首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Drought is a major environmental stress limiting global wheat(Triticum aestivum) production. Exploring drought tolerance genes is important for improving drought adaptation in this crop. Here, we cloned and characterized TaTIP41, a novel drought tolerance gene in wheat. TaTIP41 is a putative conserved component of target of rapamycin(TOR)signaling, and the Ta TIP41 homoeologs were expressed in response to drought stress and abscisic acid(ABA). The overexpression of Ta TIP41 enhanced drought tole...  相似文献   

2.
3.
Abscisic acid (ABA) is a key phytohormone involved in adaption to environmental stress and regulation of plant development. Clade A protein phosphatases type 2C (PP2Cs), such as HAB1, are key negative regulators of ABA signaling in Arabidopsis. To obtain further insight into regulation of HAB1 function by ABA, we have screened for HAB1‐interacting partners using a yeast two‐hybrid approach. Three proteins were identified, PYL5, PYL6 and PYL8, which belong to a 14‐member subfamily of the Bet v1‐like superfamily. HAB1–PYL5 interaction was confirmed using BiFC and co‐immunoprecipitation assays. PYL5 over‐expression led to a globally enhanced response to ABA, in contrast to the opposite phenotype reported for HAB1‐over‐expressing plants. F2 plants that over‐expressed both HAB1 and PYL5 showed an enhanced response to ABA, indicating that PYL5 antagonizes HAB1 function. PYL5 and other members of its protein family inhibited HAB1, ABI1 and ABI2 phosphatase activity in an ABA‐dependent manner. Isothermal titration calorimetry revealed saturable binding of (+)ABA to PYL5, with Kd values of 1.1 μm or 38 nm in the absence or presence of the PP2C catalytic core of HAB1, respectively. Our work indicates that PYL5 is a cytosolic and nuclear ABA receptor that activates ABA signaling through direct inhibition of clade A PP2Cs. Moreover, we show that enhanced resistance to drought can be obtained through PYL5‐mediated inhibition of clade A PP2Cs.  相似文献   

4.
Six Arabidopsis (Arabidopsis thaliana) clade A protein phosphatase 2Cs (PP2Cs) have established abscisic acid (ABA) signaling roles; however, phenotypic roles of the remaining three "HAI" PP2Cs, Highly ABA-Induced1 (HAI1), AKT1-Interacting PP2C1/HAI2, and HAI3, have remained unclear. HAI PP2C mutants had enhanced proline and osmoregulatory solute accumulation at low water potential, while mutants of other clade A PP2Cs had no or lesser effect on these drought resistance traits. hai1-2 also had increased expression of abiotic stress-associated genes, including dehydrins and late embryogenesis abundant proteins, but decreased expression of several defense-related genes. Conversely, the HAI PP2Cs had relatively less impact on several ABA sensitivity phenotypes. HAI PP2C single mutants were unaffected in ABA sensitivity, while double and triple mutants were moderately hypersensitive in postgermination ABA response but ABA insensitive in germination. The HAI PP2Cs interacted most strongly with PYL5 and PYL7 to -10 of the PYL/RCAR ABA receptor family, with PYL7 to -10 interactions being relatively little affected by ABA in yeast two-hybrid assays. HAI1 had especially limited PYL interaction. Reduced expression of the main HAI1-interacting PYLs at low water potential when HAI1 expression was strongly induced also suggests limited PYL regulation and a role of HAI1 activity in negatively regulating specific drought resistance phenotypes. Overall, the HAI PP2Cs had greatest effect on ABA-independent low water potential phenotypes and lesser effect on classical ABA sensitivity phenotypes. Both this and their distinct PYL interaction demonstrate a new level of functional differentiation among the clade A PP2Cs and a point of cross talk between ABA-dependent and ABA-independent drought-associated signaling.  相似文献   

