首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G-quadruplex DNA structures have become attractive drug targets, and native mass spectrometry can provide detailed characterization of drug binding stoichiometry and affinity, potentially at high throughput. However, the G-quadruplex DNA polymorphism poses problems for interpreting ligand screening assays. In order to establish standardized MS-based screening assays, we studied 28 sequences with documented NMR structures in (usually ∼100 mM) potassium, and report here their circular dichroism (CD), melting temperature (Tm), NMR spectra and electrospray mass spectra in 1 mM KCl/100 mM trimethylammonium acetate. Based on these results, we make a short-list of sequences that adopt the same structure in the MS assay as reported by NMR, and provide recommendations on using them for MS-based assays. We also built an R-based open-source application to build and consult a database, wherein further sequences can be incorporated in the future. The application handles automatically most of the data processing, and allows generating custom figures and reports. The database is included in the g4dbr package (https://github.com/EricLarG4/g4dbr) and can be explored online (https://ericlarg4.github.io/G4_database.html).  相似文献   

2.
The rapid spread of COVID-19 is motivating development of antivirals targeting conserved SARS-CoV-2 molecular machinery. The SARS-CoV-2 genome includes conserved RNA elements that offer potential small-molecule drug targets, but most of their 3D structures have not been experimentally characterized. Here, we provide a compilation of chemical mapping data from our and other labs, secondary structure models, and 3D model ensembles based on Rosetta''s FARFAR2 algorithm for SARS-CoV-2 RNA regions including the individual stems SL1-8 in the extended 5′ UTR; the reverse complement of the 5′ UTR SL1-4; the frameshift stimulating element (FSE); and the extended pseudoknot, hypervariable region, and s2m of the 3′ UTR. For eleven of these elements (the stems in SL1–8, reverse complement of SL1–4, FSE, s2m and 3′ UTR pseudoknot), modeling convergence supports the accuracy of predicted low energy states; subsequent cryo-EM characterization of the FSE confirms modeling accuracy. To aid efforts to discover small molecule RNA binders guided by computational models, we provide a second set of similarly prepared models for RNA riboswitches that bind small molecules. Both datasets (‘FARFAR2-SARS-CoV-2’, https://github.com/DasLab/FARFAR2-SARS-CoV-2; and ‘FARFAR2-Apo-Riboswitch’, at https://github.com/DasLab/FARFAR2-Apo-Riboswitch’) include up to 400 models for each RNA element, which may facilitate drug discovery approaches targeting dynamic ensembles of RNA molecules.  相似文献   

3.
Identifying cooperating modules of driver alterations can provide insights into cancer etiology and advance the development of effective personalized treatments. We present Cancer Rule Set Optimization (CRSO) for inferring the combinations of alterations that cooperate to drive tumor formation in individual patients. Application to 19 TCGA cancer types revealed a mean of 11 core driver combinations per cancer, comprising 2–6 alterations per combination and accounting for a mean of 70% of samples per cancer type. CRSO is distinct from methods based on statistical co‐occurrence, which we demonstrate is a suboptimal criterion for investigating driver cooperation. CRSO identified well‐studied driver combinations that were not detected by other approaches and nominated novel combinations that correlate with clinical outcomes in multiple cancer types. Novel synergies were identified in NRAS‐mutant melanomas that may be therapeutically relevant. Core driver combinations involving NFE2L2 mutations were identified in four cancer types, supporting the therapeutic potential of NRF2 pathway inhibition. CRSO is available at https://github.com/mikekleinsgit/CRSO/.  相似文献   

4.
5.
Metabolomics and proteomics, like other omics domains, usually face a data mining challenge in providing an understandable output to advance in biomarker discovery and precision medicine. Often, statistical analysis is one of the most difficult challenges and it is critical in the subsequent biological interpretation of the results. Because of this, combined with the computational programming skills needed for this type of analysis, several bioinformatic tools aimed at simplifying metabolomics and proteomics data analysis have emerged. However, sometimes the analysis is still limited to a few hidebound statistical methods and to data sets with limited flexibility. POMAShiny is a web-based tool that provides a structured, flexible and user-friendly workflow for the visualization, exploration and statistical analysis of metabolomics and proteomics data. This tool integrates several statistical methods, some of them widely used in other types of omics, and it is based on the POMA R/Bioconductor package, which increases the reproducibility and flexibility of analyses outside the web environment. POMAShiny and POMA are both freely available at https://github.com/nutrimetabolomics/POMAShiny and https://github.com/nutrimetabolomics/POMA, respectively.  相似文献   

