首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In rice microcosms (Oryza sativa, var. Roma, type japonica),CH4 emission, CH4 production, CH4oxidation and CH4 accumulation were measured over an entirevegetation period. Diffusive CH4 emission was measured inclosed chambers, CH4 production was measured in soil samples,CH4 oxidation was determined from the difference between oxicand anoxic emissions, and CH4 accumulation was measured byanalysis of porewater and gas bubbles. The sum of diffusiveCH4 emission, CH4 oxidation, andCH4 accumulation was only 60% of the cumulativeCH4 production. The two values diverged during the first 50days (vegetative phase) and then again during the last 50 days (latereproductive phase and senescence) of the 150 day vegetation period. Duringthe period of day 50–100 (early reproductive phase/flowering), theprocesses were balanced. Most likely, gas bubbles and diffusion limitationare responsible for the divergence in the early and late phases. The effectof rice on CH4 production rates and CH4concentrations was studied by measuring these processes also in unplantedmicrocosms. Presence of rice plants lowered the CH4concentrations, but had no net effect on the CH4 productionrates.  相似文献   

2.
Processes involved in formation and emission of methane in rice paddies   总被引:31,自引:9,他引:31  
The seasonal change of the rates of production and emission of methane were determined under in-situ conditions in an Italian rice paddy in 1985 and 1986. The contribution to total emission of CH4 of plant-mediated transport, ebullition, and diffusion through the flooding water was quantified by cutting the plants and by trapping emerging gas bubbles with funnels. Both production and emission of CH4 increased during the season and reached a maximum in August. However, the numbers of methanogenic bacteria did not change. As the rice plants grew and the contribution of plant-mediated CH4 emission increased, the percentage of the produced CH4 which was reoxidized and thus, was not emitted, also increased. At its maximum, about 300 ml CH4 were produced per m2 per hour. However, only about 6% were emitted and this was by about 96% via plant-mediated transport. Radiotracer experiments showed that CH, was produced from H2/CO2. (30–50%) and from acetate. The pool concentration of acetate was in the range of 6–10 mM. The turnover time of acetate was 12–16 h. Part of the acetate pool appeared to be not available for production of CH4 or CO2  相似文献   

3.
当前在全球气候变化和人类活动双重作用下,湿地正在或者将要面临着显著的盐分变化形势,尤其是内陆和滨海咸化湿地。湿地是大气甲烷的重要排放源。甲烷排放是甲烷产生、氧化和传输过程综合作用的结果。盐分变化将影响湿地水-土环境,降低植物群落初级生产力和有机物积累速率,改变微生物主导的有机物矿化速率和途径等,进而改变湿地生态系统的结构和功能,影响湿地甲烷产生、氧化、传输和排放系列过程。本文综述了盐分(浓度与组成)对湿地甲烷产生与排放的影响结果,从底物供给、微生物(产甲烷菌和甲烷氧化菌等)数量、活性与群落组成、酶活性、植物、电子受体、p H和氧化还原电位等几个关键方面分析了盐分影响湿地甲烷排放过程的内在机制。在此基础上提出了今后需重点关注的5个方面:1)加强盐分浓度与组成对湿地甲烷产生、氧化、传输与排放影响的系统性、框架性研究;2)深入探讨盐分背景、变化幅度与速率的耦合如何影响湿地甲烷系列过程;3)不同离子组成及其交互效应如何影响湿地甲烷动态过程;4)结合生物学、基因组学及同位素技术等,加强湿地产甲烷菌与甲烷氧化菌与盐分的关系及其响应研究;5)湿地甲烷对盐分变化响应的时空分异规律。  相似文献   

