首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spirometra tapeworms (Cestoda: Diphyllobothriidae) collected from carnivorous mammals in Tanzania were identified by the DNA sequence analysis of the mitochondrial cytochrome c oxidase subunit 1 (cox1) and internal transcribed spacer 1 (ITS1), and by morphological characteristics. A total of 15 adult worms were collected from stool samples and carcasses of Panthera leo, Panthera pardus, and Crocuta crocuta in the Serengeti and Selous ecosystems of Tanzania. Three Spirometra species: S. theileri, S. ranarum and S. erinaceieuropaei were identified based on morphological features. Partial cox1 sequences (400 bp) of 10 specimens were revealed. Eight specimens showed 99.5% similarity with Spirometra theileri (MK955901), 1 specimen showed 99.5% similarity with the Korean S. erinaceieuropaei and 1 specimen had 99.5% similarity with Myanmar S. ranarum. Sequence homology estimates for the ITS1 region of S. theileri were 89.8% with S. erinaceieuropaei, 82.5% with S. decipiens, and 78.3% with S. ranarum; and 94.4% homology was observed between S. decipiens and S. ranarum. Phylogenetic analyses were performed with 4 species of Spirometra and 2 species of Dibothriocephalus (=Diphyllobothrium). By both ML and BI methods, cox1 and ITS1 gave well supported, congruent trees topology of S. erinaceieuropaei and S. theileri with S. decipiens and S. ranarum forming a clade. The Dibothriocephalus species were sisters of each other and collectively forming successive outgroups. Our findings confirmed that 3 Spirometra species (S. theileri, S. ranarum, and S. erinaceieuropaei) are distributed in the Serengeti and Selous ecosystems of Tanzania.  相似文献   

2.
In the study of the regulation of incubation, broodiness and laying performance in pigeons (Columba liva), a cDNA library, which was enriched with full-length brooding-related genes, was constructed by SMART LD-PCR techniques using the pituitary glands of incubating White King pigeons. The titers of optimal primary libraries were 1.54×106 pfu/mL and 1.80×106 pfu/mL and the titers of amplified libraries were 1.89×108 pfu/mL and 2.32×109 pfu/mL. The percentages of recombinant clones of primary libraries and amplified libraries were all over 90%. A positive clone was sequenced and named ubiquitin based on the highly similar from other species. The fragment has the four initial codons of ATG, a termination codon of TAA and a signal sequence of AATAAA for adding the poly-A tail. The open reading frame of 918bp encodes 305 amino acids (NCBI accession number is EU981283). Recombinant pigeon ubiquitin protein was efficiently expressed with the form of insoluble inclusion bodies in E. coli BL21 transformed with a pET28a+ expression vector containing the DNA sequence encoding mature pigeon ubiquitin. The molecular weight of expressed protein is the same as predicted size of approximately 35kD. To improve the efficiency of cloning full-length cDNA, strategies of RACE combined with cDNA library were used. The length of pigeons ubiquitin-conjugating enzyme gene obtained was 1263 bp containing a complete open reading frame of 435 bp that encodes 144 aa (NCBI accession number is EU914824). The results of this study not only provide a starting point for further study of ubiquitin function in pigeon species, but also provide a starting point for investigating the brooding mechanisms of pigeons.  相似文献   

3.
Inflammation plays a central role in stroke-induced brain injury. The alpha7 nicotinic acetylcholine receptor (α7nAChR) can modulate immune responses in both the periphery and the brain. The aims of the present study were to investigate α7nAChR expression in different brain regions and evaluate the potential effect of the selective α7nAChR agonist AR-R17779 on ischemia–reperfusion brain injury in mice. Droplet digital PCR (ddPCR) was used to evaluate the absolute expression of the gene encoding α7nAChR (Chrna7) in hippocampus, striatum, thalamus and cortex in adult, naïve mice. Mice subjected to transient middle cerebral artery occlusion (tMCAO) or sham surgery were treated with α7nAChR agonist AR-R17779 (12 mg/kg) or saline once daily for 5 days. Infarct size and microglial activation 7 days after tMCAO were analyzed using immunohistochemistry. Chrna7 expression was found in all analyzed brain regions in naïve mice with the highest expression in cortex and hippocampus. At sacrifice, white blood cell count was significantly decreased in AR-R17779 treated mice compared with saline controls in the sham groups, although, no effect was seen in the tMCAO groups. Brain injury and microglial activation were evident 7 days after tMCAO. However, no difference was found between mice treated with saline or AR-R17779. In conclusion, α7nAChR expression varies in different brain regions and, despite a decrease in white blood cells in sham mice receiving AR-R17779, this compound does not affect stroke-induced brain injury.  相似文献   

4.
Morphological and molecular characterization of clinostomid metacercariae (CMc) was performed with the specimens collected in fish from Korea and Myanmar. Total 6 batches of clinostomid specimens by the fish species and geographical localities, 5 Korean and 1 Myanmar isolates, were analyzed with morphological (light microscopy and SEM) and molecular methods (the cytochrome c oxidase 1 gene and internal transcribed spacer 1/5.8S rRNA sequence). There were some morphological variations among CMc specimens from Korea. However, some morphometrics, i.e., the size of worm body and each organ, ratio of body length to body width, and morphology of cecal lumens, were considerably different between the specimens from Korea and Myanmar. The surface ultrastructures were somewhat different between the specimens from Korea and Myanmar. The CO1 sequences of 5 Korean specimens ranging 728–736 bp showed 99.6–100% identity with Clinostomum complanatum (GenBank no. KM923964). They also showed 99.9–100% identity with C. complanatum (FJ609420) in the ITS1 sequences ranging 692–698 bp. Meanwhile, the ITS1 sequences of Myanmar specimen showed 99.9% identity with Euclinostomum heterostomum (KY312847). Five sequences from Korean specimens clustered with the C. complanatum genes, but not clustered with Myanmar specimens. Conclusively, it was confirmed that CMc from Korea were morphologically and molecularly identical with C. complanatum and those from Myanmar were E. heterostomum.  相似文献   

