首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The European tarnished plant bug, Lygus rugulipennis (Heteroptera: Miridae), inflicts serious damage to glasshouse crops, including cucumber, in which it causes distorted foliage, dead growing points and malformed fruits. In a research involving commercial growers, we tested the possibility of using a trap crop to control L. rugulipennis. We screened the attraction of sunflower and lucerne as trap crops using an olfactometer. Adults (females and males) were more attracted to the odour of either flowering sunflower or lucerne than flowering cucumber. In a glasshouse trial, potted flowering sunflowers were evaluated as a trap crop placed at the ends of each cucumber row. Although the trap crop showed much higher attractiveness than the cucumber crop, this effect was not sufficient to provide an acceptable level of control according to the commercial growers. The growers suggested developing artificial sunflower odour as a more efficient lure for removal trapping. As a first step in this development, we tested the attraction of the headspace odour collected from sunflower in olfactometer trials. Sunflower headspace attracted a higher number of adults compared to a blank or a flowering cucumber. The sunflower odour was analysed by gas chromatography coupled to mass‐spectrometry to determine compounds possibly involved in L. rugulipennis attraction. The chemical analysis of the plant odour showed a well‐defined differentiation between sunflower and cucumber, with a number of monoterpenes released exclusively by sunflower. This, plus an emission rate from sunflower being at least four times more abundant, opens the possibility of using synthetic sunflower volatiles to attract L. rugulipennis within a cucumber background.  相似文献   

2.
A range of naturally occurring predator species or commercially produced predators can be used in biocontrol strategies for pests. However, multiple potential prey species or other alternative food sources are often present for predatory insects at any one time. The availability of this ‘alternative’ prey may affect specific pest control by predators and thus influence the release rates of predators required for economic pest control. Strawberry aphid (Chaetosiphon fragaefolii), western flower thrips (Frankliniella occidentalis) and European tarnished plant bug (Lygus rugulipennis) are important and damaging pests in strawberry. In this study, laboratory, glasshouse and field experiments were undertaken to assess the effects of the availability of multiple prey species on biocontrol of specific pests. Results indicated that two of the predators tested showed preferences for prey species such that biocontrol of a particular pest was often less effective when a combination of pest species was present than would have been expected from results of experiments with single prey species alone. The experiments indicated that Orius laevigatus preferred C. fragaefolii to F. occidentalis or to L. rugulipennis, and preferred L. rugulipennis to F. occidentalis. Chrysoperla carnea was shown to prefer C. fragaefolii to L. rugulipennis, and C. fragaefolii over F. occidentalis. Therefore, it is important to consider the effects of alternative prey on suppression of pest species when deciding on management strategies and release rates of predators.  相似文献   

3.
4.
Plant nitrogen (N) fertilization is a common cropping practice that is expected to serve as a pest management tool. Its effects on the dynamics of the aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) were examined on young peach [Prunus persica (L.) Batsch (Rosaceae)] trees grown under five N treatments, ranging from N shortage to supra‐optimal supply for growth. Aphid population increased over time at the three intermediate N levels. It remained stable at the lowest N level and decreased at the highest N level. Four weeks after the start of infestation, the number of aphids displayed a parabolic response to N level. The relationships between N status and parameters of plant vegetative growth (stem diameter) or biomass allocation (lateral‐total leaf area and root‐shoot ratio) were consistent with responses proposed by models of adaptive plasticity in resource allocation patterns. However, the variation in plant growth predicted aphid population dynamics only partially. Whereas aphid number was positively correlated with plant N status and vegetative growth up to the intermediate N level, it was negatively correlated with plant N status above this level, but not with vegetative growth. The concentrations of primary and secondary (plant defence‐related) metabolites in the plant shoots were modified by N treatments: amino acids (main nutritional resource of aphids) and prunasin increased, whereas chlorogenic acid decreased with increasing N availability. Constitutive changes in plant chemistry in response to N fertilization could not directly explain the reduced aphid performance for the highest N level. Nevertheless, the indirect effect of N on the induction of plant defence compounds by aphid feeding warrants further investigation. The study focuses on the feasibility of handling N fertilization to control M. persicae in orchards, but findings may also be relevant for our understanding of the physiological relationships between the host’s nutritional status and the requirements of the insect.  相似文献   