4.
Dagurova  O. P.  Namsaraev  B. B.  Kozyreva  L. P.  Zemskaya  T. I.  Dulov  L. E. 《Microbiology》2004,73(2):202-210
The activity of methanogenic and methanotrophic bacteria was evaluated in bottom sediments of Lake Baikal. Methane concentration in Baikal bottom sediments varied from 0.0053 to 81.7 ml/dm3. Bacterial methane was produced at rates of 0.0004–534.7 l CH4/(dm3 day) and oxidized at rates of 0.005–1180 l CH4/(dm3 day). Peak methane production and oxidation were observed in Frolikha Bay near a methane vent. Methane was emitted into water at rates of 49.2–4340 l CH4/(m2 day). Rates of bacterial methane oxidation in near-bottom water layers ranged from 0.002 to 1.78 l/(l day). Methanogens and methanotrophs were found to play an important role in the carbon cycle through all layers of sediments, particularly in the areas of methane vent and gas-hydrate occurrence.  相似文献   

5.
The abundance and distribution of dissolved CH4 were determined from 1987–1990 in Lake Fryxell, Antarctica, an amictic, permanently ice-covered lake in which solute movement is controlled by diffusion. CH4 concentrations were < 1 υM in the upper oxic waters, but increased below the oxycline to 936 μM at 18 m. Sediment CH4 was 1100 μmol (1 sed)−1 in the 0–5 cm zone. Upward flux from the sediment was the source of the CH4, NH4 +, and DOC in the water column; CH4 was 27% of the DOC+CH4 carbon at 18 m. Incubations with surficial sediments indicated that H14CO3 reduction was 0.4 μmol (1 sed)−1 day−1 or 4× the rate of acetate fermentation to CH4. There was no measurable CH4 production in the water column. However, depth profiles of CH4, NH4, and DIC normalized to bottom water concentrations demonstrated that a significant CH4 sink was evident in the anoxic, sulfate-containing zone of the water column (10–18 m). The δ13CH4 in this zone decreased from −72 % at 18 m to −76% at 12 m, indicating that the consumption mechanism did not result in an isotopic enrichment of 13CH4. In contrast, δ13CH4 increased to −55 % at 9 m due to aerobic oxidation, though this was a minor aspect of the CH4 cycle. The water column CH4 profile was modeled by coupling diffusive flux with a first order consumption term; the best-fit rate constant for anaerobic CH4 consumption was 0.012 yr−1. On a total carbon basis, CH4 consumption in the anoxic water column exerted a major effect on the flux of carbonaceous material from the underlying sediments and serves to exemplify the importance of CH4 to carbon cycling in Lake Fryxell.  相似文献   

6.
甲烷氧化细菌在转化甲烷制造新型燃料、单细胞蛋白和新功能酶生产、污水处理等方面有着潜在的应用前景,因此,甲烷单加氧酶作为其代谢过程中重要的酶系也受到人们的广泛关注。我们简要综述了近年来对甲烷单加氧酶的性质、结构、催化机理等方面的研究,特别是对颗粒性甲皖单加氧酶的相关性质进行了详细的阐述。  相似文献   

7.
Oxidation of methane in boreal forest soils: a comparison of seven measures   总被引:12,自引:4,他引:8  
Methane oxidation rates were measured in boreal forest soils using seven techniques that provide a range of information on soil CH4 oxidation. These include: (a) short-term static chamber experiments with a free-air (1.7 ppm CH4) headspace, (b) estimating CH4 oxidation rates from soil CH4 distributions and (c)222Rn-calibrated flux measurements, (d) day-long static chamber experiments with free-air and amended (+20 to 2000 PPM CH4) headspaces, (e) jar experiments on soil core sections using free-air and (f) amended (+500 ppm CH4) headspaces, and (g) jar experiments on core sections involving tracer additions of14CH4. Short-term unamended chamber measurements,222Rn-calibrated flux measurements, and soil CH4 distributions show independently that the soils are capable of oxidizing atmospheric CH4 at rates ranging to < 2 mg m–2 d–1. Jar experiments with free-air headspaces and soil CH4 profiles show that CH4 oxidation occurs to a soil depth of 60 cm and is maximum in the 10 to 20 cm zone. Jar experiments and chamber measurements with free-air headspaces show that CH4 oxidation occurs at low (< 0.9 ppm) thresholds. The14CH4-amended jar experiments show the distribution of end products of CH4 oxidation; 60% is transformed to CO2 and the remainder is incorporated in biomass. Chamber and jar experiments under amended atmospheres show that these soils have a high capacity for CH4 oxidation and indicate potential CH4 oxidation rates as high as 867 mg m–2 d–1. Methane oxidation in moist soils modulates CH4 emission and can serve as a negative feedback on atmospheric CH4 increases.  相似文献   