5.
Root-knot nematodes (RKN) are the most serious plant parasitic nematodes having a broad host range exceeding 2,000 plant species. Quercus brantii Lindl. and Q. infectoria Oliv are the most important woody species of Zagros forests in west of Iran where favors sub-Mediterranean climate. National Botanical Garden of Iran (NBGI) is scheduled to be the basic center for research and education of botany in Iran. This garden, located in west of Tehran, was established in 1968 with an area of about 150 ha at altitude of 1,320 m. The Zagros collection has about 3-ha area and it has been designed for showing a small pattern of natural Zagros forests in west of Iran. Brant’s oak (Q. brantii) and oak manna tree (Q. infectoria) are the main woody species in Zagros collection, which have been planted in 1989. A nematological survey on Zagros forest collection in NBGI revealed heavily infection of 24-yr-old Q. brantii and Q. infectoria to RKN, Meloidogyne hapla. The roots contained prominent galls along with egg sac on the surface of each gall. The galls were relatively small and in some parts of root several galls were conjugated, and all galls contained large transparent egg masses. The identification of M. hapla was confirmed by morphological and morphometric characters and amplification of D2-D3 expansion segments of 28S rRNA gene. The obtained sequences of large-subunit rRNA gene from M. hapla was submitted to the GenBank database under the accession number KP319025. The sequence was compared with those of M. hapla deposited in GenBank using the BLAST homology search program and showed 99% similarity with those KJ755183, GQ130139, DQ328685, and KJ645428. The second stage juveniles of M. hapla isolated from Brant’s oak (Q. Brantii) showed the following morphometric characters: (n = 12), L = 394 ± 39.3 (348 to 450) µm; a = 30.9 ± 4 (24.4 to 37.6); b = 4.6 ± 0.44 (4 to 5.1); b΄ = 3.3 ± 0.3 (2.7 to 3.7), c = 8.0 ± 1 (6.2 to 10.3), ć = 5.3 ± 0.8 (3.5 to 6.3); Stylet = 12.1 ± 0.8 (11 to 13) µm; Tail = 50 ± 5.6 (42 to 57) µm; Hyaline 15 ± 1.8 (12 to 18) µm. Oak manna, Q. infectoria population of second stage juveniles clearly possessed short body length and consequently other morphometric features were less than those determined for Q. brantii population, and these features were: (n = 12), L = 359.0 ± 17.3 (319 to 372) µm; a = 28.6 ± 3 (22.8 to 31); b = 5.0 ± 0.3 (4.8 to 5.2); b΄ = 3.3 ± 0.2 (3 to 3.6), c = 8.1 ± 0.5 (7.4 to 8.8), ć = 4.7 ± 0.5 (3.9 to 5.2); Stylet = 11.4 ± 0.7 (10 to 12) µm; Tail = 44 ± 1.8 (42 to 47) µm; Hyaline 12 ± 1.7 (10 to 15) µm. To date two species of Meloidogyne, M. querciana Golden, 1979 and M. christiei Golden and Kaplan, 1986 have been reported to parasitize oaks (Quercus spp.) from the United States of America. M. querciana was found on pin oak Quercus palustris in Virginia. The oak RKN infected pine oak, red oak, and American chestnut heavily in greenhouse tests (Golden, 1979). The other species M. christiei was described from turkey oak and Q. laevis in Florida, which has monospecific host range (Golden and Kaplan, 1986). Both of these RKN species seem to be restricted to the United States of America and have not been reported from other place. According to our knowledge this is the first report of occurrence of M. hapla on Q. brantii and Q. infectoria in the world. This study includes these two oak species to the host range of RKN, M. hapla for the world and expands the information of RKN, M. hapla host ranges on oaks.  相似文献   

6.
7.
Endophytic fungi viz., Nigrospora sphaerica (E1 and E6), Subramaniula cristata (E7), and Polycephalomyces sinensis (E8 and E10) were isolated from the medicinal plant, Shirazi thyme (Zataria multiflora). In in vitro tests, these endophytes inhibited the mycelial growth of Monosporascus cannonballus, a plant pathogenic fungus. Morphological abnormalities in the hyphae of M. cannonballus at the edge of the inhibition zone in dual cultures with N. sphaerica were observed. The culture filtrates of these endophytes caused leakage of electrolytes from the mycelium of M. cannonballus. To our knowledge, this is the first report on the isolation and characterization of fungal endophytes from Z. multiflora as well as their antifungal effect on M. cannonballus.Key words: Zataria multiflora, antifungal, endophytic fungi, Monosporascus cannonballus