5.
When foraging in communities with mixed prey, generalist predators may be confronted with prey species that differ in quality, size and mobility and interact with one another. To examine prey selection, predation by Macrolophus pygmaeus (Heteroptera: Miridae) was recorded by providing a diet of either one or two prey species of Myzus persicae (third‐instar nymphs), Aphis gossypii (fourth‐instar nymphs), Trialeurodes vaporariorum (third‐instar nymphs) and Ephestia kuehniella (eggs). In the experiments, prey mobility, prey quality and prey biomass were considered. The biomass consumed by the predator was dependent on the combination of prey species and the quantity of biomass offered. In choice experiments with diets mixed of two prey species at equal densities, the predation to A. gossypii was significantly reduced in the presence of E. kuehniella but the rate of consumption of M. persicae, T. vaporariorum and E.kuehniella was not significantly affected by the coexistence of any other species in the mixed prey diet. When equal amounts of biomass from two prey species were provided in combination, the total consumed biomass was significantly reduced in the mixed prey diets composed of E. kuehniella eggs and aphid nymphs. Thus, under the mixed‐prey situation, prey selection by predators may be affected by interactions among prey species differing in traits such as quality, mobility and size.  相似文献   

6.
Erratum     
Abstract: Fertilization levels for ornamental crops may influence pest population dynamics, crop quality, and pest management strategy. We examined the effect of fertilization on population growth and within‐plant distribution of melon or cotton aphid, Aphis gossypii Glover, on potted chrysanthemum, Dendranthema grandiflora (Tzvelev). In terms of pest management implications, we also investigated the effect of fertilization on the number of insecticide applications needed to control A. gossypii on potted chrysanthemum. Population growth rate of A. gossypii increased with fertilization levels from 0 to 38 ppm N and reached a plateau from 38 to 488 ppm N. Increased fertilization beyond 38 ppm N, 10% of the commercial standard, did not result in higher aphid number. Aphids responded to nutrient availability of plants by distributing themselves in areas with higher level of nitrogen. More aphids were found in the apical and middle strata of the plants than the basal stratum, which had the lowest nitrogen content. Leaf nitrogen content increased with increased fertilization level and was consistently higher in the apical and middle strata than the basal stratum. Increased fertilization from 0 to 375 ppm N did not result in higher number of insecticide applications. All three insecticides (bifenthrin, kinoprene or pymetrozine) were effective in keeping the aphid infestation below a pre‐determined level, five aphids per plant, but pymetrozine required the least number of applications. For chrysanthemum, a fast‐growing crop and heavy utilizer of nitrogen, increased fertilization shortened the time to flowering, which would allow growers to harvest their crop sooner and reduce the time for aphid population growth. Reduction in time to harvest could result in significant reduction of insecticide usage by reducing the time for aphid population growth. As a result, high fertilization together with minimal runoff may be a useful tactic to an integrated pest management (IPM) programme for managing A. gossypii on potted chrysanthemums.  相似文献   

7.
Abstract: Fertilization levels for ornamental crops may influence pest population dynamics, crop quality, and pest management strategy. We examined the effect of fertilization on population growth and within‐plant distribution of melon or cotton aphid, Aphis gossypii Glover, on potted chrysanthemum, Dendranthema grandiflora (Tzvelev). In terms of pest management implications, we also investigated the effect of fertilization on the number of insecticide applications needed to control A. gossypii on potted chrysanthemum. Population growth rate of A. gossypii increased with fertilization levels from 0 to 38 ppm N and reached a plateau from 38 to 488 ppm N. Increased fertilization beyond 38 ppm N, 10% of the commercial standard, did not result in higher aphid number. Aphids responded to nutrient availability of plants by distributing themselves in areas with higher level of nitrogen. More aphids were found in the apical and middle strata of the plants than the basal stratum, which had the lowest nitrogen content. Leaf nitrogen content increased with increased fertilization level and was consistently higher in the apical and middle strata than the basal stratum. Increased fertilization from 0 to 375 ppm N did not result in higher number of insecticide applications. All three insecticides (bifenthrin, kinoprene or pymetrozine) were effective in keeping the aphid infestation below a pre‐determined level, five aphids per plant, but pymetrozine required the least number of applications. For chrysanthemum, a fast‐growing crop and heavy utilizer of nitrogen, increased fertilization shortened the time to flowering, which would allow growers to harvest their crop sooner and reduce the time for aphid population growth. Reduction in time to harvest could result in significant reduction of insecticide usage by reducing the time for aphid population growth. As a result, high fertilization together with minimal runoff may be a useful tactic to an integrated pest management (IPM) programme for managing A. gossypii on potted chrysanthemums.  相似文献   

8.
Larvae of C. carnea lived for 13-4 days at 21·1°C and consumed an average of 385 second-instar Myzus persicae or 425 Aphis gossypii. At 15·5°C the larval lifespan was 29·5 days though the consumption of M. persicae was hardly affected. M. persicae developing on glasshouse chrysanthemum plants were eliminated by the introduction of 1-day-old larvae at aphid: chrysopid ratios up to 50:1; third-instar larvae achieved control at a ratio of 200:1. At very low aphid densities control was less effective. Control by C. carnea of aphid populations developing on glasshouse chrysanthemums can be predicted mathematically.  相似文献   

