共查询到20条相似文献,搜索用时 15 毫秒
1.
Paula Iturralde‐Pólit Olivier Dangles Santiago F. Burneo Christine N. Meynard 《Biotropica》2017,49(6):821-831
Ecuador has some of the greatest biodiversity in the world, sheltering global biodiversity hotspots in lowland and mountain regions. Climate change will likely have a major effect on these regions, but the consequences for faunal diversity and conservation remain unclear. To address this issue, we used an ensemble of eight species distribution models to predict future shifts and identify areas of high changes in species richness and species turnover for 201 mammals. We projected the distributions using two different climate change scenarios at the 2050 horizon and contrasted two extreme dispersal scenarios (no dispersal vs. full dispersal). Our results showed extended distributional shifts all over the country. For most groups, our results predicted that the current diversity of mammals in Ecuador would decrease significantly under all climate change scenarios and dispersal assumptions. The Northern Andes and the Amazonian region would remain diversity hotspots but with a significant decrease in the number of species. All predictions, including the most conservative scenarios in terms of dispersal and climate change, predicted major changes in the distribution of mammalian species diversity in Ecuador. Primates might be the most severely affected because they would have fewer suitable areas, compared with other mammals. Our work emphasizes the need for sound conservation strategies in Ecuador to mitigate the effects of climate change 相似文献
2.
气候变化是当前全球生物多样性面临的最大威胁之一,对物种地理分布格局具有较大影响。东北森林物种丰富度较高,目前尚缺乏基于主要树种、未来不同气候模式的综合研究。基于12种建群树种的分布数据及23个环境变量(19个生物气候因子、土地利用类型、海拔、坡度、坡向)数据,应用MaxEnt模型首次对东北地区乔木树种在3种气候变化情景下(SSP126可持续路径、SSP245中间路径、SSP585化石燃料为主发展路径)的潜在丰富度分布格局、主导环境变量以及树种损失、获得和周转情况进行了预测。结果表明:不同未来气候情景下东北地区各树种的潜在分布变化存在差异,适生区面积减小的树种有:兴安落叶松、山杨、春榆、白桦、水曲柳、胡桃楸、蒙古栎、辽东桤木,减小幅度达到10%-30%;适生区面积变化不大的树种有:红皮云杉、樟子松、黄檗,多数情况下低、中和高适生区面积变化发生了抵消,导致总适生区面积变化不大;适生区增加的树种有:红松,增加幅度达20%左右。环境因素将影响东北地区乔木树种潜在适宜性分布,其中,降水因素对东北地区树种分布格局起关键作用,尤其是降水量季节性变化,是影响东北地区50%左右树种分布格局的主导环境因子。东北地区乔木树种在无迁移和SSP585气候情景下受威胁程度相对较高,而在SSP126气候情景下大多处于低风险状态;物种迁移假设的对物种受威胁程度的影响先于气候变化情景的影响,树种发生适度迁移能够缓解树种受威胁的状况。网格单元中物种损失和周转的预测表明,东北地区树种高周转率主要由树种高损失率造成,损失率较高的地区往往树种周转率也相对较高。预测气候变化对东北地区树木分布格局的影响,有助于制定更有效的气候变化适应策略,以促进东北地区树木的可持续发展。 相似文献
3.
4.
Attempts to explain the orders-of-magnitude variation observed in animal population sizes have principally focused on intrinsic differences between the taxa compared, but with limited success: most variation remains unexplained by such studies. However, animal population sizes may also vary in response to extrinsic factors, such as the environment occupied or the influence of human activities. Here, we use new estimates of the global population sizes of threatened bird species to examine extrinsic correlates of variation in their numbers, using general linear modelling and methods to control for phylogenetic relatedness. Threatened bird population sizes varied significantly with several extrinsic factors, including altitude, biogeographical region inhabited, type of extinction threat faced, and habitat used. They also vary with geographical range size, which was included in the analysis to control for its potentially confounding effects on the results. Details of the observed relationships, which vary with analytical method, are discussed. However, apart from geographical range size, none of the extrinsic variables analysed here explain more than a small percentage of the variation in threatened bird population sizes. Thus, it seems likely that a comprehensive explanation for why some species are common while others are rare will not be dominated by a single factor. 相似文献
5.