The term “Endophytes” denotes microorganisms that colonize plants’ internal tissues for part of or throughout their life cycle without producing any apparent adverse effect. The endophytic microorganisms include fungi, bacteria, and actinobacteria (Bacon and White 2000). Among them, fungi are the most common endophytic microorganisms (Staniek et al. 2008). Endophytic fungi are ecologically distinct polyphyletic groups of microorganisms, mostly belonging to the Ascomycota phylum (Jia et al. 2016). Several fungal endophytes have been shown to act as biological control agents for managing soil-borne plant pathogens (Toghueo et al. 2016).Zataria multiflora Boiss. (Synonyms: Zataria bracteata Boiss.; Zataria multiflora var. elatior Boiss), belonging to the Lamiaceae family is a traditional medicinal plant commonly used as a flavor ingredient in different types of foods (Sajed et al. 2013). Several medicinal properties of Z. multiflora, including antiseptic, anesthetic, antispasmodic, antioxidant, antibacterial, and immunomodulatory activities, have been documented (Sajed et al. 2013). However, studies on the endophytic microorganisms inhabiting Z. multiflora are limited (Mohammadi et al. 2016).Monosporascus cannonballus Pollack & Uecker (Ascomycota, Sordariomycetes, Diatrypaceae) is one of the most important phytopathogenic fungi causing root rot and vine decline disease in muskmelon. It causes sudden wilt and collapse of the plant at the fruiting stage, which may result in total yield loss (Martyn and Miller 1996). The fungus also infects pumpkin, cucumber, courgette, and watermelon plants (Mertely et al. 1993). The control of M. cannonballus in melon and other cucurbit crops is difficult because of the pathogen’s soil-borne nature. Earlier reports indicated that arbuscular mycorrhizal fungi (AMF) (Aleandri et al. 2015), hypovirulent isolates of M. cannonballus (Batten et al. 2000), Trichoderma spp. (Zhang et al. 1999), and antagonistic rhizobacteria (Al-Daghari et al. 2020) are effective agents for the reduction of M. cannonballus-induced root rot and vine decline of melon. In addition, it is well established that many endophytic fungi isolated from medicinal plants possess antimicrobial activity against phytopathogenic fungi (Jia et al. 2016). The objective of this study was to investigate the presence of endophytic fungi in Z. multiflora and to study theirs in vitro antagonistic activity against M. cannonballus.Z. multiflora plants (accession number 201100114) were obtained from Oman Botanic Garden, Al-Khoud, Sultanate of Oman. The plants were healthy, showing no apparent symptoms of any disease or pest infestation. A virulent isolate of M. cannonballus (ID14367), obtained from the roots of a melon plant showing root rot and vine decline (Al-Rawahi et al. 2018) was used in this study. The culture was maintained on potato dextrose agar (PDA) medium (Oxoid Ltd., Basingstoke, UK).To isolate endophytic fungi, Z. multiflora plants were washed in tap water to remove adhering soil particles. The leaves were separated, cut into small pieces, and surface-sterilized by washing in 70% (v/v) ethanol for 1 min and then in 1% (v/v) sodium hypochlorite for 1 min. The plant tissues were then washed 3–4 times with sterilized distilled water. The leaf tissue pieces were further cut into small pieces (0.2–0.5 cm in length) using a sterile scalpel and placed on PDA medium. The plates were incubated at 25 ± 2°C for 7–10 days, and pure cultures of the endophytic fungi were obtained (Lu et al. 2012).DNA was extracted from the mycelia for molecular identification of endophytic fungi according to the method described by Liu et al. (2000). PCR amplification of the Internal Transcribed Spacer (ITS) regions of the fungal rDNA was performed using the primers ITS4 (5’-TCCTCCGCTTATTGATATGC-3’) and ITS5 (5’-GGAAGTAAAAGTCGTAACAAGG-3’) as described by Halo et al. (2018). The PCR products of the expected sizes were sequenced at Macrogen, Seoul, Korea. The sequences were subjected to BLAST searches using the National Center for Biotechnology Information (NCBI) database (http://www.ncbi.nlm.nih.gov).A dual culture technique was used to test the in vitro antagonistic effect of the endophytic fungi against M. cannonballus. A mycelial plug (7-mm diameter) was excised from the fungal endophyte colonies and placed on one side of a PDA plate (90-mm diameter) about 1 cm away from the edge. On the same plate, a 7-mm diameter disc of M. cannonballus was placed on the opposite side at 1 cm distance from the edge. The Petri plates inoculated with M. cannonballus alone were used as control. Four Petri plates per treatment were used. The Petri plates were incubated at 25 ± 2°C, and the radial growth of M. cannonballus was measured after 5–7 days of incubation. The mycelial growth inhibition was calculated using the following formula: % inhibition=[1(T/C)]×100where C – radial growth of M. cannonballus in the control plate and T – radial growth of M. cannonballus in the dual culture plate (Toghueo et al. 2016).To investigate the antagonistic effects of the endophytic fungi on the morphology of M. cannonballus hyphae, the five-mm agar plug samples of M. cannonballus were excised from the colony edges of inhibition zone in the dual culture plate. The samples for scanning electron microscopy were prepared according to the method reported by Goldstein et al. (2003) and observed with a JEOL (Model: JSM-7800F) scanning electron microscope. The culture of M. cannonballus grown in the absence of endophytic fungi served as control.To perform the electrolyte leakage assay, the endophytic fungi were cultured in 200 ml of Czapek Dox broth (static) in 500 ml conical flasks at room temperature (25 ± 2°C) for 14 days, and the culture filtrates were obtained by filtering through Whatman No. 1 filter paper. Five hundred mg of M. cannonballus mycelium were added to 20 ml of culture filtrate in a glass vial. The conductivity of the suspension was measured at 0, 1, and 3 h after incubation by using a conductivity meter (Halo et al. 2018). There were three replicates per treatment and control.Data from the in vitro growth inhibition and the electrolyte leakage assays were statistically analyzed using general linear model ANOVA using Minitab Statistical Software version 17 (Minitab Inc., State College, USA). When ANOVA revealed significant differences between treatments, means were separated using Tukey’s studentized range test at p ≤ 0.05. Arc sine transformation of data on % mycelial growth inhibition was done prior to analysis.A total of five morphologically distinct fungal endophytes were obtained from the leaves of Z. multiflora. Based on the rDNA ITS sequence analysis, these endophytic fungal (Ascomycota, Sordariomycetes) isolates were identified as Nigrospora sphaerica (Amphisphaeriales, Apiosporaceae) (E1 and E6), Subramaniula cristata (Sordariales, Chaetomiaceae) (E7) and Polycephalomyces sinensis (Hypocreales, Ophiocordycipitaceae) (E8 and E10). The sequences were deposited in the GenBank database (http://www.ncbi.nlm.nih.gov/genbank/) under the accession numbers MH028052, MH028054, MH028055, MH028056, and MH028058. P. sinensis is an important medicinal fungus. Numerous pharmacological activities of P. sinensis including immunomodulatory, anti-estrogenicity and antitumor activities have been documented (Wang et al. 2012). N. sphaerica has been reported as an endophyte (Wang et al. 2017) as well as a pathogen in a few plant species (Wright et al. 2008; Liu et al. 2016). However, Z. multiflora plants colonized with these endophytic fungi were healthy and did not show any observable disease symptoms.The in vitro dual culture antagonism assay showed that all the five endophytic fungi inhibited the mycelial growth of M. cannonballus. N. sphaerica E1 was the most effective (81.7%), followed by P. sinensis E8 (80.6%), P. sinensis E10 (75.8%) and N. sphaerica E6 (66.1%). S. cristata E7 was the least effective, which recorded 38.7% inhibition (Table (TableI,I, Fig. Fig.1).1). Further, scanning electron microscopic observations of the hyphae of M. cannonballus from the dual culture assay plates at the edge of the inhibition zone revealed morphological abnormalities such as disintegration, shrinkage, and loss of turgidity. Scanning electron micrograph of M. cannonballus after co-cultivation with the endophytic fungus N. sphaerica E1 is shown in Fig. Fig.2.2. These findings corroborate with those of Hajlaoui et al. (1992) who reported plasmolysis of Sphaerotheca pannosa var. rosae mycelium due to the antagonistic effect of Sporothrix flocculosa. Halo et al. (2018) reported shrinkage of Pythium aphanidermatum hyphae due to the antagonistic activity of Aspergillus terreus. The shrinkage of M. cannonballus hyphae in the present study suggests a possible leakage of cytoplasmic contents (Garg et al. 2010). The loss of the turgidity of M. cannonballus hyphae indicates alterations in the permeability of the cell membrane (Halo et al. 2018). Several reports indicate the production of antimicrobial substances by endophytic fungi (Zhao et al. 2012; Homthong et al. 2016). Kim et al. (2001) demonstrated that phomalactone, a compound produced by N. sphaerica restricted the mycelial growth and germination of sporangium and zoospore of Phytophthora infestans and decreased the incidence of late blight in tomato. Zhao et al. (2012) characterized four secondary antifungal metabolites viz., dechlorogriseofulvin, griseofulvin, mullein, and 8-dihydroramulosin from the liquid cultures of the endophytic fungus Nigrospora sp. isolated from roots of the medicinal plant, Moringa oleifera. Homthong et al. (2016) reported the production of chitinase by Paecilomyces (Polycephalomyces) sp. The inhibitory effect of endophytic fungi on the hyphae of M. cannonballus in this study might be due to the production of antifungal metabolites.Table IPercentage inhibition of mycelial growth of M. cannonballus by endophytic fungi isolated from Zataria multiflora in dual cultures on PDA.
Fungal endophyte% Inhibition
Nigrospora sphaerica E181.7 (64.7) ± 5.5a
Nigrospora sphaerica E666.1 (54.4) ± 1.9a
Subramaniula cristata E738.7 (38.5) ± 3.7b
Polycephalomyces sinensis E880.6 (63.9) ± 11.2a
Polycephalomyces sinensis E1075.8 (60.5) ± 9.3a
Open in a separate windowData are mean of four replications ± standard deviation. Figures in parentheses are arc sine transformed values. Values in columns followed by different letters indicate significant differences according to the Tukey’s test (p < 0.05).Open in a separate windowFig. 1.In vitro growth inhibition of Monosporascus cannonballus after dual cultivation with several endophytic fungi from Zataria multiflora.a) M. cannonballus (Mc) alone; b) M. cannonballus + N. sphaerica E1; c) M. cannonballus + N. sphaerica E6; d) M. cannonballus + S. cristata E7; e) M. cannonballus + Paecilomyces sinensis E8; f) M. cannonballus + P. sinensis E10Open in a separate windowFig. 2.Scanning electron micrograph showing morphological changes in the hyphae of Monosporascus cannonballus at the edge of the inhibition zone after co-cultivation with Nigrospora sphaerica E1 in PDA platesa) Hyphae of M. cannonballus in the control; b) Hyphae of M. cannonballus after co-cultivation with N. sphaerica E1.Several reports indicate that leakage of electrolytes is an indicator of cell membrane damage in fungi (Manhas and Kaur 2016; Halo et al. 2018). The present study observed that the culture filtrates of endophytic fungi induced electrolyte leakage from the mycelium of M. cannonballus as assessed by increased conductivity of mycelial suspension upon treatment with the culture filtrates of endophytic fungi (Table (TableII).II). The maximum release of electrolytes was observed with N. sphaerica E1, followed by N. sphaerica E6, P. sinensis E10, S. cristata E7, and P. sinensis E8. The results suggest the production of antifungal metabolites as one of the possible mechanisms of action of these fungal endophytes on M. cannonballus.Table IIElectrolyte leakage induced by culture filtrates of endophytic fungi from the mycelium of M. cannonballus.
TreatmentsElectrical conductivity (mS cm–1)
0 min1 h3 h
Nigrospora sphaerica E13.95 ± 0.02a3.98 ± 0.02a4.12 ± 0.06a
Nigrospora sphaerica E63.90 ± 0.02b3.87 ± 0.02a4.01 ± 0.04b
Subramaniula cristata E73.46 ± 0.00c3.41 ± 0.01c3.55 ± 0.01d
Polycephalomyces sinensis E83.10 ± 0.03d3.28 ± 0.14c3.14 ± 0.01e
Polycephalomyces sinensis E103.50 ± 0.02c3.61 ± 0.00b3.71 ± 0.01c
Czapek Dox broth (un inoculated)2.01 ± 0.00e2.01 ± 0.00d2.08 ± 0.00f
Control (water)0.65 ± 0.01f0.67 ± 0.00e0.71 ± 0.01g
Open in a separate windowData shown correspond to mean of three replications ± the standard deviation. Values in columns followed by different letters indicate significant differences according to the Tukey’s test (p < 0.05).To our knowledge, this study is the first to report in vitro inhibitory activity of fungal endophytes isolated from Z. multiflora against M. cannonballus. Further studies are needed to evaluate the potential of these fungal endophytes in controlling root rot and vine decline disease of melon, assess their endophytic movement in melon plant, and to determine the mode of action of these fungal endophytes on M. cannonballus.  相似文献   

8.

