首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
随着高通量测序技术的不断更新,可以在单个分子水平读取核苷酸序列的第三代测序技术迅速发展,纳米孔测序技术是其具有代表性的单分子测序技术,该技术通过检测DNA单链分子穿过纳米孔时引起的跨膜电流信号的变化,实现碱基识别.纳米孔测序仪在便携性、碱基读取速度、测序读段长度等方面较传统的第一代与第二代测序技术都有明显优势.随着纳米...  相似文献   

2.
3.
Methylated DNA immunoprecipitation sequencing (MeDIP-Seq) is a widely used approach to study DNA methylation genome-wide. Here, we developed a MeDIP-Seq protocol compatible with the Ion Torrent semiconductor-based sequencing platform that is low cost, rapid, and scalable. We applied this protocol to demonstrate MeDIP-Seq on the Ion Torrent platform provides adequate coverage of CpG cytosines, the methylation states of which we validated at single-base resolution on the Infinium HumanMethylation450 BeadChip array, and accurately identifies sites of differential DNA methylation. Furthermore, we applied an integrative approach to further investigate and confirm the role of DNA methylation in alternative splicing and to profile 5mC and 5hmC variants of DNA methylation in normal human brain tissue that is localized over distinct genomic regions. These applications of MeDIP-Seq on the Ion Torrent platform have broad utility and add to the current methodologies for profiling genome-wide DNA methylation states in normal and disease conditions.  相似文献   

4.
Intrinsic DNA methylation pattern is an integral component of the epigenetic network in many eukaryotes. Exploring the extent to which DNA methylation patterns can be altered under a specific condition is important for elucidating the biological functions of this epigenetic modification. This is of added significance in plants wherein the newly acquired methylation patterns can be inherited through organismal generations. We report here that DNA methylation patterns of mobile elements but not of cellular genes were specifically altered in rice plants following hydrostatic pressurization. This was evidenced by methylation-sensitive gel-blot analysis, which showed that 10 out of 10 studied low-copy transposons and retrotransposons manifested methylation alteration in at least one of the 8 randomly chosen pressure-treated plants, whereas none of the 16 studied low-copy cellular genes showed any change. Both gel-blotting and genome-wide fingerprinting indicated that the methylation alteration in mobile elements was not accompanied by a general genetic instability. Progeny analysis indicated retention of the altered methylation patterns in most progeny plants, underscoring early occurrence of the alterations, and their faithful epigenetic inheritance.  相似文献   

5.
6.
Regulation and function of DNA methylation in plants and animals   总被引:2,自引:0,他引:2  
He XJ  Chen T  Zhu JK 《Cell research》2011,21(3):442-465
  相似文献   

7.
植物DNA甲基化及胁迫诱导的变异   总被引:2,自引:0,他引:2  
DNA中碱基的化学修饰近年来一直是生命科学领域研究的热点之一。DNA甲基化是一种常见的表观遗传现象,它能在不改变DNA序列的前提下改变遗传表型。各种胁迫因素能诱导植物DNA甲基化产生变异,但其应答胁迫机制仍然未知。本文对植物DNA甲基化研究进展进行了综述,结合本课题组的研究结果,对7Li离子束注入、~(60)CO-γ射线诱变诱导产生的DNA甲基化变异进行了报道,以期为DNA甲基化可能参与涉及植物的表型可塑性提供一定的依据。  相似文献   