8.
Methane consumption in two temperate forest soils   总被引:4,自引:4,他引:0  
Forest soils are thought to be an important sink for atmospheric methane. To evaluate methane consumption,14C-labeled methane was added to the headspace of intact soil cores collected from a mixed mesophytic forest and from a red spruce forest located in the central Appalachian Mountains. Both soils consumed the added methane at initially high rates that decreased as the methane mixing ratio of the air decreased. The mixed mesophytic forest soil consumed an average of 2 mg CH4 m–2 d–1 versus 1 mg CH, m–2 d–1 for the spruce forest soil. The addition of acetylene to the headspace completely suppressed methane consumption by the soils, suggesting that an aerobic methane-consuming microorganism mediated the process. At both forest sites, methane mixing ratios in soil air spaces were greater than that in the air overlying the soil surface, indicating that these soils had the ability to produce methane. Models of methane emission from forest soils to the atmosphere must represent methane flux as the balance between production and consumption of methane, which are controlled by very different factors  相似文献   

9.
Measurements of the net methane exchange over a range of forest, moorland, and agricultural soils in Scotland were made during the period April to June 1994 and 1995. Fluxes of CH4 ranged from oxidation –12.3 to an emission of 6.8 ng m–2 s–1. The balance between CH4 oxidation and emission depended on the physical conditions of the soil, primarily soil moisture. The largest oxidation rates were found in the mineral forest soils, and CH4 emission was observed in several peat soils. The smallest oxidation rate was observed in an agricultural soil. The relationship between CH4 flux and soil moisture observed in peats (FluxCH 4 = 0.023 × %H2O (dry weight) – 7.44, p > 0.05) was such that CH4 oxidation was observed at soil moistures less than 325%( ± 80%). CH4 emission was found at soil moistures exceeding this value. A large range of CH4 oxidation rates were observed over a small soil moisture range in the mineral soils. CH4 oxidation in mineral soils was negatively correlated with soil bulk density (FluxCH 4 = –37.35 × bulk density (g cm–3) + 48.83, p > 0.05). Increased nitrogen loading of the soil due to N fixation, atmospheric deposition of N, and fertilisation, were consistently associated with decreases in the soil sink for CH4, typically in the range 50 to 80%, on a range of soil types and land uses.  相似文献   

10.
The aim of this study was to correlate magnitude andcontrols of CH4 fluxes with the microtopographyand the vegetation in a hollow-ridge complex of araised bog. High CH4 emission rates were measuredfrom hollows and mud-bottom hollows, while hummocksconsumed atmospheric CH4 at a low rate. Thehighest emissions were measured from plots with Eriophorum vaginatum and Scheuchzeriapalustris. CH4 emission ceased after Scheuchzeria had been clipped below the water table,indicating the importance of this aerenchymatic plantas a conduit for CH4.Peat in the upper catotelm of hollows was younger andless decomposed than in hummocks. Potential CH4production in vitro was higher and themethanogenic association was better adapted to highertemperatures in hollow than in hummock peat. Highertemperatures in hollows resulted in a strongerCH4 source in hollows than in hummocks. Negativefluxes from hummocks indicated that even in wetlandsmethanotrophic bacteria exist that are able to oxidizeCH4 at atmospheric mixing ratios, and thatoxidation controls CH4 emission completely. TheCH4 mixing ratio was low in the acrotelm, but itincreased within the catotelm. Comparing fluxesmeasured in static chambers with fluxes calculatedfrom the porewater CH4 profiles it was deducedthat the zone of methane oxidation was located closeto the water table.In hollows, CH4 production at in situtemperature was far higher than emission into theatmosphere, corresponding to an oxidation rate ofnearly 99%. The CH4 flux between the catotelmand the acrotelm of hollows was also higher than theemission, indicating the importance of CH4oxidation in the aerobic acrotelm, too. CH4microprofiles showed that CH4 oxidation inmud-bottom hollows was confined to the topmost 2 mm,and that in Sphagnum-covered hollows CH4oxidation occurred at the lower edge of green Sphagnum-parts.  相似文献   