Aim

The aim of this study was to investigate and evaluate the role of magnetic resonance (MR) diffusion kurtosis imaging (DKI) in characterizing breast lesions.

Materials and Methods

One hundred and twenty-four lesions in 103 patients (mean age: 57±14 years) were evaluated by MR DKI performed with 7 b-values of 0, 250, 500, 750, 1,000, 1,500, 2,000 s/mm2 and dynamic contrast-enhanced (DCE) MR imaging. Breast lesions were histologically characterized and DKI related parameters—mean diffusivity (MD) and mean kurtosis (MK)—were measured. The MD and MK in normal fibroglandular breast tissue, benign and malignant lesions were compared by One-way analysis of variance (ANOVA) with Tukey''s multiple comparison test. Receiver operating characteristic (ROC) analysis was performed to assess the sensitivity and specificity of MD and MK in the diagnosis of breast lesions.

Results

The benign lesions (n = 42) and malignant lesions (n = 82) had mean diameters of 11.4±3.4 mm and 35.8±20.1 mm, respectively. The MK for malignant lesions (0.88±0.17) was significantly higher than that for benign lesions (0.47±0.14) (P<0.001), and, in contrast, MD for benign lesions (1.97±0.35 (10−3 mm2/s)) was higher than that for malignant lesions (1.20±0.31 (10−3 mm2/s)) (P<0.001). At a cutoff MD/MK 1.58 (10−3 mm2/s)/0.69, sensitivity and specificity of MD/MK for the diagnosis of malignant were 79.3%/84.2% and 92.9%/92.9%, respectively. The area under the curve (AUC) is 0.86/0.92 for MD/MK.

Conclusions

DKI could provide valuable information on the diffusion properties related to tumor microenvironment and increase diagnostic confidence of breast tumors.  相似文献   

9.
AbstractUntreated wastewater contains toxic amounts of heavy metals such as chromium (Cr), which poses a serious threat to the growth and physiology of plants when used in irrigation. Though, Cr is among the most widespread toxic trace elements found in agricultural soils due to various anthropogenic activities. To explore the interactive effects of micronutrients with amino acid chelators [iron-lysine (Fe-lys) and zinc-lysine (Zn-lys)], pot experiments were conducted in a controlled environment, using spinach (Spinacia oleracea L.) plant irrigated with tannery wastewater. S. oleracea was treated without Fe and Zn-lys (0 mg/L Zn-lys and 0 mg/L Fe-lys) and also treated with various combinations of (interactive application) Fe and Zn-lys (10 mg/L Zn-lys and 5 mg/L Fe-lys), when cultivated at different levels [0 (control) 33, 66 and 100%) of tannery wastewater in the soil having a toxic level of Cr in it. According to the results, we have found that, high concentration of Cr in the soil significantly (P < 0.05) reduced plant height, fresh biomass of roots and leaves, dry biomass of roots and leaves, root length, number of leaves, leaf area, total chlorophyll contents, carotenoid contents, transpiration rate (E), stomatal conductance (gs), net photosynthesis (PN), and water use efficiency (WUE) and the contents of Zn and Fe in the plant organs without foliar application of Zn and Fe-lys. Moreover, phytotoxicity of Cr increased malondialdehyde (MDA) contents in the plant organs (roots and leaves), which induced oxidative damage in S. oleracea manifested by the contents of hydrogen peroxide (H2O2) and membrane leakage. The negative effects of Cr toxicity could be overturned by Zn and Fe-lys application, which significantly (P < 0.05) increase plant growth, biomass, chlorophyll content, and gaseous exchange attributes by reducing oxidative stress (H2O2, MDA, EL) and increasing the activities of various antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD) catalase (CAT) and ascorbate peroxidase (APX). Furthermore, the supplementation of Zn and Fe-lys increased the contents of essential nutrients (Fe and Zn) and decreased the content of Cr in all plant parts compared to the plants cultivated in tannery wastewater without application of Fe-lys. Taken together, foliar supplementation of Zn and Fe-lys alleviates Cr toxicity in S. oleracea by increased morpho-physiological attributes of the plants, decreased Cr contents and increased micronutrients uptake by the soil, and can be an effective in heavy metal toxicity remedial approach for other crops.Graphic abstract  相似文献   

10.
Photolyases can repair pyrimidine dimers on the DNA that are formed during UV irradiation. PhrB from Agrobacterium fabrum represents a new group of prokaryotic (6–4) photolyases which contain an iron-sulfur cluster and a DMRL chromophore. We performed site-directed mutagenesis in order to assess the role of particular amino acid residues in photorepair and photoreduction, during which the FAD chromophore converts from the oxidized to the enzymatically active, reduced form. Our study showed that Trp342 and Trp390 serve as electron transmitters. In the H366A mutant repair activity was lost, which points to a significant role of His366 in the protonation of the lesion, as discussed for the homolog in eukaryotic (6–4) photolyases. Mutants on cysteines that coordinate the Fe-S cluster of PhrB were either insoluble or not expressed. The same result was found for proteins with a truncated C-terminus, in which one of the Fe-S binding cysteines was mutated and for expression in minimal medium with limited Fe concentrations. We therefore assume that the Fe-S cluster is required for protein stability. We further mutated conserved tyrosines that are located between the DNA lesion and the Fe-S cluster. Mutagenesis results showed that Tyr424 was essential for lesion binding and repair, and Tyr430 was required for efficient repair. The results point to an important function of highly conserved tyrosines in prokaryotic (6–4) photolyases.  相似文献   

11.
Isoprenoid precursor biosynthesis occurs through the mevalonate or the methylerythritol phosphate (MEP) pathway, used i.e., by humans and by many human pathogens, respectively. In the MEP pathway, 2-C-methyl-d-erythritol-2,4-cyclo-diphosphate (MEcPP) is converted to (E)-1-hydroxy-2-methyl-but-2-enyl-4-diphosphate (HMBPP) by the iron-sulfur cluster enzyme HMBPP synthase (GcpE). The presented X-ray structure of the GcpE-MEcPP complex from Thermus thermophilus at 1.55 Å resolution provides valuable information about the catalytic mechanism and for rational inhibitor design. MEcPP binding inside the TIM-barrel funnel induces a 60° rotation of the [4Fe-4S] cluster containing domain onto the TIM-barrel entrance. The apical iron of the [4Fe-4S] cluster ligates with the C3 oxygen atom of MEcPP.  相似文献   