Most high‐performing species distribution modelling techniques require both presences, and either absences or pseudo‐absences or background points. In this paper, we explore the effect of sample size, towards developing improved strategies for modelling. We generated 1800 virtual species with three levels of prevalence using ten modelling techniques, while varying the number of training presences (NTP) and the number of random points (NRP representing pseudo‐absences or background sites). For five of the ten modelling techniques we built two versions of models: one with an equal total weight (ETW) setting where the total weight for pseudo‐absence is equivalent to the total weight for presence, and another with an unequal total weight (UTW) setting where the total weight for pseudo‐absence is not required to be equal to the total weight for presence. We compared two strategies for NRP: a small multiplier strategy (i.e. setting NRP at a few times as large as NTP), and a large number strategy (i.e. using numerous random points). We produced ensemble models (by averaging the predictions from 30 models built with the same set of training presences and different sets of random points in equivalent numbers) for three NTP magnitudes and two NRP strategies. We found that model accuracy altered as NRP increased with four distinct patterns of performance: increasing, decreasing, arch‐shaped and horizontal. In most cases ETW improved model performance. Ensemble models had higher accuracy than the corresponding single models, and this improvement was pronounced when NTP was low. We conclude that a large NRP is not always an appropriate strategy. The best choice for NRP will depend on the modelling techniques used, species prevalence and NTP. We recommend building ensemble models instead of single models, using the small multiplier strategy for NRP with ETW, especially when only a small number of species presence records are available. 相似文献
6.
- Dispersal and local adaptation play an important role in driving species distributions under climate change. Many studies aim to estimate relationships between species occurrences and environmental variables to predict range shift and biodiversity loss, ignoring dispersal and intraspecific variation contributing to complex spatial and temporal dynamics.
- We accounted for dispersal and intraspecific variation in forecasts of species distribution under climate change with species distribution models (SDMs) using two cold-adapted, low-dispersal Platycerus species (Coleoptera: Lucanidae), each with distinct subspecies distributions, as focus species. The results showed that the subspecies-level model performed significantly better than the species-level model when considering dispersal constraints in SDMs. Whether or not dispersal or intraspecific variation is accounted for, the predicted species range of Platycerus albisomni is expected to decrease in the future. For Platycerus takakuwai, accounting for dispersal constraints in SDMs indicated that its potential distribution area would increase at the subspecies level under climate change, but decrease at the species level.
- These divergent results show that SDMs at the subspecies level can detect impacts of climate change that may be overlooked in species-level models. Therefore, models that consider intraspecific variation and dispersal constraints may provide a more realistic perspective on the impacts of climate change.
- Because accurate mapping of potential habitats is needed for conservation purposes, demographic studies should include dispersal explicitly and explore how and when intraspecific variation in dispersal affects local population dynamics. This approach could help evaluate species' habitat shifts, thus enabling suitable conservation strategies.
7.
1. Freshwater ecosystems will be profoundly affected by global climate change, especially those in mountainous areas, which are known to be particularly vulnerable to warming temperatures. We modelled impacts of climate change on the distribution ranges of 38 species of benthic stream macroinvertebrates from nine macroinvertebrate orders covering all river zones from the headwaters to large river reaches. 2. Species altitudinal shifts as well as range changes up to the year 2080 were simulated using the A2a and B2a Intergovernmental Panel on Climate Change climate‐warming scenarios. Presence‐only species distribution models were constructed for a stream network in Germany’s lower mountain ranges by means of consensus projections of four algorithms, as implemented in the BIOMOD package in R (GLM, GAM, GBM and ANN). 3. Species were predicted to shift an average of 122 and 83 m up in altitude along the river continuum by the year 2080 under the A2a and B2a climate‐warming scenarios, respectively. No correlation between altitudinal shifts and mean annual air temperature of species’ occurrence could be detected. 4. Depending on the climate‐warming scenario, most or all (97% for A2a and 100% for B2a) of the macroinvertebrate species investigated were predicted to survive under climate change in the study area. Ranges were predicted to contract for species that currently occur in streams with low annual mean air temperatures but expand for species that inhabit rivers where air temperatures are higher. 5. Our models predict that novel climate conditions will reorganise species composition and community structure along the river continuum. Possible effects are discussed, including significant reductions in population size of headwater species, eventually leading to a loss of genetic diversity. A shift in river species composition is likely to enhance the establishment of non‐native macroinvertebrates in the lower reaches of the river continuum. 相似文献
8.
