首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anthropogenic climate change alters seasonal conditions without altering photoperiod and can thus create a cue‐environment mismatch for organisms that use photoperiod as a cue for seasonal plasticity. We investigated whether evolution of the photoperiodic reaction norm has compensated for this mismatch in Colias eurytheme. This butterfly’s wing melanization has a thermoregulatory function and changes seasonally. In 1971, Hoffmann quantified how larval photoperiod determines adult wing melanization. We recreated his experiment 47 years later using a contemporary population. Comparing our results to his, we found decreased melanization at short photoperiods but no change in melanization at long photoperiods, which is consistent with the greater increase in spring than summer temperatures recorded for this region. Our study shows that evolution can help correct cue‐environment mismatches but not in the same way under all conditions. Studies of contemporary evolution may miss important changes if they focus on only a limited range of conditions.  相似文献   

2.
This study addresses the general hypothesis that insects living in seasonal environments should shorten development times at progressively later dates in the growth season, and that insects living outside equatorial areas should use daylength as a cue to determine the date. Diapause strategies and reaction norms relating the duration of larval development to daylength was investigated in a French population of the butterfly, Lasiommata petropolitana. The results are compared with those of an earlier study of the species in Sweden. Because of the diapausing strategy and phenology of the population, it was expected that an adaptive reaction norm relating larval time to daylength should have a positive slope, i.e. relatively shorter daylengths induce faster growth and development. This prediction was supported, and the reaction norm was qualitatively similar to the one found in Swedish populations. In the French population it was, however, shifted to a range of shorter photoperiods which corresponds to the regime of shorter daylengths in southern Europe. Shorter larval development times and high growth rates were associated with a reduction in pupal size, suggesting a trade off between time and size at pupation. There was no evidence of a trade off between growth rate and starvation endurance. The results suggests that the daylength-dependent decision of what growth trajectory an individual larva will follow, is not made continuously but rather at one or a few occasions during larval development. It is clear that larvae of L. petropolitana make developmental decisions in relation to the daylength they experience during larval growth. The result is a reaction norm that agrees closely to what is predicted by some life history models, suggesting that it is an adaptation for optimising life history traits in a seasonal environment.  相似文献   

3.
The seasonal timing of lifecycle events is closely linked to individual fitness and hence, maladaptation in phenological traits may impact population dynamics. However, few studies have analysed whether and why climate change will alter selection pressures and hence possibly induce maladaptation in phenology. To fill this gap, we here use a theoretical modelling approach. In our models, the phenologies of consumer and resource are (potentially) environmentally sensitive and depend on two different but correlated environmental variables. Fitness of the consumer depends on the phenological match with the resource. Because we explicitly model the dependence of the phenologies on environmental variables, we can test how differential (heterogeneous) versus equal (homogeneous) rates of change in the environmental variables affect selection on consumer phenology. As expected, under heterogeneous change, phenotypic plasticity is insufficient and thus selection on consumer phenology arises. However, even homogeneous change leads to directional selection on consumer phenology. This is because the consumer reaction norm has historically evolved to be flatter than the resource reaction norm, owing to time lags and imperfect cue reliability. Climate change will therefore lead to increased selection on consumer phenology across a broad range of situations.  相似文献   

4.
We review the evidence of how organisms and populations are currently responding to climate change through phenotypic plasticity, genotypic evolution, changes in distribution and, in some cases, local extinction. Organisms alter their gene expression and metabolism to increase the concentrations of several antistress compounds and to change their physiology, phenology, growth and reproduction in response to climate change. Rapid adaptation and microevolution occur at the population level. Together with these phenotypic and genotypic adaptations, the movement of organisms and the turnover of populations can lead to migration toward habitats with better conditions unless hindered by barriers. Both migration and local extinction of populations have occurred. However, many unknowns for all these processes remain. The roles of phenotypic plasticity and genotypic evolution and their possible trade‐offs and links with population structure warrant further research. The application of omic techniques to ecological studies will greatly favor this research. It remains poorly understood how climate change will result in asymmetrical responses of species and how it will interact with other increasing global impacts, such as N eutrophication, changes in environmental N : P ratios and species invasion, among many others. The biogeochemical and biophysical feedbacks on climate of all these changes in vegetation are also poorly understood. We here review the evidence of responses to climate change and discuss the perspectives for increasing our knowledge of the interactions between climate change and life.  相似文献   