9.
Recent advances in the understanding of plant signaling pathways have opened the way for using elicitor‐induced plant resistance as a tactic for protecting plants against arthropod pests. Four common elicitors of induced responses in tomato, Lycopersicon esculentum Mill. (Solanaceae), were evaluated with regard to phytotoxicity, induction of plant defensive proteins, and effects on population growth and fecundity of a common pest, the green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae). Ethephon and methyl jasmonate (MJ) treatments caused varying degrees of phytotoxicity. Ethephon caused pronounced changes in plant growth form and severe, dose‐dependent negative impacts on plant growth and flowering. Effects with MJ were milder, but still caused temporary inhibition of development, leading to smaller plants and delayed flowering. The commercial elicitors benzothiadiazole (BTH) and harpin did not cause detectable phytotoxicity. The highest doses of ethephon and MJ significantly increased leaf peroxidase (POD) levels but only MJ treatments significantly increased polyphenol oxidase (PPO) levels. BTH and harpin had no detectable effects on POD and PPO. Populations of green peach aphids grew significantly more slowly on plants treated with BTH or MJ than on control plants or plants treated with harpin or ethephon. Slowed aphid population growth on BTH‐treated plants was due to significant reductions in aphid fecundity, although this was independent of changes in time to onset of reproduction or time to death. Aphid fecundity was also reduced on MJ‐treated plants relative to controls, but this difference was not statistically significant, suggesting that other mechanisms are involved in slowing aphid population growth on MJ‐treated plants. Growth of aphid populations on plants treated with a MJ–BTH mixture was reduced almost as much as with treatments of MJ alone, suggesting that antagonism between JA‐dependant and SA‐dependent plant signaling pathways is only mild with regard to induced defenses against aphids.  相似文献   

10.
11.
Earthworm‐produced compost or vermicompost has been shown to increase resistance of plants to a variety of insect pests, but it is still unclear whether this resistance is dose dependent and whether the mechanisms responsible are the same for insect species with differing feeding habits and preferences. Therefore, we tested the effects of plants grown in various vermicompost concentrations (0, 20, 40, and 60%) on the preference and performance of generalist, Myzus persicae L., and specialist, Brevicoryne brassicae L. (both Hemiptera: Aphididae), aphid pests. Preference was evaluated with leaf disk (apterous) and whole plant (alate) choice assays. After 24 h of feeding, there was no significant negative effect on the feeding preference noted for apterae of either species of any of the treatments tested. To the contrary, apterae B. brassicae showed a significant preference for vermicompost treatments over control leaf disks. Alate M. persicae preferred alighting on control plants over vermicompost‐grown plants, but B. brassicae showed no preference toward any of the treatments tested. Both aphid species deposited significantly more nymphs on control plants than on those grown in 20% vermicompost. Furthermore, plants grown in soil amended with 20% vermicompost significantly suppressed mass accumulation, as well as numbers of adults and nymphs of both aphid species compared to controls. These data clearly show that vermicompost soil amendments can significantly influence pest aphid preference and performance on plants and that these effects are not dose dependent, but rather species and morph dependent.  相似文献   

12.
Although the value of noncrop vegetation for biological control has been extensively studied in agricultural landscapes, there are few reports on how it functions mechanistically. When focusing on the pest control function provided by noncrop vegetation, tritrophic interactions among a predatory natural enemy, its prey, and the prey’s host plant need to be examined. In Japan, the multicolored Asian ladybird beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), an aphidophage, serves as a natural pest control agent in agricultural production, although the species’ introduction into Europe and North America for pest control has had a negative impact on native ecosystems. In the present study, 33 aphid–plant pairs from an agricultural landscape in the eastern Kanto region of Japan were examined experimentally for initial larval survivorship and development of H. axyridis. Significant differences were found among plant–aphid pairs with regard to these parameters. In addition, the larval survivorship of H. axyridis was not consistently determined by host plant or aphid species alone but was context-dependently influenced by the aphid–plant combination. Some alien host plants showed positive effects on the ladybird beetle. Others, however, served as hosts for unsuitable prey species, such as the competitive alien plants Solidago canadensis L. and Robinia pseudoacacia L., which are the host plants of Uroleucon nigrotuberculatum (Olive) and Aphis craccivora Koch, respectively. These findings suggest that various noncrop plants could be managed to promote ladybird beetle populations in rural landscapes.  相似文献   