Borregaard MK Gotelli NJ Rahbek C 《Evolution; international journal of organic evolution》2012,66(7):2216-2226
The concept of species-level heritability is widely contested. Because it is most likely to apply to emergent, species-level traits, one of the central discussions has focused on the potential heritability of geographic range size. However, a central argument against range-size heritability has been that it is not compatible with the observed shape of present-day species range-size distributions (SRDs), a claim that has never been tested. To assess this claim, we used forward simulation of range-size evolution in clades with varying degrees of range-size heritability, and compared the output of three different models to the range-size distribution of the South American avifauna. Although there were differences among the models, a moderate-to-high degree of range-size heritability consistently leads to SRDs that were similar to empirical data. These results suggest that range-size heritability can generate realistic SRDs, and may play an important role in shaping observed patterns of range sizes. 相似文献
9.
Distributions of potential ranges of plant species are not yet fully known in Ethiopia where high climatic variability and vegetation types are found. This study was undertaken to predict distributions of suitable habitats of Pouteria adolfi-friederici and Prunus africana under current and two future climate scenarios (RCP 4.5 and RCP 8.5 in 2050 and 2070) in Ethiopia. Eleven environmental variables with less correlation coefficients (r < 0.7) were used to make the prediction. Shifting in extents of habitat suitability and effects of elevation, solar radiation and topographic position in relation to the current and future climatic scenarios were statistically analysed using independent t-test and linear model. We found decreasing area of highly suitable habitat from 0.51% to 0.46%, 0.36% and 0.33%, 0.24% for Prunus africana and 1.13% to 1.02%, 0.77% and 0.76%, 0.60% for Pouteria adolfi-friederici, under RCP 4.5 and RCP 8.5 by 2050 and 2070 respectively. Moist and dry afromontane forests are identified as the most suitable habitat for both species. Overall, our results suggest that climate change can promote dynamic suitable habitat niches under different future climate scenarios. Therefore, biodiversity conservation strategies should take into account habitat suitability dynamics issues and identify where to conserve species before implementing conservation practices. 相似文献
10.
LISE COMTE LAËTITIA BUISSON MARTIN DAUFRESNE GAËL GRENOUILLET 《Freshwater Biology》2013,58(4):625-639
1. Climate change could be one of the main threats faced by aquatic ecosystems and freshwater biodiversity. Improved understanding, monitoring and forecasting of its effects are thus crucial for researchers, policy makers and biodiversity managers. 2. Here, we provide a review and some meta‐analyses of the literature reporting both observed and predicted climate‐induced effects on the distribution of freshwater fish. After reviewing three decades of research, we summarise how methods in assessing the effects of climate change have evolved, and whether current knowledge is geographically or taxonomically biased. We conducted multispecies qualitative and quantitative analyses to find out whether the observed responses of freshwater fish to recent changes in climate are consistent with those predicted under future climate scenarios. 3. We highlight the fact that, in recent years, freshwater fish distributions have already been affected by contemporary climate change in ways consistent with anticipated responses under future climate change scenarios: the range of most cold‐water species could be reduced or shift to higher altitude or latitude, whereas that of cool‐ and warm‐water species could expand or contract. 4. Most evidence about the effects of climate change is underpinned by the large number of studies devoted to cold‐water fish species (mainly salmonids). Our knowledge is still incomplete, however, particularly due to taxonomic and geographic biases. 5. Observed and expected responses are well correlated among families, suggesting that model predictions are supported by empirical evidence. The observed effects are of greater magnitude and show higher variability than the predicted effects, however, indicating that other drivers of changes may be interacting with climate and seriously affecting freshwater fish. 6. Finally, we suggest avenues of research required to address current gaps in what we know about the climate‐induced effects on freshwater fish distribution, including (i) the need for more long‐term data analyses, (ii) the assessment of climate‐induced effects at higher levels of organisation (e.g. assemblages), (iii) methodological improvements (e.g. accounting for uncertainty among projections and species’ dispersal abilities, combining both distributional and empirical approaches and including multiple non‐climatic stressors) and (iv) systematic confrontation of observed versus predicted effects across multi‐species assemblages and at several levels of biological organisation (i.e. populations and assemblages). 相似文献
11.