12.
Connectivity of marine populations is shaped by complex interactions between biological and physical processes across the seascape. The influence of environmental features on the genetic structure of populations has key implications for the dynamics and persistence of populations, and an understanding of spatial scales and patterns of connectivity is crucial for management and conservation. This study employed a seascape genomics approach combining larval dispersal modeling and population genomic analysis using single nucleotide polymorphisms (SNPs) obtained from RADseq to examine environmental factors influencing patterns of genetic structure and connectivity for a highly dispersive mud crab Scylla olivacea (Herbst, 1796) in the Sulu Sea. Dispersal simulations reveal widespread but asymmetric larval dispersal influenced by persistent southward and westward surface circulation features in the Sulu Sea. Despite potential for widespread dispersal across the Sulu Sea, significant genetic differentiation was detected among eight populations based on 1,655 SNPs (FST = 0.0057, p < .001) and a subset of 1,643 putatively neutral SNP markers (FST = 0.0042, p < .001). Oceanography influences genetic structure, with redundancy analysis (RDA) indicating significant contribution of asymmetric ocean currents to neutral genetic variation (Radj2 = 0.133, p = .035). Genetic structure may also reflect demographic factors, with divergent populations characterized by low effective population sizes (N e < 50). Pronounced latitudinal genetic structure was recovered for loci putatively under selection (FST = 0.2390, p < .001), significantly correlated with sea surface temperature variabilities during peak spawning months for S. olivacea (Radj2 = 0.692–0.763; p < .050), suggesting putative signatures of selection and local adaptation to thermal clines. While oceanography and dispersal ability likely shape patterns of gene flow and genetic structure of S. olivacea across the Sulu Sea, the impacts of genetic drift and natural selection influenced by sea surface temperature also appear as likely drivers of population genetic structure. This study contributes to the growing body of literature documenting population genetic structure and local adaptation for highly dispersive marine species, and provides information useful for spatial management of the fishery resource.  相似文献   

13.

Background

Riemerella anatipestifer is one of the most important pathogens of ducks. However, the molecular mechanisms of R. anatipestifer infection are poorly understood. In particular, the lack of genomic information from a variety of R. anatipestifer strains has proved severely limiting.

Results

In this study, we present the complete genomes of two R. anatipestifer strains, RA-CH-1 (2,309,519 bp, Genbank accession CP003787) and RA-CH-2 (2,166,321 bp, Genbank accession CP004020). Both strains are from isolates taken from two different sick ducks in the SiChuang province of China. A comparative genomics approach was used to identify similarities and key differences between RA-CH-1 and RA-CH-2 and the previously sequenced strain RA-GD, a clinical isolate from GuangDong, China, and ATCC11845.

Conclusion

The genomes of RA-CH-2 and RA-GD were extremely similar, while RA-CH-1 was significantly different than ATCC11845. RA-CH-1 is 140,000 bp larger than the three other strains and has 16 unique gene families. Evolutionary analysis shows that RA-CH-1 and RA-CH-2 are closed and in a branch with ATCC11845, while RA-GD is located in another branch. Additionally, the detection of several iron/heme-transport related proteins and motility mechanisms will be useful in elucidating factors important in pathogenicity. This information will allow a better understanding of the phenotype of different R. anatipestifer strains and molecular mechanisms of infection.  相似文献   

14.
Additions of methionine sulfoximine (MSX), an inhibitor of glutamine synthetase (GS), result in an increase in NH3 in seedling leaves of C3 (wheat [Triticum aestivum cv. Kolibri] and barley [Hordeum vulgare var Perth]) and C4 (corn [Zea mays W6A × W182E] and sorghum [Sorghum Vulgare var MK300]) plants. NH3 accumulation is higher in C3 (about 17.8 micromoles per gram fresh weight per hour) than in C4 (about 4.7 micromoles) leaves. Under ideal conditions, when photosynthesis is not yet inhibited by the accumulation of NH3, the rate of NH3 accumulation is about 16% of the apparent rate of photosynthesis. A maximum accumulation of NH3 was elicited by 2.5 millimolar MSX and was essentially independent of the addition of NO3 during either the growth or experimental period. When O2 levels in the air were reduced to 2%, MSX resulted in some accumulation of NH3 (6.0 micromoles per gram fresh weight per hour). At these levels of NH3, there was no significant inhibition of rates of CO2 fixation. There was also a minor, but significant, accumulation of NH3 in corn roots treated with MSX. Inhibitors of photorespiration (isonicotinic hydrazide, 70 millimolar; 2-pyridylhydroxymethanesulfonic acid, 20 millimolar) or transaminase reactions (aminooxyacetate, 1 millimolar) inhibited the accumulation of NH3 in both C3 and C4 leaves. These results support the hypothesis that GS is important in the assimilation of NH3 in leaves and that the glycine-serine conversion is a major source of that NH3.  相似文献   

15.
The mitochondrial genome is now widely used in the study of phylogenetics and molecular evolution due to its maternal inheritance, fast evolutionary rate, and highly conserved gene content. To explore the phylogenetic relationships of the tribe Aeromachini within the subfamily Hesperiinae at the mitochondrial genomic level, we sequenced and annotated the complete mitogenomes of 3 skippers: Ampittia virgata, Halpe nephele, and Onryza maga (new mitogenomes for 2 genera) with a total length of 15,333 bp, 15,291 bp, and 15,381 bp, respectively. The mitogenomes all contain 13 protein‐coding genes (PCGs), 22 transfer RNAs (tRNAs), 2 ribosomal RNAs (rRNAs), and a noncoding A + T‐rich region and are consistent with other lepidopterans in gene order and type. In addition, we reconstructed the phylogenetic trees of Hesperiinae using maximum likelihood (ML) and Bayesian inference (BI) methods based on mitogenomic data. Results show that the tribe Aeromachini in this study robustly constitute a monophyletic group in the subfamily Hesperiinae, with the relationships Coeliadinae + (Euschemoninae + (Pyrginae + ((Eudaminae + Tagiadinae) + (Heteropterinae + ((Trapezitinae + Barcinae) + Hesperiinae))))). Moreover, our study supports the view that Apostictopterus fuliginosus and Barca bicolor should be placed out of the subfamily Hesperiinae.  相似文献   

16.
The symbiosis between scleractinian corals and photosynthetic algae from the family Symbiodiniaceae underpins the health and productivity of tropical coral reef ecosystems. While this photosymbiotic association has been extensively studied in shallow waters (<30 m depth), we do not know how deeper corals, inhabiting large and vastly underexplored mesophotic coral ecosystems, modulate their symbiotic associations to grow in environments that receive less than 1% of surface irradiance. Here we report on the deepest photosymbiotic scleractinian corals collected to date (172 m depth), and use amplicon sequencing to identify the associated symbiotic communities. The corals, identified as Leptoseris hawaiiensis, were confirmed to host Symbiodiniaceae, predominantly of the genus Cladocopium, a single species of endolithic algae from the genus Ostreobium, and diverse communities of prokaryotes. Our results expand the reported depth range of photosynthetic scleractinian corals (0–172 m depth), and provide new insights on their symbiotic associations at the lower depth extremes of tropical coral reefs.Subject terms: Symbiosis, Microbial ecology