13.
Agricultural practices such as breeding resistant varieties and pesticide use can cause rapid evolution of pest species, but it remains unknown how plant domestication itself impacts pest contemporary evolution. Using experimental evolution on a comparative phylogenetic scale, we compared the evolutionary dynamics of a globally important economic pest – the green peach aphid (Myzus persicae) – growing on 34 plant taxa, represented by 17 crop species and their wild relatives. Domestication slowed aphid evolution by 13.5%, maintained 10.4% greater aphid genotypic diversity and 5.6% higher genotypic richness. The direction of evolution (i.e. which genotypes increased in frequency) differed among independent domestication events but was correlated with specific plant traits. Individual‐based simulation models suggested that domestication affects aphid evolution directly by reducing the strength of selection and indirectly by increasing aphid density and thus weakening genetic drift. Our results suggest that phenotypic changes during domestication can alter pest evolutionary dynamics.  相似文献   

14.
The cabbage aphid, Brevicoryne brassicae L. (Hemiptera: Aphididae), is a perennial pest that specializes on plants of the Brassicaceae family, attacking winter canola (Brassica napus L.) mainly during and after flowering. Under field conditions, cabbage aphid colonizes the upper flowering canopy. Population dynamics of aphids in the flowering canopy could be regulated by differences in either plant quality (bottom‐up) or predatory (top‐down) forces. The goal of our study was to determine the effect of feeding location on cabbage aphid demography. A stage‐structured matrix population model was constructed for aphids restricted to reproductive or vegetative plant tissues of canola. We found that feeding location had a large impact on demography of cabbage aphid; the finite rate of increase (λ ± SEM) was higher when aphids were restricted to reproductive tissues, compared to aphids feeding on vegetative tissues: 1.25 ± 0.01 vs. 1.17 ± 0.01 (leaves). Aphids confined to reproductive tissues with higher λ exhibited shorter generation times (T = 14.2 ± 0.2 days) and 53–75% higher net reproductive rates (R0 = 23.3 ± 1.7) than aphids feeding on vegetative tissues. Prospective analyses showed that there was a nymph‐skewed stable stage distribution, and elasticity values revealed that λ is most sensitive to changes in stasis of adults staying in the adult stage and to adult survival. Retrospective analyses indicated that variation in adult fecundity (value of 0.05) had the largest effect on population dynamics but collectively, growth of nymphal stage 2–3, 3–4, and 4 to adult accounted for most of the difference in λ between the treatments. Monitoring programs should target adults and penultimate instars colonizing reproductive tissues of canola plants in the field as aphids on these plant structures contribute most to population growth.  相似文献   

15.
Realistic values of population growth rates are needed when used in forecasting programmes, e.g., in a programme of integrated control. Therefore, comparisons were made in a chrysanthemum – aphid system between different methods of assessing population growth rates. The reproductive performances of the aphid species Aphis gossypii and Myzus persicae were measured on two chrysanthemum cultivars using three plant growth stages (young vegetative, budding and flowering). In the first set of experiments, development time and reproduction were used to estimate the population growth rate rm. The mean relative growth rates (MRGR) were also assessed. It was shown for the first time that the relationship between rm and MRGR was influenced by aphid species. In a second experiment, the aphid population increase on a whole plant was measured and rm was estimated by calculating the slope of the (ln transformed) population increase. It is shown that population growth rate is affected by the growth stage of the plant, and that cultivar and aphid species interact with plant growth stage in influencing population growth rate. Thus, no single growth stage of chrysanthemum for maximal aphid population growth can be assigned, but the budding and flowering stage are the most suitable in three out of four aphid × cultivar combinations. Comparison between the results from both experiments demonstrates clearly that more realistic values for rm are obtained when measured on whole plants.  相似文献   

16.
Abstract The olfactory responses of Aphidius gifuensis to odors from two host plants (Nicotiana tabacum and Brassica napus ssp.) and their complexes with different infestation levels of two host aphids (Myzus persicae and Lipaphis erysimi) were respectively examined in an olfactometer. The results showed that female A. gifuensis did not respond to odors of undamaged or mechanically damaged host plants, but significantly responded to odors of aphid/plant complexes. Moreover, A. gifuensis responded significantly to odors of both M. persicae and L. erysimi/plant complexes when host plants were infested by high levels of aphids, suggesting that quantity of aphid‐induced volatiles could be important for attracting A. gifuensis. When tested between aphid/plant complexes, A. gifuensis did not show its preference for either complex. The efficiency of A. gifuensis against aphids in open fields potentially could be improved by using its olfactory response to aphid/plant complexes.  相似文献   