12.
ANJA JAESCHKE TORSTEN BITTNER BJ
RN REINEKING CARL BEIERKUHNLEIN 《Insect Conservation and Diversity》2013,6(1):93-103
Abstract. 1. The effects of climate change on the distribution of species are typically inferred using bioclimatic envelope models, assuming either no or unrestricted dispersal abilities. Information on species‐specific dispersal abilities, especially of animals, is rarely incorporated. 2. We analysed European records of two damselflies and four dragonflies protected by the Habitats Directive of the European Union. In addition to no or unrestricted dispersal scenarios, we considered species‐specific dispersal distances based on literature information to improve realism in assessing conservation implications of climate change. The climate model HadCM3 and the emission scenario A2 were applied to project potential changes in occurrence probabilities up to 2035. As modelling algorithms, generalised linear models (GLM) and boosted regression trees (BRT) were used. 3. The species Coenagrion ornatum, Coenagrion mercuriale and Ophiogomphus cecilia are projected to lose range (up to −68%) when incorporating specific dispersal distances, while they are projected to extend their range (up to +23%) in the unrestricted dispersal scenario. Furthermore, suitable climatic conditions tend to decline for Leucorrhinia albifrons and Leucorrhina caudalis (up to −73%), whereas Leucorrhinia pectoralis is projected to gain distribution area (up to +37%) assuming either species‐specific or unrestricted dispersal and subsequently successful breeding. Cross‐validated model performance (AUC values) ranges between 0.77 and 0.92. 4. The integration of species‐specific knowledge about dispersal distances in species distribution models promises to improve estimates of potential range changes and their implications for conservation management. Contrasting model results under different dispersal scenarios highlight the importance of research on species’ ecology including dispersal distances. 相似文献
13.
Clément Tisseuil Fabien Leprieur Gäel Grenouillet Mathieu Vrac Sovan Lek 《Global Ecology and Biogeography》2012,21(12):1213-1222
Aim To assess the potential impacts of future climate change on spatio‐temporal patterns of freshwater fish beta diversity. Location Adour–Garonne River Basin (France). Methods We first applied an ensemble modelling approach to project annually the future distribution of 18 fish species for the 2010–2100 period on 50 sites. We then explored the spatial and temporal patterns of beta diversity by distinguishing between its two additive components, namely species turnover and nestedness. Results Taxonomic homogenization of fish assemblages was projected to increase linearly over the 21st century, especially in the downstream parts of the river gradient. This homogenization process was almost entirely caused by a decrease in spatial species turnover. When considering the temporal dimension of beta diversity, our results reveal an overall pattern of decreasing beta diversity along the upstream–downstream river gradient. In contrast, when considering the turnover and nestedness components of temporal beta diversity we found significant U‐shaped and hump‐shaped relationships, respectively. Main conclusions Future climate change is projected to modify the taxonomic composition of freshwater fish assemblages by increasing their overall similarity over the Adour–Garonne River Basin. Our findings suggest that the distinction between the nestedness and turnover components of beta diversity is not only crucial for understanding the processes shaping spatial beta‐diversity patterns but also for identifying localities where the rates of species replacement are projected to be greatest. Specifically we recommend that future conservation studies should not only consider the spatial component of beta diversity but also its dynamic caused by climate warming. 相似文献
14.
Mathias Kuemmerlen Britta Schmalz Qinghua Cai Peter Haase Nicola Fohrer Sonja C. Jähnig 《Freshwater Biology》2015,60(7):1443-1458
- Global environmental change entails not only climatic alterations, but also changes in land use. Freshwater ecosystems are particularly sensitive to both of these changes, and their sustainable management requires better information on likely responses.
- To examine the effects of climate and land use on the freshwater community, the distributions of stream macroinvertebrates of the Changjiang catchment in south‐east China were modelled. The present distributions of 72 taxa were predicted using environmental variables generated by regional climate, land‐use and hydrological models.