5.
张继红  陶能国 《广西植物》2015,35(6):935-941
蛋白磷酸酶(protein phosphatase,PP)是蛋白质可逆磷酸化调节机制中的关键酶,而PP2C磷酸酶是一类丝氨酸/苏氨酸残基蛋白磷酸酶,是高等植物中最大的蛋白磷酸酶家族,包含76个家族成员,广泛存在于生物体中。迄今为止,在植物体内已经发现了4种PP2C蛋白磷酸酶。蛋白激酶和蛋白磷酸酶协同催化蛋白质可逆磷酸化,在植物体内信号转导和生理代谢中起着重要的调节作用,蛋白质的磷酸化几乎存在于所有的信号转导途径中。大量研究表明,PP2Cs参与多条信号转导途径,包括PP2C参与ABA调控,对干旱、低温、高盐等逆境胁迫的响应,参与植物创伤和种子休眠或萌发等信号途径,其调控机制不同,但酶催化活性都依赖于Mg2+或Mn2+的浓度。植物PP2C蛋白的C端催化结构域高度保守,而N端功能各异。文中还综述了高等植物PP2C的分类、结构、ABA受体与PP2Cs蛋白互作、PP2C基因参与ABA信号途径以及其他逆境信号转导途径的研究进展。  相似文献   

6.
Proteins in the PYR/PYL/RCAR family (PYLs) are known as receptors for the phytohormone ABA. Upon ABA binding, PYL adopts a conformation that allows it to interact with and inhibit clade A protein phosphatase 2Cs (PP2Cs), which are known as the co-receptors for ABA. Inhibition of the PP2Cs then leads to the activation of the SnRK2 family protein kinases that phosphorylate and activate downstream effectors in ABA response pathways. The PYL family has 14 members in Arabidopsis, 13 of which have been demonstrated to function as ABA receptors. The function of PYL13, a divergent member of the family, has been enigmatic. We report here that PYL13 differs from the other PYLs in three key residues that affect ABA perception, and mutations in these three residues can convert PYL13 into a partially functional ABA receptor. Transgenic plants overexpressing PYL13 show increased ABA sensitivity in seed germination and postgermination seedling establishment as well as decreased stomatal conductance, increased water-use efficiency, accelerated stress-responsive gene expression, and enhanced drought resistance. pyl13 mutant plants are less sensitive to ABA inhibition of postgermination seedling establishment. PYL13 interacts with and inhibits some members of clade A PP2Cs (PP2CA in particular) in an ABA-independent manner. PYL13 also interacts with the other PYLs and antagonizes their function as ABA receptors. Our results show that PYL13 is not an ABA receptor but can modulate the ABA pathway by interacting with and inhibiting both the PYL receptors and the PP2C co-receptors.  相似文献   

7.
8.
Abscisic acid (ABA) is major plant hormone involved in regulating abiotic stress responses. Several studies have established that an ABA‐signalling transduction pathway—from ABA perception to response—functions in plant cells. The group A PP2Cs constitute core components of ABA signalling, and they negatively regulate ABA signalling and stress responses. Recent studies have identified and functionally analysed regulators of PP2C activity; however, the precise regulatory mechanisms remain unclear. In the present study, we used a yeast 2‐hybrid (Y2H) screening analysis to identify the DEAD‐box RNA helicase RH8, which interacted with PP2CA in the nucleus. rh8 knockout mutants exhibited ABA hyposensitivity and drought‐susceptible phenotypes characterized by high levels of transpirational water loss via reduced stomatal closure and decreased leaf temperatures. However, rh8/pp2ca double mutants showed ABA hypersensitivity and drought‐tolerant phenotypes, indicating that RH8 and PP2CA function in the same ABA‐signalling pathway in the drought stress response; moreover, RH8 functions upstream of PP2CA. In vitro phosphatase and kinase assays revealed that RH8 inhibits PP2CA phosphatase activity. Our data indicate that RH8 and its interacting partner PP2CA modulate the drought stress response via ABA‐dependent signalling.  相似文献   

9.
Molecular control mechanisms for abiotic stress tolerance are based on the activation and regulation of specific stress-related genes. The phytohormone abscisic acid (ABA) is a key endogenous messenger in a plant’s response to such stresses. A novel ABA binding mechanism which plays a key role in plant cell signaling cascades has recently been uncovered. In the absence of ABA, a type 2C protein phosphatase (PP2C) interacts and inhibits the kinase SnRK2. Binding of ABA to the PYR/PYLs receptors enables interaction between the ABA receptor and the PP2C protein, and abrogates the SnRK2 inactivation. The active SnRK2 is then free to activate the ABA-responsive element Binding Factors which target ABA-dependent gene expression. We used the grape as a model to study the ABA perception mechanism in fruit trees. The grape ABA signaling cascade consists of at least seven ABA receptors and six PP2Cs. We used a yeast two-hybrid system to examine physical interaction in vitro between the grape ABA receptors and their interacting partners, and found that twenty-two receptor-PP2C interactions can occur. Moreover, quantifying these affinities by the use of the LacZ reporter enables us to show that VvPP2C4 and VvPP2C9 are the major binding partners of the ABA receptor. We also tested in vivo the root and leaf gene expression of the various ABA receptors and PP2Cs in the presence of exogenic ABA and under different abiotic stresses such as high salt concentration, cold and drought, and found that many of these genes are regulated by such abiotic environmental factors. Our results indicate organ specificity in the ABA receptor genes and stress specificity in the VvPP2Cs. We suggest that VvPP2C4 is the major PP2C involved in ABA perception in leaves and roots, and VvRCAR6 and VvRCAR5 respectively, are the major receptors involved in ABA perception in these organs. Identification, characterization and manipulation of the central players in the ABA signaling cascades in fruit trees is likely to prove essential for improving their performance in the future.  相似文献   