The ecological success of scleractinian corals, the engineers of one of the most productive and diverse ecosystems on Earth, relies on a myriad of symbiotic associations with microorganisms [1]. Among these symbioses, the association between the coral host and unicellular algae from the family Symbiodiniaceae is central to coral health and powers the metabolically expensive process of calcification [2]. The coral host provides limited inorganic nutrients, while Symbiodiniaceae share essential organic compounds derived from their photosynthetic activity [3]. This light-dependent association has mainly been studied in shallow waters (<30 m) because of technical limitations imposed by traditional scientific scuba diving. However, photosynthetic scleractinian corals have been observed in the mesophotic reef slope down to 150–165 m depth [4, 5].As depth increases, the waveband of solar radiation used by most algae for photosynthesis (from 400–700 nm) becomes attenuated in both intensity and width. Even in clear tropical waters, the irradiance levels below 120 m depth can be less than 1% of surface values, and the light spectrum is shifted toward the blue and blue–green wavelengths (~475 nm) (e.g. [4]). These light limitations pose a major constraint for the productivity of benthic organisms that rely on photosynthetic symbionts [6], including reef-building corals (scleractinians). While the scleractinian coral species Leptoseris hawaiiensis has been reported to occur as deep as 153 m in Hawaii and 165 m at Johnston atoll (reviewed in [4]), no live specimens were collected at these extreme depths. The fact that Symbiodiniaceae have been found at much greater depth in association with Antipatharians (396 m) [7], raises the possibility that they might also be present in scleractinian corals deeper than 165 m. Previous studies have genetically confirmed and identified endosymbiotic Symbiodiniaceae in Leptoseris down to 70 m on the Great Barrier Reef [8] and down to 125 m depth in Hawaii [911]. A specific host-Symbiodiniaceae association was reported between deep L. hawaiiensis and a Cladocopium from the ancestral C1 radiation [911], which represents a diverse group of Symbiodiniaceae commonly found in association with scleractinians on shallow coral reefs [8, 9, 12, 13]. To better understand how scleractinian corals can survive so far away from their presumed light optimum, it is critical to determine if these deep specimens (1) maintain their association with photosynthetic algae and/or (2) if their survival in the deepest mesophotic coral ecosystems requires a shift in their microbial communities, including Symbiodiniaceae and other microorganisms such as endolithic algae and bacteria.Here we report on the observation and collection of the deepest scleractinian corals in association with Symbiodiniaceae and other photosymbionts. Technical divers using closed-circuit rebreathers recovered three L. hawaiiensis colonies from the Gambier archipelago (French Polynesia, Fig. 1A) at 154, 168, and 172 m depth (n = 2 subsamples for each depth; Fig. 1B–D). Irradiance measured at 120 m depth was <2% of that recorded at 6 m depth and irradiance at 172 m was predicted to be <1% (Fig.(Fig.1E1E and S1). ITS2 sequencing revealed Symbiodiniaceae presence in all three lower mesophotic colonies sampled, with nearly all of the retrieved amplicon sequence variants (ASVs; with most of these representing intragenomic sequence variants) classified as Cladocopium (Fig. 2). The most common ITS2 ASV representative sequence associated with these Leptoseris hosts (S-01, Fig. 2 and S2; 50–57% of total ASVs in each sample) was C1 (GeoSymbio and SymPortal databases; see supplementary methods). This represents one of the most common groups of Symbiodiniaceae, and it has previously been reported in Leptoseris [9, 10, 14], as well as other host species at depths ranging from the surface to 125 m [8, 10, 11, 1315]. As a complementary approach, ITS2 profiles predicted by SymPortal were used as proxy for Symbiodiniaceae genotypes ([16]; see supplementary methods and data files S1–S4). These predicted ITS2 profiles were largely consistent among replicates but confirmed a different profile for the colony at 172 m depth compared to those at 154 and 168 m depth (Fig. S2). Nonetheless, the Symbiodiniaceae communities shared three ASVs that exactly matched C89 (S-02: 5% at 172 m vs. 17–19% at 154–168 m) and two different C variants (both S-05 and S-07: 7% at 172 m vs. ~2% at 154–168 m) in public databases (Fig. S3; GeoSymbio, SymPortal or Genbank). Of the 26 ASVs identified across all samples, one sequence originated from Durusdinium (S-24 D1 with GeoSymbio and SymPortal databases). This sequence is found in multiple heat-tolerant Durusdinium species including the enigmatic, cosmopolitan [17], host generalist D. trenchii [18]. However, whether or not the Symbiodiniaceae sampled here is D. trenchii or indeed thermally tolerant cannot be confirmed without further genetic and phenotypic data. Low abundance ASVs were observed at all three depths (172 m: 8 ASVs, 154 and 168 m: 10 ASVs, Fig. S3), including nine ASV sequences (Fig. 2) that have not been reported previously in the GeoSymbio [13] and SymPortal (access date: 2020-05-19_07-23-40) [16] databases (Fig. S3). Comparison of the overall Symbiodiniaceae SymPortal predicted ITS2 profiles (Fig. S2) did not confidently identify matches with previously encountered profiles (predominantly from shallow reef environments), indicating that they might be specific to this species and/or mesophotic environment. Given the extreme paucity of light at these depths, we hypothesize that lower mesophotic L. hawaiiensis may use different strategies to photoacclimate. Morphologically, the coral species were characterized by a thin flat skeleton (Fig. 1B–D), which is optimal for light harvesting and reducing skeletal carbonate deposition [19]. Leptoseris hawaiiensis has also been shown to display depth-associated physiological specialization and trophic plasticity (acquiring energy from different food sources) [9], and an unusual light-harvesting system, which enlarges the spectrum of wavelengths for photosynthesis by transforming the short, blue-shifted wavelength with their autofluorescent pigments [19].Open in a separate windowFig. 1Sampling location of the deepest photosymbiotic scleractinian coral recorded to date.A Map of the Gambier archipelago, French Polynesia. Pictures of Leptoseris hawaiiensis collected at 172 m depth in the Gambier archipelago (B) during the in situ sampling (screenshot of video © UTP III), (C) after reaching the surface and (D) after bleaching for taxonomic identification with the green color indicating the presence of endolithic algae. E Variation of the optical index of irradiance (in PAR) along the coral reef depth gradient from 6 to 120 m depth (predictions for 150 and 172 m depths) at Mangareva. For each depth, the three values represent a mean value for 3 days of measurements recorded every 5 min with a PAR logger (DEFI2-L Advantech) at three different time periods of the day (9 h30–10 h00, 12 h30–13 h00 and 15 h30–16 h00).Open in a separate windowFig. 2Microbial communities harbored by the three deep colonies.Composition of the microbial community in Leptoseris hawaiiensis collected at 172, 168, and 154 m. At each depth, two subsamples were analyzed for each colony. The ITS2 marker shows the relative proportion of different Symbiodiniaceae ASVs (with GeoSymbio and SymPortal v.2020-05-19_07-23-40 affiliations). The 16S rDNA marker shows the relative proportions of different ASVs for endolithic algae chloroplast composition and bacteria classes. Asterisk represents sequences with no exact match in the SymPortal database for Symbiodiniaceae.To identify other microorganisms associated with our lower mesophotic scleractinian colonies, we targeted the 16S rRNA gene (V4–V5 region; see supplementary methods). Sequencing data revealed the presence of green algal chloroplast sequences belonging to the genus Ostreobium (Fig. 2). This endolithic alga was abundant in the deep coral colonies as suggested by the marked green color observed below the living tissues (Fig. 1C) and within the skeleton after removing the soft tissues in bleach (Fig. 1D). We identified a single Ostreobium species (ASV ga-01), belonging to clade 2, that was dominant in all the colonies (Fig. 2 and S4), and has been previously reported across the depth gradient in scleractinian corals and octocorals worldwide [20, 21]. The nature of the interaction between corals and Ostreobium has been debated. Evidence supports a mutualistic association under extreme conditions such as coral stress (inducing bleaching) [22] or drastically reduced light exposure [23]. Under the low light conditions of the deep mesophotic fore reef slope, Ostreobium might complement Symbiodiniaceae’s function by providing photosynthates to the host. These endolithic algae are adapted to photosynthesize in near-darkness with increased numbers of light-harvesting xanthophyll pigments that can use shorter wavelengths compared to other green algae and optimize light capture (e.g. [24]).Bacteria associated with the lower mesophotic scleractinian colonies had an observed richness ranging from 106 to 211 ASVs per sample (Fig. S5). These bacteria mainly belonged to the classes Alpha- (19-49%) and Gamma-proteobacteria (8–17%), Bacteroidia (6–20%) and subgroup-6 of Acidobacteria (1–17%) (Fig. 2), which are known to associate with corals [25]. In total, we detected 843 different bacterial ASVs, among which 67–89% were unique to one colony or even unique to one subsample (Fig. S6 and Table S1). Our data suggest that the coral hosts displayed individual microbial signatures with some common ASVs shared between subsamples of the same colony (Fig. S6). However, this result might have been affected by the low-sequencing depth of the microbiome following the removal of the Ostreobium reads. Our results corroborate previous reports describing the high intra-specific variability of coral-associated bacterial communities at different spatial scales (e.g. [25, 26]), which might be driven by biological traits, such as the age [27] or diets of the colonies [28].This study reports a new depth record for scleractinian corals associated with symbiotic algae at 172 m. Similar to conspecifics previously sampled in mesophotic environments between 115 and 125 m depth [10], the deepest L. hawaiiensis reported here associated with symbiotic-microalgae belonging to the highly diverse C1 lineage. The deep colonies were also characterized by the presence and abundance of a single species of endolithic alga from the genus Ostreobium (clade 2). These filamentous green algae adapted to thrive in extreme low light conditions [24] might highly contribute to the survival of L. hawaiiensis at depth through photosynthates translocation [29]. In addition, bacterial communities were diverse, with intraspecific differences in community composition. Our findings provide new insights into the symbioses of scleractinian corals at depth, through the conservation of their associated photosymbiotic algae, raising important questions about the nature and mechanisms involved in the interactions between host and Symbiodiniaceae and/or Ostreobium (e.g. evolutionary theory of symbiosis [30]). Future studies should establish the contribution of photosynthetic symbionts to the energy budget of mesophotic corals. Understanding the biology of ecosystem engineers, such as tropical reef corals, living at the edge of their habitat range is important to determine the plasticity of these organisms and their ability to withstand environmental pressure.  相似文献   