6.
As the cost of single-cell RNA-seq experiments has decreased, an increasing number of datasets are now available. Combining newly generated and publicly accessible datasets is challenging due to non-biological signals, commonly known as batch effects. Although there are several computational methods available that can remove batch effects, evaluating which method performs best is not straightforward. Here, we present BatchBench (https://github.com/cellgeni/batchbench), a modular and flexible pipeline for comparing batch correction methods for single-cell RNA-seq data. We apply BatchBench to eight methods, highlighting their methodological differences and assess their performance and computational requirements through a compendium of well-studied datasets. This systematic comparison guides users in the choice of batch correction tool, and the pipeline makes it easy to evaluate other datasets.  相似文献   

7.
Epigenomic data from ENCODE can be used to associate specific combinations of chromatin marks with regulatory elements in the human genome. Hidden Markov models and the expectation-maximization (EM) algorithm are often used to analyze epigenomic data. However, the EM algorithm can have overfitting problems in data sets where the chromatin states show high class-imbalance and it is often slow to converge. Here we use spectral learning instead of EM and find that our software Spectacle overcame these problems. Furthermore, Spectacle is able to find enhancer subtypes not found by ChromHMM but strongly enriched in GWAS SNPs. Spectacle is available at https://github.com/jiminsong/Spectacle.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0598-0) contains supplementary material, which is available to authorized users.  相似文献   

8.
The ordering and orientation of genomic scaffolds to reconstruct chromosomes is an essential step during de novo genome assembly. Because this process utilizes various mapping techniques that each provides an independent line of evidence, a combination of multiple maps can improve the accuracy of the resulting chromosomal assemblies. We present ALLMAPS, a method capable of computing a scaffold ordering that maximizes colinearity across a collection of maps. ALLMAPS is robust against common mapping errors, and generates sequences that are maximally concordant with the input maps. ALLMAPS is a useful tool in building high-quality genome assemblies. ALLMAPS is available at: https://github.com/tanghaibao/jcvi/wiki/ALLMAPS.  相似文献   

9.
10.
11.
Protein designers use a wide variety of software tools for de novo design, yet their repertoire still lacks a fast and interactive all-atom search engine. To solve this, we have built the Suns program: a real-time, atomic search engine integrated into the PyMOL molecular visualization system. Users build atomic-level structural search queries within PyMOL and receive a stream of search results aligned to their query within a few seconds. This instant feedback cycle enables a new “designability”-inspired approach to protein design where the designer searches for and interactively incorporates native-like fragments from proven protein structures. We demonstrate the use of Suns to interactively build protein motifs, tertiary interactions, and to identify scaffolds compatible with hot-spot residues. The official web site and installer are located at http://www.degradolab.org/suns/ and the source code is hosted at https://github.com/godotgildor/Suns (PyMOL plugin, BSD license), https://github.com/Gabriel439/suns-cmd (command line client, BSD license), and https://github.com/Gabriel439/suns-search (search engine server, GPLv2 license).
This is a PLOS Computational Biology Software Article
  相似文献   

12.
Practical identifiability of Systems Biology models has received a lot of attention in recent scientific research. It addresses the crucial question for models’ predictability: how accurately can the models’ parameters be recovered from available experimental data. The methods based on profile likelihood are among the most reliable methods of practical identification. However, these methods are often computationally demanding or lead to inaccurate estimations of parameters’ confidence intervals. Development of methods, which can accurately produce parameters’ confidence intervals in reasonable computational time, is of utmost importance for Systems Biology and QSP modeling.We propose an algorithm Confidence Intervals by Constraint Optimization (CICO) based on profile likelihood, designed to speed-up confidence intervals estimation and reduce computational cost. The numerical implementation of the algorithm includes settings to control the accuracy of confidence intervals estimates. The algorithm was tested on a number of Systems Biology models, including Taxol treatment model and STAT5 Dimerization model, discussed in the current article.The CICO algorithm is implemented in a software package freely available in Julia (https://github.com/insysbio/LikelihoodProfiler.jl) and Python (https://github.com/insysbio/LikelihoodProfiler.py).  相似文献   

13.
The binding affinities of protein-nucleic acid interactions could be altered due to missense mutations occurring in DNA- or RNA-binding proteins, therefore resulting in various diseases. Unfortunately, a systematic comparison and prediction of the effects of mutations on protein-DNA and protein-RNA interactions (these two mutation classes are termed MPDs and MPRs, respectively) is still lacking. Here, we demonstrated that these two classes of mutations could generate similar or different tendencies for binding free energy changes in terms of the properties of mutated residues. We then developed regression algorithms separately for MPDs and MPRs by introducing novel geometric partition-based energy features and interface-based structural features. Through feature selection and ensemble learning, similar computational frameworks that integrated energy- and nonenergy-based models were established to estimate the binding affinity changes resulting from MPDs and MPRs, but the selected features for the final models were different and therefore reflected the specificity of these two mutation classes. Furthermore, the proposed methodology was extended to the identification of mutations that significantly decreased the binding affinities. Extensive validations indicated that our algorithm generally performed better than the state-of-the-art methods on both the regression and classification tasks. The webserver and software are freely available at http://liulab.hzau.edu.cn/PEMPNI and https://github.com/hzau-liulab/PEMPNI.  相似文献   