5.
Jens Joschinski  Dries Bonte 《Oikos》2021,130(8):1240-1250
Many organisms escape from lethal climatological conditions by entering a resistant resting stage called diapause, which needs to be optimally timed with seasonal change. As climate change exerts selection pressure on phenology, the evolution of mean diapause timing, but also of phenotypic plasticity and bet-hedging strategies is expected. The potential of the latter strategy as a means of coping with environmental unpredictability has received little attention in the climate change literature. Populations should be adapted to spatial variation in local conditions; contemporary patterns of phenological strategies across a geographic range may hence provide information about their evolvability. We thus extracted 458 diapause reaction norms from 60 studies. First, we correlated mean diapause timing with mean winter onset. Then we partitioned the reaction norm variance into a temporal component (phenotypic plasticity) and among-offspring variance (diversified bet-hedging) and correlated this variance composition with variability of winter onset. Mean diapause timing correlated reasonably well with mean winter onset, except for populations at high latitudes, which apparently failed to track early onsets. Variance among offspring was, however, limited and correlated only weakly with environmental variability, indicating little scope for bet-hedging. The apparent lack of phenological bet-hedging strategies may pose a risk in a less predictable climate, but we also highlight the need for more data on alternative strategies.  相似文献   

6.
In the largest early tetrapod clade, the temnospondyls, ontogenies were diverse and quite distinct from the life cycles of extant amphibians. Three well‐studied clades exemplify the diversity of these long‐extinct ontogenies, here analysed with respect to their bearing on developmental plasticity, reaction norms and evolution. Sclerocephalus readily adjusted by means of developmental evolution to different lake environments. In addition, plasticity (reaction norm) played a significant role, apparent both morphologically and by altered developmental traits. Size increase and extension of the ontogenetic trajectory gave larger predators, a phenomenon also found in the dissorophoid Micromelerpeton. Whereas Sclerocephalus was throughout preying on the same fishes, Micromelerpeton was able to fit into different trophic levels. In the branchiosaurid Apateon, a biphasic life cycle was established, with metamorphosis producing a terrestrial morph in some species; truncation of the ontogenetic trajectory gave a sexually mature larva as an alternative morph (neoteny). Plasticity was high in the larval morphs, permitting neotenes to live as filter feeders or small carnivores. Fine‐tuning of development permitted Apateon populations to adjust to specific lake properties and readily change from a filter‐feeding to carnivorous mode of life. In the nonmetamorphosing Triassic Gerrothorax, morphology was extremely conserved, but histology reveals much plasticity at the microscopical level, correlating with fluctuating salinity and water energy. In responding to environmental fluctuations by enhanced plasticity, the studied temnospondyls managed to populate lakes inhabitable to other tetrapods and fishes.  相似文献   

7.
Invasive species cope with novel environments through both phenotypic plasticity and evolutionary change. However, the environmental factors that cause evolutionary divergence in invasive species are poorly understood. We developed predictions for how different life‐history traits, and plasticity in those traits, may respond to environmental gradients in seasonal temperatures, season length and natural enemies. We then tested these predictions in four geographic populations of the invasive cabbage white butterfly (Pieris rapae) from North America. We examined the influence of two rearing temperatures (20 and 26.7 °C) on pupal mass, pupal development time, immune function and fecundity. As predicted, development time was shorter and immune function was greater in populations adapted to longer season length. Also, phenotypic plasticity in development time was greater in regions with shorter growing seasons. Populations differed significantly in mean and plasticity of body mass and fecundity, but these differences were not associated with seasonal temperatures or season length. Our study shows that some life‐history traits, such as development time and immune function, can evolve rapidly in response to latitudinal variation in season length and natural enemies, whereas others traits did not. Our results also indicate that phenotypic plasticity in development time can also diverge rapidly in response to environmental conditions for some traits.  相似文献   