- Hydrological predictors, sensitive to both climate and land use, were the most relevant predictors in the species distribution models (SDMs), followed by land use.
- The stream macroinvertebrates’ distributions were then projected for the period 2021 to 2050 using three different future scenarios: (i) climate change, (ii) land‐use change and (iii) climate and land‐use change combined.
- Land‐use change was predicted to have the strongest negative impact on the community, with reductions in local richness (?20%), predicted diversity (?0.3%) and range size (?25%) and a general shift towards higher altitudes (+12%). The climate‐change scenario had a negative effect on predicted diversity (?0.1%) and resulted in a moderate altitudinal shift (+3%) along with increased richness (+15%) and range size (+19%). In the combined scenario, climate and land‐use changes counterbalanced each other to a certain degree, but had an overall detrimental effect.
- The results underscore the high relevance of land‐use change in future distribution predictions, exemplify the possible effect of interactions between land use and climate on hydrology and indicate how such responses can vary among freshwater taxa. The model also allows the detection of key environmental variables, the identification of vulnerable species and the definition of their potential distributions. This information is essential to establishing effective management and conservation strategies and gives a more comprehensive insight into the possible effects of global environmental change on freshwater ecosystems.
15.
Emilien Kuhn Jonathan Lenoir Christian Piedallu Jean‐Claude Gégout 《Global Change Biology》2016,22(6):2094-2105
Poleward and upward species range shifts are the most commonly anticipated and studied consequences of climate warming. However, these global responses to climate change obscure more complex distribution change patterns. We hypothesize that the spatial arrangement of mountain ranges and, consequently, climatic gradients in Europe, will result in range disjunctions. This hypothesis was investigated for submountainous forest plant species at two temporal and spatial scales: (i) under future climate change (between 1950–2000 and 2061–2080 periods) at the European scale and (ii) under contemporary climate change (between 1914–1987 and 1997–2013 periods) at the French scale. We selected 97 submountainous forest plant species occurring in France, among which distribution data across Europe are available for 25 species. By projecting future distribution changes for the 25 submountainous plant species across Europe, we demonstrated that range disjunction is a likely consequence of future climate change. To assess whether it is already taking place, we used a large forest vegetation‐plot database covering the entire French territory over 100 years (1914–2013) and found an average decrease in frequency (?0.01 ± 0.004) in lowland areas for the 97 submountainous species – corresponding to a loss of 6% of their historical frequency – along with southward and upward range shifts, suggesting early signs of range disjunctions. Climate‐induced range disjunctions should be considered more carefully since they could have dramatic consequences on population genetics and the ability of species to face future climate changes. 相似文献
16.
17.
Boitani L Maiorano L Baisero D Falcucci A Visconti P Rondinini C 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2011,366(1578):2623-2632
Spatial data on species distributions are available in two main forms, point locations and distribution maps (polygon ranges and grids). The first are often temporally and spatially biased, and too discontinuous, to be useful (untransformed) in spatial analyses. A variety of modelling approaches are used to transform point locations into maps. We discuss the attributes that point location data and distribution maps must satisfy in order to be useful in conservation planning. We recommend that before point location data are used to produce and/or evaluate distribution models, the dataset should be assessed under a set of criteria, including sample size, age of data, environmental/geographical coverage, independence, accuracy, time relevance and (often forgotten) representation of areas of permanent and natural presence of the species. Distribution maps must satisfy additional attributes if used for conservation analyses and strategies, including minimizing commission and omission errors, credibility of the source/assessors and availability for public screening. We review currently available databases for mammals globally and show that they are highly variable in complying with these attributes. The heterogeneity and weakness of spatial data seriously constrain their utility to global and also sub-global scale conservation analyses. 相似文献
18.