10.
11.
Protein phosphatases type 2C (PP2Cs) from group A, which includes the ABI1/HAB1 and PP2CA branches, are key negative regulators of ABA signaling. HAI-1 gene had been shown to affect both seed and vegetative responses to ABA, which is one of PP2Cs clade A in Arabidopsis thaliana. Transgenic plants containing pHAI-1::GUS (β-glucuronidase) displayed GUS activity existing in the vascular system of leave veins, stems and petioles. Green fluorescent protein fused HAI-1 (HAI-1-GFP) was found in the nucleus through transient transformation assays with onion epidermal cells. The water-loss assays indicated the loss-of-function mutants did not show symptoms of wilting and they had still turgid green rosette leaves. The assays of seed germination by exogenous ABA and NaCl manifested that the loss-of-function mutants displayed higher insensitivity than wild-type plants. Taken together, the final results suggest that the HAI-1 (AT5G59220) encoded a nuclear protein and it can be highly induced by ABA and wound in Arabidposis, the stress-tolerance phenotype showed a slightly improvement when HAI-1 gene was disrupted.  相似文献   

12.
13.
It is known that the clade A protein phosphatase 2Cs (PP2Cs), including ABI1 and ABI2 and other PP2C members, are key players that function directly downstream of the PYR/PYL/RCAR abscisic acid (ABA) receptors. Here, identification of a crucial site for function of ABI2 protein phosphatase in ABA signalling is reported. It was observed that a calcium-dependent protein kinase (CDPK) phosphorylation site-like motif (CPL) in the ABI2 molecule is required for the interactions of ABI2 with the two members of the ABA receptors PYL5 and PYL9 and with a downstream protein kinase SnRK2.6, and for the catalytic activity of ABI2 in vitro, as well as for the response of ABI2 to the ABA receptors PYL5/PYL9 in relation to the ABA receptor-induced inhibition of the ABI2 phosphatase activity. Further, genetic evidence was provided to demonstrate that this CPL is required for the function of ABI2 to mediate ABA signalling. These data reveal that this CPL is an important site necessary for both the phosphatase activity of ABI2 and the functional interaction between ABI2 and PYL5/9 ABA receptors, providing new information to understand primary events of ABA signal transduction.  相似文献   

14.
The plant hormone abscisic acid (ABA) orchestrates plant adaptive responses to a variety of stresses, including drought. This signaling pathway is regulated by reversible protein phosphorylation, and genetic evidence demonstrated that several related protein phosphatases 2C (PP2Cs) are negative regulators of this pathway in Arabidopsis thaliana. Here, we developed a protein phosphatase profiling strategy to define the substrate preferences of the HAB1 PP2C implicated in ABA signaling and used these data to screen for putative substrates. Interestingly, this analysis designated the activation loop of the ABA activated kinase OST1, related to Snf1 and AMPK kinases, as a putative HAB1 substrate. We experimentally demonstrated that HAB1 dephosphorylates and deactivates OST1 in vitro. Furthermore, HAB1 and the related PP2Cs ABI1 and ABI2 interact with OST1 in vivo, and mutations in the corresponding genes strongly affect OST1 activation by ABA. Our results provide evidence that PP2Cs are directly implicated in the ABA-dependent activation of OST1 and further suggest that the activation mechanism of AMPK/Snf1-related kinases through the inhibition of regulating PP2Cs is conserved from plants to human.  相似文献   