14.
Comprehensive discovery of structural variation (SV) from whole genome sequencing data requires multiple detection signals including read-pair, split-read, read-depth and prior knowledge. Owing to technical challenges, extant SV discovery algorithms either use one signal in isolation, or at best use two sequentially. We present LUMPY, a novel SV discovery framework that naturally integrates multiple SV signals jointly across multiple samples. We show that LUMPY yields improved sensitivity, especially when SV signal is reduced owing to either low coverage data or low intra-sample variant allele frequency. We also report a set of 4,564 validated breakpoints from the NA12878 human genome. https://github.com/arq5x/lumpy-sv.  相似文献   

15.
When working on an ongoing genome sequencing and assembly project, it is rather inconvenient when gene identifiers change from one build of the assembly to the next. The gene labelling system described here, UniqTag, addresses this common challenge. UniqTag assigns a unique identifier to each gene that is a representative k-mer, a string of length k, selected from the sequence of that gene. Unlike serial numbers, these identifiers are stable between different assemblies and annotations of the same data without requiring that previous annotations be lifted over by sequence alignment. We assign UniqTag identifiers to ten builds of the Ensembl human genome spanning eight years to demonstrate this stability. The implementation of UniqTag in Ruby and an R package are available at https://github.com/sjackman/uniqtag sjackman/uniqtag. The R package is also available from CRAN: install.packages ("uniqtag"). Supplementary material and code to reproduce it is available at https://github.com/sjackman/uniqtag-paper.  相似文献   

16.
17.
18.
Recurrent neural networks with memory and attention mechanisms are widely used in natural language processing because they can capture short and long term sequential information for diverse tasks. We propose an integrated deep learning model for microbial DNA sequence data, which exploits convolutional neural networks, recurrent neural networks, and attention mechanisms to predict taxonomic classifications and sample-associated attributes, such as the relationship between the microbiome and host phenotype, on the read/sequence level. In this paper, we develop this novel deep learning approach and evaluate its application to amplicon sequences. We apply our approach to short DNA reads and full sequences of 16S ribosomal RNA (rRNA) marker genes, which identify the heterogeneity of a microbial community sample. We demonstrate that our implementation of a novel attention-based deep network architecture, Read2Pheno, achieves read-level phenotypic prediction. Training Read2Pheno models will encode sequences (reads) into dense, meaningful representations: learned embedded vectors output from the intermediate layer of the network model, which can provide biological insight when visualized. The attention layer of Read2Pheno models can also automatically identify nucleotide regions in reads/sequences which are particularly informative for classification. As such, this novel approach can avoid pre/post-processing and manual interpretation required with conventional approaches to microbiome sequence classification. We further show, as proof-of-concept, that aggregating read-level information can robustly predict microbial community properties, host phenotype, and taxonomic classification, with performance at least comparable to conventional approaches. An implementation of the attention-based deep learning network is available at https://github.com/EESI/sequence_attention (a python package) and https://github.com/EESI/seq2att (a command line tool).  相似文献   

19.
In the past few years, a wealth of sample-specific network construction methods and structural network control methods has been proposed to identify sample-specific driver nodes for supporting the Sample-Specific network Control (SSC) analysis of biological networked systems. However, there is no comprehensive evaluation for these state-of-the-art methods. Here, we conducted a performance assessment for 16 SSC analysis workflows by using the combination of 4 sample-specific network reconstruction methods and 4 representative structural control methods. This study includes simulation evaluation of representative biological networks, personalized driver genes prioritization on multiple cancer bulk expression datasets with matched patient samples from TCGA, and cell marker genes and key time point identification related to cell differentiation on single-cell RNA-seq datasets. By widely comparing analysis of existing SSC analysis workflows, we provided the following recommendations and banchmarking workflows. (i) The performance of a network control method is strongly dependent on the up-stream sample-specific network method, and Cell-Specific Network construction (CSN) method and Single-Sample Network (SSN) method are the preferred sample-specific network construction methods. (ii) After constructing the sample-specific networks, the undirected network-based control methods are more effective than the directed network-based control methods. In addition, these data and evaluation pipeline are freely available on https://github.com/WilfongGuo/Benchmark_control.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号