17.
Soil temperatures in Italian rice fields typically range between about 15 and 30°C. A change in the incubation temperature of anoxic methanogenic soil slurry from 30°C to 15°C typically resulted in a decrease in the CH4 production rate, a decrease in the steady-state H2 partial pressure, and a transient accumulation of acetate. Previous experiments have shown that these changes were due to an alteration of the carbon and electron flow in the methanogenic degradation pathway of organic matter caused by the temperature shift (K. J. Chin and R. Conrad, FEMS Microbiol. Ecol. 18:85–102, 1995). To investigate how temperature affects the structure of the methanogenic archaeal community, total DNA was extracted from soil slurries incubated at 30 and 15°C. The archaeal small-subunit (SSU) rRNA-encoding genes (rDNA) of these environmental DNA samples were amplified by PCR with an archaeal-specific primer system and used for the generation of clone libraries. Representative rDNA clones (n = 90) were characterized by terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis. T-RFLP analysis produced for the clones terminally labeled fragments with a characteristic length of mostly 185, 284, or 392 bp. Sequence analysis allowed determination of the phylogenetic affiliation of the individual clones with their characteristic T-RFLP fragment lengths and showed that the archaeal community of the anoxic rice soil slurry was dominated by members of the families Methanosarcinaceae (185 bp) and Methanosaetaceae (284 bp), the kingdom Crenarchaeota (185 or 284 bp), and a novel, deeply branching lineage of the (probably methanogenic) kingdom Euryarchaeota (392 bp) that has recently been detected on rice roots (R. Großkopf, S. Stubner, and W. Liesack, Appl. Environ. Microbiol. 64:4983–4989, 1998). The structure of the archaeal community changed when the temperature was shifted from 30°C to 15°C. Before the temperature shift, the clones (n = 30) retrieved from the community were dominated by Crenarchaeota (70%), “novel Euryarchaeota” (23%), and Methanosarcinacaeae (7%). Further incubation at 30°C (n = 30 clones) resulted in a relative increase in members of the Methanosarcinaceae (77%), whereas further incubation at 15°C (n = 30 clones) resulted in a much more diverse community consisting of 33% Methanosarcinaceae, 23% Crenarchaeota, 20% Methanosaetaceae, and 17% novel Euryarchaeota. The appearance of Methanosaetaceae at 15°C was conspicuous. These results demonstrate that the structure of the archaeal community in anoxic rice field soil changed with time and incubation temperature.  相似文献   