15.
16.
The plant hormone abscisic acid (ABA) plays a crucial role in the control of the stress response and the regulation of plant growth and development. ABA binding to PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS intracellular receptors leads to inhibition of key negative regulators of ABA signaling, i.e. clade A protein phosphatases type 2C (PP2Cs) such as ABA-INSENSITIVE1 and HYPERSENSITIVE TO ABA1 (HAB1), causing the activation of the ABA signaling pathway. To gain further understanding on the mechanism of hormone perception, PP2C inhibition, and its implications for ABA signaling, we have performed a structural and functional analysis of the PYR1-ABA-HAB1 complex. Based on structural data, we generated a gain-of-function mutation in a critical residue of the phosphatase, hab1(W385A), which abolished ABA-dependent receptor-mediated PP2C inhibition without impairing basal PP2C activity. As a result, hab1(W385A) caused constitutive inactivation of the protein kinase OST1 even in the presence of ABA and PYR/PYL proteins, in contrast to the receptor-sensitive HAB1, and therefore hab1(W385A) qualifies as a hypermorphic mutation. Expression of hab1(W385A) in Arabidopsis (Arabidopsis thaliana) plants leads to a strong, dominant ABA insensitivity, which demonstrates that this conserved tryptophan residue can be targeted for the generation of dominant clade A PP2C alleles. Moreover, our data highlight the critical role of molecular interactions mediated by tryptophan-385 equivalent residues for clade A PP2C function in vivo and the mechanism of ABA perception and signaling.  相似文献   

17.
Hormone‐ and stress‐induced shuttling of signaling or regulatory proteins is an important cellular mechanism to modulate hormone signaling and cope with abiotic stress. Hormone‐induced ubiquitination plays a crucial role to determine the half‐life of key negative regulators of hormone signaling. For ABA signaling, the degradation of clade‐A PP 2Cs, such as PP 2 CA or ABI 1, is a complementary mechanism to PYR / PYL / RCAR ‐mediated inhibition of PP 2C activity. ABA promotes the degradation of PP 2 CA through the RGLG 1 E3 ligase, although it is not known how ABA enhances the interaction of RGLG 1 with PP 2 CA given that they are predominantly found in the plasma membrane and the nucleus, respectively. We demonstrate that ABA modifies the subcellular localization of RGLG 1 and promotes nuclear interaction with PP 2 CA . We found RGLG 1 is myristoylated in vivo , which facilitates its attachment to the plasma membrane. ABA inhibits the myristoylation of RGLG 1 through the downregulation of N‐myristoyltransferase 1 ( NMT 1 ) and promotes nuclear translocation of RGLG 1 in a cycloheximide‐insensitive manner. Enhanced nuclear recruitment of the E3 ligase was also promoted by increasing PP 2 CA protein levels and the formation of RGLG 1–receptor–phosphatase complexes. We show that RGLG 1 Gly2Ala mutated at the N‐terminal myristoylation site shows constitutive nuclear localization and causes an enhanced response to ABA and salt or osmotic stress. RGLG 1/5 can interact with certain monomeric ABA receptors, which facilitates the formation of nuclear complexes such as RGLG 1– PP 2 CA – PYL 8. In summary, we provide evidence that an E3 ligase can dynamically relocalize in response to both ABA and increased levels of its target, which reveals a mechanism to explain how ABA enhances RGLG 1– PP 2 CA interaction and hence PP 2 CA degradation.  相似文献   

18.
19.
20.
We have found that a major target for effectors secreted by Pseudomonas syringae is the abscisic acid (ABA) signalling pathway. Microarray data identified a prominent group of effector-induced genes that were associated with ABA biosynthesis and also responses to this plant hormone. Genes upregulated by effector delivery share a 42% overlap with ABA-responsive genes and are also components of networks induced by osmotic stress and drought. Strongly induced were NCED3, encoding a key enzyme of ABA biosynthesis, and the abscisic acid insensitive 1 (ABI1) clade of genes encoding protein phosphatases type 2C (PP2Cs) involved in the regulation of ABA signalling. Modification of PP2C expression resulting in ABA insensitivity or hypersensitivity led to restriction or enhanced multiplication of bacteria, respectively. Levels of ABA increased rapidly during bacterial colonisation. Exogenous ABA application enhanced susceptibility, whereas colonisation was reduced in an ABA biosynthetic mutant. Expression of the bacterial effector AvrPtoB in planta modified host ABA signalling. Our data suggest that a major virulence strategy is effector-mediated manipulation of plant hormone homeostasis, which leads to the suppression of defence responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号