Aim We evaluated Odonata distribution data and predicted the compositional resemblance based on niche‐based species distribution models to analyse the following questions: (1) How is estimated species richness distributed, and how can it be preserved under the actual network of conservation units (a gap analysis approach)? (2) How is the estimated odonate beta diversity distributed, and is there a better distribution of conservation units (a priority setting approach)? (3) Is the probability of being under protection a function of the potential species range size? and (4) Will the current conservation network proposals protect odonate taxa? Location Central Brazil in a core Cerrado area. Methods We generated odonate species distribution predictions based on MaxEnt and maps derived from estimated species richness, beta diversity and gap analysis for all species predicted to occur in the study area. Then, we compared these maps with current conservation units, land‐use patterns and proposals for the establishment of conservation units. Results Raw odonate species records provided limited utility for setting conservation priorities without the use of niche‐based models. However, area under the receiver operating curve (AUC) values were characterized by substantial variation that was related to the number of records. No current conservation units overlapped the areas with higher predicted richness and beta diversity, and in general, conservation units were not preserving restricted/rare species. There was a direct linear correlation between species range size and the proportion of its range protected in the current network of conservation units. Finally, we identified three areas with high odonate beta diversity where conservationist actions should be implemented. Main conclusions Current conservation units and future suggested areas do not overlap regions with high conservation values for odonates. Conservation units protect species at random, and the level of protection has a direct relationship with species range size; thus, wide‐range species are expected to be more protected than restricted or threatened species. 相似文献
19.
Seasonal migration has been alternately proposed to promote geographic range size in some contexts and to constrain it in others, but it remains unclear if migratory behavior has a general effect on range size. Because migration involves movement, most hypotheses about the relationship between migration and range size invoke an influence of migration on the process of dispersal-mediated range expansion. Intuitively, a positive relationship between migratory behavior and dispersal ability could bolster range expansion among migratory species, yet some biogeographic patterns suggest that long-distance migration may instead impede range expansion, especially in the temperate zone. We conducted a comparative analysis of the relationship between migratory behavior and range size by testing the effect of migratory status, migration distance and morphological dispersal ability on breeding range size among all temperate North American passerines. Further, we assessed whether these traits affect range expansion into suitable habitat by analyzing their relationship with range filling (the proportion of climatically-suitable area occupied, or ‘filled’ by a species). Contrary to previous studies, we found migration and dispersal ability to be poor predictors of range size and range filling in North America. Rather, most variation in range size is explained by latitude. Our results suggest that migratory behavior does not affect range size within the scale of a continent, and furthermore, that temperate North American passerines’ breeding ranges are not influenced by their dispersal abilities. To better understand why migratory behavior appears to promote range size in some contexts and constrain it in others, future studies should investigate how migratory behavior affects dispersal at the individual level, as well as the relationship between the evolution of migratory behavior and the breadth of species’ climatic niches. 相似文献
20.
David E. Uribe-Rivera;Gurutzeta Guillera-Arroita;Saras M. Windecker;Patricio Pliscoff;Brendan A. Wintle; 《Ecography》2023,2023(4):e06048
Ecological models used to forecast range change (range change models; RCM) have recently diversified to account for a greater number of ecological and observational processes in pursuit of more accurate and realistic predictions. Theory suggests that process-explicit RCMs should generate more robust forecasts, particularly under novel environmental conditions. RCMs accounting for processes are generally more complex and data hungry, and so, require extra effort to build. Thus, it is necessary to understand when the effort of building a more realistic model is likely to generate more reliable forecasts. Here, we review the literature to explore whether process-explicit models have been tested through benchmarking their temporal predictive performance (i.e. their predictive performance when transferred in time) and model transferability (i.e. their ability to keep their predictive performance when transferred to generate predictions into a different time) against simpler models, and highlight the gaps between the rapid development of process-explicit RCMs and the testing of their potential improvements. We found that, out of five ecological processes (dispersal, demography, physiology, evolution, species interactions) and two observational processes (sampling bias, imperfect detection) that may influence reliability of forecasts, only the effects of dispersal, demography and imperfect detection have been benchmarked using temporally-independent datasets. Only nine out of twenty-nine process-explicit model types have been tested to assess whether accounting for processes improves temporal predictive performance. We found no benchmarks assessing model transferability. We discuss potential reasons for the lack of empirical validation of process-explicit models. Considering these findings, we propose an expanded research agenda to properly test the performance of process-explicit RCMs, and highlight some opportunities to fill the gaps by suggesting models to be benchmarked using existing historical datasets. 相似文献