11.
Dimethylsulfide and methane thiol in sediment porewater of a Danish estuary   总被引:1,自引:1,他引:0  
Seasonal variation of dimethylsulfide (DMS) and methane thiol (MSH) concentrations in sediment porewater was determined in a Danish estuary. Dimethylsulfide (DMDS) was never found. Detectable DMS levels of up to 0.1 M were found only in the summer and only within the upper 5 cm of the sediment. The DMS accumulation was probably associated with decomposing fragments of macro-algae in the surface layer. Significant MSH accumulation of up to 1 M was found only in the deep, CH4-rich sediment below the SO4 2- zone. With depth, a detectable MSH level could thus be observed below the 1 mM SO4 2--isopleth which also marked the SO4 2--CH4 transition. The transition zone was located deeper in the sediment in winter (20–25 cm depth) than in summer (5–10 cm depth). The absence of MSH in the SO4 2- zone could be due to rapid utilization of the compound by SO4 2--reducing bacteria. A possible involvement of MSH in anaerobic CH4 oxidation at the transition zone is discussed; CH4 and sulfide (HS- form, pH 7) are proposed to form MSH and H2 which in turn may be metabolized by, e.g. SO4 2--reducing bacteria.  相似文献   

12.
Potential rates of both methane production and methane consumptionvary over three orders of magnitude and their distribution is skew.These rates are weakly correlated with ecosystem type, incubationtemperature, in situ aeration, latitude, depth and distanceto oxic/anoxic interface. Anaerobic carbon mineralisation is amajor control of methane production. The large range in anaerobicCH4:CO2 production rates indicate that a largepart of the anaerobically mineralised carbon is used for reduction ofelectron acceptors, and, hence, is not available for methanogenesis.Consequently, cycling of electron acceptors needs to be studied tounderstand methane production. Methane and oxygen half saturationconstants for methane oxidation vary about one order of magnitude.Potential methane oxidation seems to be correlated withmethanotrophic biomass. Therefore, variation in potential methaneoxidation could be related to site characteristics with a model ofmethanotrophic biomass.  相似文献   

13.
Frenzel  Peter  Rudolph  Jutta 《Plant and Soil》1998,200(1):27-32
The importance of plant-mediated CH4 transport was studied in a northern wetland. CH4 transport through Eriophorum, a dominant sedge, was found to be the major pathway for CH4 fluxes. Mean emission from Sphagnum lawns was low (34 g CH4 m-2 h-1) and significantly higher from tussocks of Eriophorum vaginatum (974 g CH4 m-2 h-1; U-test, p < 0.05). Mean flux from single tillers of Eriophorum angustifolium was 92 g CH4 h-1. In contrast to other ecosystems, no CH4 oxidation was associated with Eriophorum. Hence, the lack of oxidation is one reason for the high emission rates from these ecosystems. This finding is a caveat for models of CH4 emission and may also have consequences for carbon flow models of northern wetlands.  相似文献   

14.
Dzyuban  A. N. 《Microbiology》2002,71(1):98-104
The intensity of the microbiological processes of methane formation (MF) and methane oxidation (MO) was determined in the sediments and water of different types of Baltic lakes. The emission of methane from the lake sediments and methane distribution in the water column of the lakes were studied as functions of the lake productivity and hydrologic conditions. During summers, the intensity of MF in the lake sediments and waters varied from 0.001 to 106 ml CH4/(dm3 day) and from 0 to 3.2 ml CH4/(l day), respectively, and the intensity of MO in the sediments and water varied from 0 to 11.2 ml CH4/(dm3 day) and from 0 to 1.1 ml CH4/(l day), respectively. The total methane production (MP) in the lakes varied from 15 to 5000 ml CH4/(m2 day). In anoxic waters, the MP comprised 9–18% of the total PM in the lakes. The consumption of organic carbon for methanogenesis varied from 0.03 to 9.7 g/(m2 day). The role of the methane cycle in the degradation of organic matter in the lakes increased with their productivity.  相似文献   