8.
DNA methylation strongly affects chromatin structure and the regulation of gene expression. For many years, bisulfite sequencing PCR (BSP) has served as the “gold standard” for measuring DNA methylation. However, with the evolution of pyrosequencing as a tool to evaluate DNA methylation, the need arises to compare the relative efficiencies of the two techniques in measuring DNA methylation. We provide for the first time a direct assessment of BSP and pyrosequencing to detect and quantify hypomethylation, hypermethylation, and mixed methylation of the ABCB1 promoter in various drug-sensitive and drug-resistant MCF-7 breast cancer cell lines through head-to-head experimentation. Our findings indicate that although both methods can reliably detect increased, decreased, and mixed methylation of DNA, BSP appears to be more sensitive than pyrosequencing at detecting strong hypermethylation of DNA. However, we also observed greater variability in the methylation of CpG sites by BSP, possibly due to the additional bacterial cloning step required by BSP over pyrosequencing. BSP and pyrosequencing equally detected hypomethylation and mixed methylation of DNA. The ability of pyrosequencing to reliably detect differences in DNA methylation across cell populations without requiring the cloning of bisulfite-treated DNA into bacterial expression vectors was seen as a major advantage of this technique.  相似文献   

9.
The integration of a transgene expression construct into the host genome is the initial step for the generation of recombinant cell lines used for biopharmaceutical production. The stability and level of recombinant gene expression in Chinese hamster ovary (CHO) can be correlated to the copy number, its integration site as well as the epigenetic context of the transgene vector. Also, undesired integration events, such as concatemers, truncated, and inverted vector repeats, are impacting the stability of recombinant cell lines. Thus, to characterize cell clones and to isolate the most promising candidates, it is crucial to obtain information on the site of integration, the structure of integrated sequence and the epigenetic status. Current sequencing techniques allow to gather this information separately but do not offer a comprehensive and simultaneous resolution. In this study, we present a fast and robust nanopore Cas9-targeted sequencing (nCats) pipeline to identify integration sites, the composition of the integrated sequence as well as its DNA methylation status in CHO cells that can be obtained simultaneously from the same sequencing run. A Cas9-enrichment step during library preparation enables targeted and directional nanopore sequencing with up to 724× median on-target coverage and up to 153 kb long reads. The data generated by nCats provides sensitive, detailed, and correct information on the transgene integration sites and the expression vector structure, which could only be partly produced by traditional Targeted Locus Amplification-seq data. Moreover, with nCats the DNA methylation status can be analyzed from the same raw data without prior DNA amplification.  相似文献   

10.
摘要 目的:为了验证不同高保真DNA聚合酶是否会对运用ARTIC工作流进行新型冠状病毒纳米孔测序产生影响。方法:使用英国Nanopore公司MinION测序仪对2份已获得全基因组序列的新冠肺炎确诊病例核酸样本分别采用KAPA HiFi HotStart ReadyMix,PrimeSTAR?誖GXL DNA Polymerase和NEBNext High-Fidelity 2X PCR Master Mix进行ARTIC工作流的多重PCR扩增,对扩增产物进行测序,并对测序质量进行分析。结果:不同高保真DNA聚合酶在相同扩增条件下,扩增产物的质检结果和测序质量均不相同,NEBNext High-Fidelity 2X PCR Master Mix在覆盖度和测序深度上明显好于另外两种酶。结论:NEBNext High-Fidelity 2X PCR Master Mix在纳米孔新型冠状病毒ARTIC快速测序工作流中的应用效果较好。  相似文献   

11.
DNA methylation systems and targets in plants   总被引:1,自引:0,他引:1  
  相似文献   

12.
DNA methylation and tissue culture-induced variation in plants   总被引:6,自引:0,他引:6  
Summary Plant cells growing in an artificial culture environment make numerous genetic mistakes. These alterations are manifested as increased frequencies of single-gene mutations, chromosome breakages, transposable element activations, quantitative trait variations, and modifications of normal DNA methylation patterns. Evidence is presented that indicates a high frequency of DNA hypomethylation as the result of the tissue culture process. Fifteen percent of the methylation changes appear to have been homozygous in the original regenerated plants. A hypothesis is advanced that relates DNA methylation to the variety of genetic alterations found among maize tissue culture regenerants and their progenies. The epigenetic nature of DNA methylation raises questions concerning the stability of tissue culture-induced changes in self-pollinations and crosses. Presented in the Session-in-Depth Exploitation of Plant Cell Culture Variants at the 1992 World Congress on Cell and Tissue Culture, Washington, DC, June 20–25, 1992.  相似文献   