17.
Herbivorous insects can cause severe cellular changes to plant foliage following infestations, depending on feeding behaviour. Here, a proteomic study was conducted to investigate the influence of green peach aphid (Myzus persicae Sulzer) as a polyphagous pest on the defence response of Arabidopsis thaliana (L.) Heynh after aphid colony establishment on the host plant (3 days). Analysis of about 574 protein spots on 2‐DE gels revealed 31 differentially expressed protein spots. Twenty out of these 31 differential proteins were selected for analysis by mass spectrometry. In 12 of the 20 analysed spots, we identified seven and nine proteins using MALDI‐TOF‐MS and LC‐ESI‐MS/MS, respectively. Of the analysed spots, 25% contain two proteins. Different metabolic pathways were modulated in Arabidopsis leaves according to aphid feeding: most corresponded to carbohydrate, amino acid and energy metabolism, photosynthesis, defence response and translation. This paper has established a survey of early alterations induced in the proteome of Arabidopsis by M. persicae aphids. It provides valuable insights into the complex responses of plants to biological stress, particularly for herbivorous insects with sucking feeding behaviour.  相似文献   

18.
Control of green peach aphid (Myzus persicae), a globally important pest, using plant‐derived oils is a promising alternative to conventional insecticides. Although various plant‐derived oils are potentially useful for insect control, dose–response studies and efficacy comparisons among oils have not been widely reported. Our objective was to compare M. persicae control by plant‐derived oils, focusing on oils derived from Brassicaceae species that exhibit rotational and environmental quality benefits. We thus applied sprays of emulsified ethyl esters from the seed oils of yellow mustard (Sinapis alba), oriental mustard (Brassica juncea) and rapeseed (Brassica napus) to M. persicae in a laboratory bioassay. A dose–response relationship was modelled for the S. alba spray yielding LD50/LD95 values of 18.2 ± 0.87/128.1 ± 5.10 μg ester per cm2 (P < 0.0001). Ethyl esters of oils from all three species and soybean (Glycine max) ethyl ester were compared to determine the efficacy of Brassicaceae oils relative to the dominant plant‐oil spray currently available. All ethyl esters were equally efficacious despite measured differences in fatty acid profiles among the oils. Oils derived from mustards B. juncea and S. alba are potentially useful feedstocks for the production of insecticidal sprays, and testing on additional insects is warranted.  相似文献   

19.
There is evidence for both positive and negative effects of generalist predators on pest populations and the various reasons for these contrasting observations are under debate. We studied the influence of a generalist predator, Pardosa lugubris (Walckenaer) (Araneae: Lycosidae), on an aphid pest species, Rhopalosiphum padi (L.) (Hemiptera: Aphididae; low food quality for the spider), and its host plant wheat, Triticum spec. (Poaceae). We focused on the role of spider density and the availability of alternative prey, Drosophila melanogaster Meigen (Diptera: Drosophilidae; high food quality). The presence of spiders significantly affected plant performance and aphid biomass. Alternative prey and spider density strongly interacted in affecting aphids and plants. High spider density significantly improved plant performance but also at low spider density plants benefited from spiders especially in the presence of alternative prey. The results suggest that generalist arthropod predators may successfully reduce plant damage by herbivores. However, their ability to control prey populations varies with predator nutrition, the control of low-quality prey being enhanced if alternative higher-quality prey is available.  相似文献   

20.
The aphids Macrosiphum euphorbiae (Thomas) and Myzus persicae (Sulzer) (Homoptera: Aphididae) are serious pests of potato (Solanum tuberosum L.) (Solanaceae), notably in transmitting several plant viruses. Heterospecific interactions may occur between these two species as they are often seen at the same time on the same potato plant in the field. As aphid infestation is known to induce both local and systemic changes, we conducted experiments to determine the effect of previous infestation on probing behaviour and feeding‐related parameters. We used the DC electrical penetration graph technique to characterize the influence of previous infestation by conspecific M. persicae or by heterospecific Ma. euphorbiae on M. persicae feeding behaviour at both local and systemic levels, i.e., on previously infested leaves and on non‐previously infested leaves of infested plants, respectively. Conspecific and heterospecific infestation led to similar modification of M. persicae feeding activities. However, the effects of previous infestation occurring at the local level were opposite to those observed at the systemic level. Myzus persicae food acceptance was slightly enhanced on previously infested leaves, whereas it was inhibited on non‐infested leaves of infested plants, which indicated an induced resistance mechanism. Our results advance the understanding of the mechanisms involved in aphid–host plant acceptance and colonization processes on potato plants in conspecific and heterospecific situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号