Communicating the esoteric results of an LCA to these decision makers can present challenges, and interpretation aids are commonly provided to increase understanding. One such method is normalizing results as a means of providing context for interpreting magnitudes of environmental impacts. Normalization is mostly carried out by relating the environmental impacts of a product (or process) under study to those of another product or a spatial reference area (e.g., the United States). This research is based on the idea that decision makers might also benefit from normalization that considers comparisons to their entity's (agency, company, organization, etc.) total impacts to provide additional meaning and aid in comprehension. Two hybrid normalization schemes have been developed, which include aspects of normalization to both spatially based and entity‐based impacts. These have been named entity‐overlaid and entity‐accentuated normalization, and the schemes allow for performance‐based planning or emphasizing environmental impact types that are most relevant to an entity's operational profile, respectively. A hypothetical case study is presented to demonstrate these schemes, which uses environmental data from a U.S. transportation agency as the basis for entity normalization factors. Results of this case study illustrate how entity‐related references may be developed, and how this additional information may enhance the presentation of LCA results using the hybrid normalization schemes.  相似文献   

11.
    
A normalization step is widely exercised in life cycle assessment (LCA) studies in order to better understand the relative significance of impact category results. In the normalization stage, normalization references (NRs) are the characterized results of a reference system, typically a national or regional economy. Normalization is widely practiced in LCA‐based decision support and policy analysis (e.g., LCA cases in municipal solid waste treatment technologies, renewable energy technologies, and environmentally preferable purchasing programs, etc.). The compilation of NRs demands significant effort and time as well as an intimate knowledge of data availability and quality. Consequently only one set of published NRs is available for the United States, and has been adopted by various studies. In this study, the completeness of the previous NRs was evaluated and significant data gaps were identified. One of the reasons for the significant data gaps was that the toxic release inventory (TRI) data significantly underestimate the potential impact of toxic releases for some sectors. Also the previous NRs did not consider the soil emissions and nitrogen (N) and phosphorus (P) runoffs to water and chemical emissions to soils. Filling in these data gaps increased the magnitude of NRs for “human health cancer,” “human health noncancer,” “ecotoxicity,” and “eutrophication” significantly. Such significant changes can alter or even reverse the outcome of an LCA study. We applied the previous and updated NRs to conventional gasoline and corn ethanol LCAs. The results demonstrate that NRs play a decisive role in the interpretation of LCA results that use a normalization step.  相似文献   

12.
    
The use of novel battery technologies in short-haul electric aircraft can support the aviation sector in achieving its goals for a sustainable development. However, the production of the batteries is often associated with adverse environmental and socio-economic impacts, potentially leading to burden shifting. Therefore, this paper investigates alternative technologies for lithium–sulfur all-solid-state batteries (LiS-ASSBs) in terms of their contribution to the sustainable development goals (SDGs). We propose a new approach that builds on life cycle sustainability assessment and links the relevant impact categories to the related SDGs. The approach is applied to analyze four LiS-ASSB configurations with different solid electrolytes, designed for maximum specific energy using an electrochemical model. They are compared to a lithium–sulfur battery with a liquid electrolyte as a benchmark. The results of our cradle-to-gate analysis reveal that the new LiS-ASSB technologies generally have a positive contribution to SDG achievement. However, the battery configuration with the best technical characteristics is not the most promising in terms of SDG achievement. Especially variations from the technically optimal cathode thickness can improve the SDG contribution. A sensitivity analysis shows that the results are rather robust against the weighting factors within the SDG quantification method.  相似文献   

13.
    
Currently used sharing principles (grandfathering and final consumption expenditure) do not align with the purpose of Absolute Environmental Sustainability Assessments (AESAs)—enabling all to meet basic needs within the planetary limits. This discrepancy, though niche within life cycle engineering, demands attention due to the integration of the sharing principles in the widely adopted Science Based Targets initiative, embraced by 4000+ companies, representing over a third of the global economy. This paper suggests operationalizing sufficientarianism as a fair sharing principle for AESAs guaranteeing a minimum threshold of well-being for all. The theory of human needs is highlighted to distinguish luxuries from necessities. This is vital when assigning shares to products/companies, as there's no room for luxuries (products for someone which cause others to fall short), given the extremely limited individual safe operating space, regardless of the sharing approach. This paper argues that sufficientarian-based sharing principles must overlook historically skewed material welfare distributions to ensure no one falls below the minimum threshold. It underscores the need for an interdisciplinary approach to sharing principles, acknowledging and discussing diverse value perspectives on equal grounds. The focus is to inform and discuss the development of new sharing principles, which introduces initial steps toward a sufficientarian-based approach. The paper concludes that recognizing embedded values is paramount in sharing principle development. Failing to do so risks letting quantifiable metrics dictate the values integrated into AESAs without open discourse.  相似文献   

14.
One method to assess the sustainability performance of products is life cycle sustainability assessment (LCSA), which assesses product performance considering the environmental, economic, and social dimensions of the life cycle. The results of LCSA can be used to compare different products or to support decision making toward sustainable production and consumption. In both cases, LCSA results could be too disaggregated and consequently too difficult to understand and interpret by decision makers. As non‐experts are usually the target audience of experts and scientists, and are also involved in decision‐making processes, the necessity for a straightforward but comprehensive presentation of LCSA results is becoming strategically important. The implementation of the dashboard of sustainability proposed in this article offers a possible solution. An outstanding characteristic of the dashboard of sustainability is the communicability of the results by means of a graphical representation (a cartogram), characterized by a suitable chromatic scale and ranking score. The integration of LCSA and the dashboard of sustainability into a so‐called Life Cycle Sustainability Dashboard (LCSD) is described here. The first application of LCSD to a group of hard floor coverings is presented to show the applicability and limitations of the methodology.  相似文献   