13.
14.
DNA methylation is an epigenetic mark at the interface of genetic and environmental factors relevant to human disease. Quantitative assessments of global DNA methylation levels have therefore become important tools in epidemiology research, particularly for understanding effects of environmental exposures in complex diseases. Among the available methods of quantitative DNA methylation measurements, bisulfite sequencing is considered the gold standard, but whole-genome bisulfite sequencing (WGBS) has previously been considered too costly for epidemiology studies with high sample numbers. Pyrosequencing of repetitive sequences within bisulfite-treated DNA has been routinely used as a surrogate for global DNA methylation, but a comparison of pyrosequencing to WGBS for accuracy and reproducibility of methylation levels has not been performed. This study compared the global methylation levels measured from uniquely mappable (non-repetitive) WGBS sequences to pyrosequencing assays of several repeat sequences and repeat assay-matched WGBS data and determined uniquely mappable WGBS data to be the most reproducible and accurate measurement of global DNA methylation levels. We determined sources of variation in repetitive pyrosequencing assays to be PCR amplification bias, PCR primer selection bias in methylation levels of targeted sequences, and inherent variability in methylation levels of repeat sequences. Low-coverage, uniquely mappable WGBS showed the strongest correlation between replicates of all assays. By using multiplexing by indexed bar codes, the cost of WGBS can be lowered significantly to improve the accuracy of global DNA methylation assessments for human studies.  相似文献   

15.
16.
17.
Developmental exposure to bisphenol A (BPA) has been shown to induce changes in DNA methylation in both mouse and human genic regions; however, the response in repetitive elements and transposons has not been explored. Here we present novel methodology to combine genomic DNA enrichment with RepeatMasker analysis on next-generation sequencing data to determine the effect of perinatal BPA exposure on repetitive DNA at the class, family, subfamily, and individual insertion level in both mouse and human samples. Mice were treated during gestation and lactation to BPA in chow at 0, 50, or 50,000 ng/g levels and total BPA was measured in stratified human fetal liver tissue samples as low (non-detect to 0.83 ng/g), medium (3.5 to 5.79 ng/g), or high (35.44 to 96.76 ng/g). Transposon methylation changes were evident in human classes, families, and subfamilies, with the medium group exhibiting hypomethylation compared to both high and low BPA groups. Mouse repeat classes, families, and subfamilies did not respond to BPA with significantly detectable differential DNA methylation. In human samples, 1251 individual transposon loci were detected as differentially methylated by BPA exposure, but only 19 were detected in mice. Of note, this approach recapitulated the discovery of a previously known mouse environmentally labile metastable epiallele, CabpIAP. Thus, by querying repetitive DNA in both mouse and humans, we report the first known transposons in humans that respond to perinatal BPA exposure.  相似文献   

18.
DNA甲基化是表观遗传学的一种重要修饰形式,也是一种重要的基因表达调控机制。DNA甲基化的异常模式可导致植物生长发育异常。文中从植物DNA甲基化模式入手,对DNA甲基化在调控基因表达和维持基因组稳定性的分子功能、DNA甲基化在植物发育、参与植物对生物和非生物胁迫的反应等方面的相关研究进行回顾和总结,为深入了解DNA甲基化的作用机制并将DNA甲基化应用于植物新品种的培育和遗传改良研究提供一定的参考。  相似文献   

19.
Imprinting is an epigenetic phenomenon in which genes are expressed selectively from either the maternal or paternal alleles. In plants, imprinted gene expression is found in a tissue called the endosperm. Imprinting is often set by a unique epigenomic configuration in which the maternal chromosomes are less DNA methylated than their paternal counterparts. In this review, we synthesize studies that paint a detailed molecular portrait of the distinctive endosperm methylome. We will also discuss the molecular machinery that shapes and modifies this methylome, and the role of DNA methylation in imprinting.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号