18.
Bamboo is grown sporadically in the north of Iran and is confined to very limited areas. The history of growing bamboo was to some extent simultaneous with the entrance, commencement, and growth of the tea industry in the north about a century ago. The bamboo was used for making baskets to transfer the harvested tea foliage from farm to the factory and other linked functions. A main area allocated for bamboo growing is located in Lahidjan Agricultural Research Station (LARS) in the north of Iran, where several species of bamboo were cultivated in an area of 5 ha. The species include five species of Phyllostachys (viz., P. aurea, P. bambusoides, P. decora, P. nigra, P. vivax) and one species of Arundinaria gigantean, Pleioblastus fortune, and Semiarundinaria fastuosa; however, only P. aurea and P. nigra have been precisely identified. A survey on plant parasitic nematodes associated with bamboo mainly on P. nigra in LARS revealed second-stage juveniles of cyst forming nematode in soil samples. Further analysis of root and soil samples led to recovery of a cyst nematode belonging to the genus Heterodera and the Afenestrata group. Cysts, vulval cone, and second-stage juveniles were studied for morphological and morphometric features. The classical identification was followed by amplification of the ribosomal RNA-ITS region and the D2-D3 expansion segments of 28S large-subunit rRNA gene; the amplified fragments were sequenced, edited, and compared with those of the corresponding published gene sequences. New D2-D3 and rRNA-ITS gene sequences were deposited in the GenBank database under the accession numbers KR818910 and KR818911, respectively. Based on the morphological and molecular data, the species of the cyst-forming nematode was identified as H. koreana (Vovlas et al., 1992; Mundo-Ocampo et al., 2008). The body contour of cysts was mainly subspherical, vey often with irregular shape (Fig. 1A), yellowish to light brown, thin cuticle with fine zigzag pattern, without fenestration, lacking bulla, and underbridge. Vulval lips protruded, cuticular pattern of vulval cone with a tuberculate area (Fig. 2B), and vagina embedded into vulval lips. The second-stage juveniles cylindrical and slender, hemispherical cephalic framework, with three lines in lateral field, well-developed rounded stylet knobs, tail conoid tapring to fine rounded terminus, phasmids posterior to anus. The cyst measurements were (n = 21) length 502 ± 70 (420 to 640) µm; width = 408 ± 60 (320 to 520) µm; length/width = 1.23 ± 0.09 (1.07 to 1.5) µm. The morphometric characters of vulval cone were measured (n = 7): fenestral length = 62.4 ± 6.5 (51 to 71) µm; fenestral width = 50.7 ± 3.2 (45 to 54) µm; vulval slit = 51.9 ± 4.3 (46 to 59) µm; distance from vulva to anus = 51.3 ± 4.4 (43 to 56) µm. Second-stage juveniles showed the following morphometric characters (n = 14): L = 455 ± 11.3 (437 to 472) µm; a = 29.9 ± 0.9 (28.3 to 31.5); b΄ = 2.7 ± 0.4 (2.2 to 3.5); c = 7.4 ± 0.9 (6 to 8.9); ć = 6.1 ± 0.4 (5.1 to 6.7); lip region height = 3 µm; lip region width = 7.5 ± 0.5 (7 to 8) µm; stylet length = 18.1 ± 0.5 (17 to 19) µm; anterior end to median bulb = 72.2 ± 1.7 (70 to 75) µm; anterior end to secretory-excretory pore = 99.7 ± 2.5 (96 to 103) µm; maximum body width = 15.2 ± 0.4 (15 to 16) µm; body width at anus = 10.1 ± 1 (8 to 11) µm; tail length = 62.0 ± 6.9 (51 to 74) µm; hyaline part of tail = 44.0 ± 1.8 (40 to 47) µm. The egg measurements for 11 individuals were length = 102.5 ± 7.9 (93 to 119) µm; width = 39.3 ± 4.2 (33 to 46) µm; length/width = 2.6 ± 0.3 (2.0 to 3.1). The morphology, morphometric characters and molecular data of the population of H. koreana isolated from bamboo in Iran are in agreement with those previously reported for this species (Vovlas et al., 1992; Mundo-Ocampo et al., 2008). At present, five species of Heterodera belonging to the Cyperi and Afenestrata groups were reported from bamboo, H. bamboosi (Kaushal and Swarup, 1988; Wouts and Baldwin, 1998) on Bambusa sp. from India; H. koreana on P. pubescence, P. aurea, and P. nigra from South Korea and the United States; and H. hainanensis (Zhuo et al., 2013), H. fengi (Wang et al., 2013), and H. guangdongensis (Zhuo et al., 2014) on P. pubescence from China; thus showing host suitability of bamboo for at least five species of cyst-forming nematodes. A greenhouse test performed by planting rice seed cv. Hashemi in soil containing H. koreana showed successful multiplication of Korean cyst nematode on rice seedlings after 2 mon. The exact date of the establishment of bamboo plantation in LARS is not precisely clear, but it indicates that the Korean cyst nematode was most likely brought with the imported bamboo seedlings from unknown origin several decades ago. According to our best knowledge, this is the first report of occurrence of H. koreana from Iran. So far the Korean cyst nematode was reported from South Korea, Thailand, and the United States, Florida (from nurseries); this study includes the distribution of this cyst-forming nematode in Iran and expands the information of the occurrence of H. koreana for the world.  相似文献   

19.
Temporal development of roots is key to the understanding of root system architecture of plants which influences nutrient uptake, anchorage and plant competition. Using time lapse imaging we analyzed developmental patterns of length, growth angle, depth and curvature of Phaseolus basal roots from emergence till 48 h in two genotypes, B98311 and TLP19 with contrasting growth angles. In both genotypes all basal roots appeared almost simultaneously, but their growth rates varied which accounted for differences in root length. The growth angles of the basal roots fluctuated rapidly during initial development due to oscillatory root growth causing local bends. Beyond 24 h, as the root curvature stabilized, so did the growth angle. Therefore growth angle of basal roots is not a very reliable quantity for characterizing root architecture, especially during early seedling development. Comparatively, tip depth is a more robust measure of vertical distribution of the basal roots even during early seedling development.Key words: basal root, kinematics, root architecture, root growth, spatiotemporal analysis, root imagingVertical and horizontal placements of the roots in the soil influence plant performance through acquisition of below ground resources like water and nutrients, plant anchorage and intra- and inter-plant competition.14 Therefore the architecture of the root system plays important roles in regulating plant growth and yield, especially under abiotic stresses.5 As a seedling grows to become a mature plant, the root architecture develops continuously in response to various cues e.g., genotypic, environmental, hormonal, etc. Therefore studies of root architecture of plants of different ages are important for understanding the influence of these cues in regulating plant growth.The root scaffold of a plant is comprised of different types of roots with different functions. A mature common bean (Phaseolus vulgaris L.) plant has root system consisting of primary, adventitious, lateral and basal roots. Among these, the basal roots are typically the earliest emerging secondary roots from the hypocotyl6 forming a major part of the mature root system. We have recently demonstrated important differences in architectural traits of the basal roots of common bean in the early seedling stage between two contrasting class of genotypes and how auxin-ethylene interplay regulates these traits.7 While this study of basal roots at a fixed time allows assessment and comparison of root development up to that point of time, investigation of the temporal events of emergence and growth of the basal roots is important and complementary to the understanding of their architectural traits. Therefore in the present study, we examined the detailed developmental patterns of basal roots through time lapse imaging in two genotypes.We chose two bean genotypes with contrasting basal root growth angles (BRGA) relative to the gravity—B98311 producing basal roots of smaller BRGA (41.7° ± 14°) and TLP19 having roots of larger BRGA (56.4° ± 18°).8 The germinated seedling with 2–3 cm radical was transferred to the blue germination paper (Anchor Paper Co., St. Paul, MN), which was suspended in nutrient solution7 inside a growth chamber (ACMAS Technocracy Limited, Delhi, India) maintained at 25 ± 1°C. Time lapse photography was carried out for 48 h at 30 min intervals using Nikon D200 digital camera fitted with a macro lens to obtain high resolution digital images of the roots. Imaging started from the visibility of the protrusions of emerging basal root along the root-shoot interface. A computer program was developed in Matlab® 7.8 (Mathworks, Natick) to analyze the images semi-automatically. From every image the computer program identified the basal roots using contrast of color between the roots (mostly white) and the germination paper (blue). Root midlines were determined following the methodology of Miller et al.9 and smoothed using the method of overlapping polynomials. Length of the midline is root length. The angle between gravity and the line connecting the root tip to the base is BRGA.7 The vertical distance of the root tip from the base of the lowest emerging root along the gravity vector is tip depth. From the midline, root curvature was also determined using the equation κ=xyyx(x2+y2)3/2,(1) where [x(x), y(s)] is coordinate of any point along the root midline, s is normalized distance along the midline, and the primes denote derivatives with respect to s. Here positive curvature signifies bending upward and vice versa.  相似文献   

20.
Carbon isotope ratios of mature leaves from the C3 angiosperm root hemiparasites Striga hermonthica (Del.) Benth (−26.7‰) and S. asiatica (L.) Kuntze (−25.6‰) were more negative than their C4 host, sorghum (Sorghum bicolor [L.] Moench cv CSH1), (−13.5‰). However, in young photosynthetically incompetent plants of S. hermonthica this difference was reduced to less than 1‰. Differences between the carbon isotope ratios of two C3-C3 associations, S. gesnerioides (Willd.) Vatke—Vigna unguiculata (L.) Walp. and Oryza sativa L.—Rhamphicarpa fistulosa (Hochst.) Benth differed by less than 1‰. Theoretical carbon isotope ratios for mature leaves of S. hermonthica and S. asiatica, calculated from foliar gas exchange measurements, were −31.8 and −32.0‰, respectively. This difference between the measured and theoretical δ13C-values of 5 to 6‰ suggests that even in mature, photosynthetically active plants, there is substantial input of carbon from the C4 host. We estimate this to be approximately 28% of the total carbon in S. hermonthica and 35% in S. asiatica. This level of carbon transfer contributes to the host's growth reductions observed in Striga-infected sorghum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号