15.
甲烷氧化菌是一类可以利用甲烷作为唯一碳源和能源的细菌,在全球变化和整个生态系统碳循环过程中起着重要的作用。近年来,对甲烷氧化菌的生理生态特征及其在自然湿地中的群落多样性研究取得了较大进展。在分类方面,疣微菌门、NC10门及两个丝状菌属甲烷氧化菌的发现使其分类体系得到了进一步的完善;在单加氧酶方面,发现甲烷氧化菌可以利用pM MO和sM MO两种酶进行氧化甲烷的第一步反应,Ⅱ型甲烷氧化菌中pM MO2的发现证实甲烷氧化菌可以利用这种酶氧化低浓度的甲烷;在底物利用方面,已经发现了越来越多的兼性营养型甲烷氧化菌,证实它们可以利用的底物比之前认为的更广泛,其中包括乙酸等含有碳碳键的化合物;在生存环境方面,能在不同温度、酸度和盐度的环境中生存的甲烷氧化菌不断被分离出来。全球自然湿地甲烷氧化菌群落多样性的研究目前主要集中在北半球高纬度的酸性泥炭湿地,Ⅱ型甲烷氧化菌Methylocystis、Methylocella和Methylocapsa是这类湿地主要的甲烷氧化菌类群,尤其以Methylocystis类群最为广泛,而Ⅰ型甲烷氧化菌尤其是Methylobacter在北极寒冷湿地中占优势。随着高通量测序时代的到来和新的分离技术的发展,对甲烷氧化菌的现有认识将面临更多的挑战和发展。  相似文献   

16.
Methane emission from a wetland rice field as affected by salinity   总被引:4,自引:0,他引:4  
The impact of salinity on CH4 emission was studied by adding salt to a Philippine rice paddy, increasing pore water EC to approx. 4 dS.m-1 Methane emission from the salt-amended plot and adjacent control plots was monitored with a closed chamber technique. The addition of salt to the rice field caused a reduction by 25% in CH4 emission. Rates of methane emissions from intact soil cores were measured during aerobic and anaerobic incubations. The anaerobic CH4 fluxes from the salt-amended soil cores were three to four times lower than from cores of the control plot, whereas the aerobic CH4 fluxes were about equal. Measurements of the potential CH4 production with depth showed that the CH4 production in the salt-amended field was strongly reduced compared to the control field. Calculation of the percentage CH4 oxidized of the anaerobic flux indicated that CH4 oxidation in the salt-amended plot was even more inhibited than CH4 production. The net result was about equal aerobic CH4 fluxes from both salt-amended plots and non-amended plots. The data illustrate the importance of both CH4 production and CH4 oxidation when estimating CH4 emission and show that the ratio between CH4 production and CH4 oxidation may depend on environmental conditions. The reduction in CH4 emission from rice paddies upon amendment with salt low in sulfate is considerably smaller than the reduction in CH4 emission observed in a similar study where fields were amended with high-sulfate containing salt (gypsum). The results indicate that CH4 emissions from wetland rice fields on saline, low-sulfate soils are lower than CH4 emissions from otherwise comparable non-saline rice tields. However, the reduction in CH4 emission is not proportional to the reduction in CH4 production  相似文献   

17.
Using particulate methane monooxygenase (pMMO) encoding gene, pmoA-based terminal-restrict fragment length polymorphism (T-RFLP), the methanotrophic communities between rhizospheric soils (RSs) and non-rhizospheric soil (NRSs) of landfill cover (LC), riparian wetland (RW) and rice paddy (RP) were compared before and after pre-incubation of 90 days. The ultimate potential of methane oxidation rate (UPMOR) and gene copy number of pmoA were evaluated in the soil samples after pre-incubation. Compared to the methanotrophic community in the soil samples before pre-incubation, type II methanotrophs, the Methylocystis-Methylosinus group, was mostly increased after pre-incubation, regardless of the soil type. The UPMOR (11.82 ± 0.27 μmol-CH4· g?1 soil-DW·h?1) in the LC-RS was significantly higher than that (9.57 ± 0.14 μmol-CH4· g?1 soil-DW·h?1) in the LC-NRS. However, no significant difference was found between RSs and NRSs in the RW (15.28 ± 0.91 and 13.23 ± 0.69 μmol-CH4· g?1 soil-DW·h?1, respectively) and RP (13.81 ± 1.04 and 12.81 ± 2.40 μmol-CH4· g?1 soil-DW·h?1, respectively) soils. There was no significantly difference in the gene copy numbers of pmoA in the RSs compared with those in the NRSs at all of the sampling sites. This study provides basic metagenomic information about both rhizospheric and non-rhizospheric methanotrophs, which will be helpful in developing a better strategy of biological methane removal from both natural and anthropogenic major methane sources.  相似文献   