15.
This article argues that policies aimed at sustainability need to address the spatial dimensions of environmental problems and their solutions. In particular, spatial configurations of economic activities deserve attention, which means addressing land use, infrastructure, trade, and transport. Unfortunately, good theory and indicators to support the analysis and design of spatial‐environmental policies are not fully developed. One approach that has become very popular in the last decade is the ecological footprint (EF). It is both an environmental accounting tool and aggregate indicator, which is used by scientists, environmental organizations, and popular media. Despite criticisms of the EF method in the past, its popularity has only increased. In fact, an increasing number of publications with an application of the EF appear in scientific journals. We review the EF approach from indicator‐methodology and welfare angles and assess its policy relevance. Our conclusion is that it does not offer any meaningful information for public policy.  相似文献   

16.
    
When software is used to facilitate life cycle assessments (LCAs), the implicit assumption is that the results obtained are not a function of the choice of software used. LCAs were done in both SimaPro and GaBi for simplified systems of creation and disposal of 1 kilogram each of four basic materials (aluminum, corrugated board, glass, and polyethylene terephthalate) to determine whether there were significant differences in the results. Data files and impact assessment methodologies (Impact 2002, ReCiPe, and TRACI 2) were ostensibly identical (although there were minor variations in the available ReCiPe version between the programs that were investigated). Differences in reported impacts of greater than 20% for at least one of the four materials were found for 9 of the 15 categories in Impact 2002+, 7 of the 18 categories in ReCiPe, and four of the nine categories in TRACI. In some cases, these differences resulted in changes in the relative rankings of the four materials. The causes of the differences for 14 combinations of materials and impact categories were examined by tracing the results back to the life cycle inventory data and the characterization factors in the life cycle impact assessment (LCIA) methods. In all cases examined, a difference in the characterization factors used by the two programs was the cause of the differing results. As a result, when these software programs are used to inform choices, the result can be different conclusions about relative environmental preference that are functions purely of the software implementation of LCIA methods, rather than of the underlying data.  相似文献   

17.
Action to pursue the circular economy (CE) transition is burgeoning in the government and the private sector. Does this action signal that CE is a distinct field of research with a unique disciplinary identity? This article argues that CE has reached field status, through its own epistemic communities characterized by increasingly shared methodological perspectives and normative ideals, and through institutionalized knowledge development through research journals and authority structures. The recent growth of CE research points toward more contextualized and nuanced operationalizations of the concept, evidence that the field is approaching a threshold state of maturity. Drawing on observations from academic literature and discussions with researchers and experts, we trace the process by which CE has arrived at the status of a field. The article concludes with reflections on research directions.  相似文献   

18.
    
There is a growing concern over the security and sustainable supply of raw material among businesses and governments of developed, material‐intensive countries. This has led to the development of a systematic analysis of risk incorporated with raw materials usage, often referred as criticality assessment. In principle, this concept is based on the material flow approach. The potential role of life cycle assessment (LCA) to integrate resource criticality through broadening its scope into the life cycle sustainability assessment (LCSA) framework has been discussed within the LCA communities for some time. In this article, we aim at answering the question of how to proceed toward integration of the geopolitical aspect of resource criticality into the LCSA framework. The article focuses on the assessment of the geopolitical supply risk of 14 resources imported to the seven major advanced economies and the five most relevant emerging countries. Unlike a few previous studies, we propose a new method of calculation for the geopolitical supply risk, which is differentiated by countries based on the import patterns instead of a global production distribution. Our results suggest that rare earth elements, tungsten, antimony, and beryllium generally pose high geopolitical supply risk. Results from the Monte Carlo simulation allow consideration of data uncertainties for result interpretation. Issues concerning the consideration of the full supply chain are exemplarily discussed for cobalt. Our research broadens the scope of LCA from only environmental performance to a resource supply‐risk assessment tool that includes accessibility owing to political instability and market concentration under the LCSA framework.  相似文献   

19.
    
Life-cycle assessment (LCA) is a new method for exploring the environmental implications of human action. Like all methods, it is analytically limited and consequently it must be used with caution. Recent papers have criticized LCA and caution against its use in all but a few narrow applications. Even while accepting many of these arguments, this article argues that LCAs, like other analytic frameworks used in the policy and planning domains, have important uses in shaping the processes by which both products and policies are designed. The arguments made against the use of LCAs omit comparisons to realistic appraisals of alternative and competing methods of environmental assessment.  相似文献   

20.
Human activities generate waste, whose amounts tend to increase as the demand for quality of life becomes greater and greater. Hazardous waste (HW) generally makes up only about 1% of all waste in Europe; nevertheless, it presents a serious risk to the ecosystem and human health unless managed and treated safely. Several countries of the European Union (EU) report treatment rates of HW in excess of 40%; the others export a large portion of it. Notwithstanding that lots of efforts have been made to properly identify, treat, recycle, store, transport, and dispose of HW, this is still a hot topic faced by the governments of many EU countries. The objective of this article is to present a sustainable indicators system to assist in the implementation of a modern and sustainable hazardous waste management (HWM) system in Lithuania. The specific goals are (1) to promote the development of a comprehensive monitoring and enforcement system for timely implementation of HWM rules and other related pieces of legislation and (2) to assist in the implementation of training and awareness of the programs of HWM in support of the development of background data for policy making, including improvement of a hazardous waste identification scheme. The emphasis is put on preventing future discharges of HW by promoting the actions that will result in avoidance, recycling, or recovery of the otherwise hazardous waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号