18.
甲烷氧化菌中的甲烷单加氧酶能够在生理条件下选择性地以甲烷和氧气为底物生成甲醇,麻省理工学院的Lippard教授称它为"神奇的生物分子机器"。本文重点对生物分子机器甲烷单加氧酶的结构、编码基因及调控机制、催化反应机理等进行了综述,此外也简要介绍了甲烷单加氧酶的产生菌甲烷氧化菌的研究历史及分类。生物分子机器甲烷单加氧酶可催化甲烷氧化成甲醇,不仅为甲醇的生产提供了一种新颖的生产方法,而且对生物分子机器的设计也有借鉴意义。  相似文献   

19.
Methane emission from Arctic tundra   总被引:2,自引:2,他引:0  
Concerns about a possible feedback effect on global warming following possible increased emissions of methane from tundra environments have lead to series of methane flux studies of northern wetland/tundra environments. Most of these studies have been carried out in boreal sub-Arctic regions using different techniques and means of assessing representativeness of the tundra. Here are reported a time series of CH4 flux measurements from a true Arctic tundra site. A total of 528 independent observations were made at 22 fixed sites during the summers of 1991 and 1992. The data are fully comparable to the most extensive dataset yet produced on methane emissions from sub-Arctic tundra-like environments. Based on the data presented, from a thaw-season with approximately 55% of normal precipitation, a global tundra CH4 source of 18–30 Tg CH4 yr−1 is estimated. This is within the range of 42±26 Tg CH4 yr−1 found in a similar sub-Arctic tundra environment. No single-parameter relationship between one environmental factor and CH4 flux covering all sites was found. This is also in line with conclusions drawn in the sub-Arctic. However, inter-season variations in CH4 flux at dry sites were largely controlled by the position of the water table, while flux from wetter sites seemed mainly to be controlled by soil temperature.  相似文献   

20.
In a preliminary experiment we found that methane evolved from a sandy subsoil during aerobic incubation of shaken soil slurries. In the study presented here the methane was found to be released from the sand particles by mechanical weathering, caused by the grinding effect of the shaking. Large amounts of gas (about 0.5 ml gas g–1 soil) were extracted by intense grinding of the soil in gas tight serum vials. Methane was the main hydrocarbon in the emitted gas, but also a considerable amount of ethane was present, as well as minor amounts of heavier hydrocarbons (up to C6). The 13C-values of the emitted methane and ethane were –33 and –29 , respectively. Together these results demonstrate a thermogenic origin of the gas. This paper also reports the results of an incubation experiment where possible methane oxidation was looked for. If a possible release of methane is not accounted for, methane oxidation may be overlooked, as illustrated in this paper. Methane consumption was detected only in soil from 40 cm, in contrast to soil sampled at 100 cm and deeper where a slight production was measured. When methane oxidation was inhibited by dimethyl-ether, a significant release of methane was seen. The release was probably caused by chemical weathering. When this methane release was taken into account, methane oxidation was found to be present at all measured depths (40 to 200 cm). Fertilization with urea inhibited the methane oxidation at 40 cm but not at deeper layers. It is hypothesized that ammonia oxidizing bacteria were the main methane oxidizers in this mineral subsoil (deeper than 1 m), and that oxidation of methane might be a survival mechanism for ammonia oxidizers in ammonia limited environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号