8.
Species interactions have a spatiotemporal component driven by environmental cues, which if altered by climate change can drive shifts in community dynamics. There is insufficient understanding of the precise time windows during which inter‐annual variation in weather drives phenological shifts and the consequences for mismatches between interacting species and resultant population dynamics—particularly for insects. We use a 20 year study on a tri‐trophic system: sycamore Acer pseudoplatanus, two associated aphid species Drepanosiphum platanoidis and Periphyllus testudinaceus and their hymenopteran parasitoids. Using a sliding window approach, we assess climatic drivers of phenology in all three trophic levels. We quantify the magnitude of resultant trophic mismatches between aphids and their plant hosts and parasitoids, and then model the impacts of these mismatches, direct weather effects and density dependence on local‐scale aphid population dynamics. Warmer temperatures in mid‐March to late‐April were associated with advanced sycamore budburst, parasitoid attack and (marginally) D. platanoidis emergence. The precise time window during which spring weather advances phenology varies considerably across each species. Crucially, warmer temperatures in late winter delayed the emergence of both aphid species. Seasonal variation in warming rates thus generates marked shifts in the relative timing of spring events across trophic levels and mismatches in the phenology of interacting species. Despite this, we found no evidence that aphid population growth rates were adversely impacted by the magnitude of mismatch with their host plants or parasitoids, or direct impacts of temperature and precipitation. Strong density dependence effects occurred in both aphid species and probably buffered populations, through density‐dependent compensation, from adverse impacts of the marked inter‐annual climatic variation that occurred during the study period. These findings explain the resilience of aphid populations to climate change and uncover a key mechanism, warmer winter temperatures delaying insect phenology, by which climate change drives asynchronous shifts between interacting species.  相似文献   

9.
The expression of phenotypic plasticity may differ among life stages of the same organism. Age-dependent plasticity can be important for adaptation to heterogeneous environments, but this has only recently been recognized. Whether age-dependent plasticity is a common outcome of local adaptation and whether populations harbor genetic variation in this respect remains largely unknown. To answer these questions, we estimated levels of additive genetic variation in age-dependent plasticity in six species of damselflies sampled from 18 populations along a latitudinal gradient spanning 3600 km. We reared full sib larvae at three temperatures and estimated genetic variances in the height and slope of thermal reaction norms of body size at three points in time during ontogeny using random regression. Our data show that most populations harbor genetic variation in growth rate (reaction norm height) in all ontogenetic stages, but only some populations and ontogenetic stages were found to harbor genetic variation in thermal plasticity (reaction norm slope). Genetic variances in reaction norm height differed among species, while genetic variances in reaction norm slope differed among populations. The slope of the ontogenetic trend in genetic variances of both reaction norm height and slope increased with latitude. We propose that differences in genetic variances reflect temporal and spatial variation in the strength and direction of natural selection on growth trajectories and age-dependent plasticity. Selection on age-dependent plasticity may depend on the interaction between temperature seasonality and time constraints associated with variation in life history traits such as generation length.  相似文献   

10.
Consequences of climate change-driven shifts in the relative timing of spring activities of interacting species are insufficiently understood, especially for insects. We use a controlled experiment which simulates a trophic mismatch scenario in which lepidopteran larvae predominately feed on older leaves due to foliage developing faster than larvae growth rates. As a case study our experiment uses Orthosia cerasi, which is a widespread but declining woodland moth whose UK declines appear to be driven by warming temperatures. In the control experiment larvae are fed young oak Quercus robur leaves (bud burst stages six and seven), whilst in the treatment newly emerged larvae are fed young leaves but then gradually transition to feed on older leaves (post bud burst stage seven). We assess impacts on duration of the larval stage, pupal size and overwintering duration and survival. Larvae in the phenological mismatch treatment had a longer larval period, and smaller and lighter pupae. Larval diet did not carry over to influence emergence dates as earlier pupation of control larvae was balanced by an equivalent increase in the duration of the pupal stage. Increased time spent as larvae could increase predation rates from avian predators, whilst slowing the seasonal decline in food availability for those bird species. Reduced pupal size and weight are indicators of lower fecundity in emerging adults. Notably, we find that adults emerging from the mismatch treatment exhibited greater rates of abnormal vestigial wing development, which is likely to further reduce fitness. Trophic mismatches in which caterpillars have reduced availability of young leaves may thus contribute to the population declines observed in many woodland moth species due to increased mortality at larval stages, and adverse effects of early life conditions that reduce the reproductive success of emerging adults.  相似文献   

11.
12.
The measurement of trade-offs may be complicated when selection exploits multiple avenues of adaptation or multiple life-cycle stages. We surveyed 10 populations of Drosophila melanogaster selected for increased resistance to starvation for 60 generations, their paired controls, and their mutual ancestors (a total of 30 outbred populations) for evidence of physiological and life-history trade-offs that span life-cycle stages. The directly selected lines showed an impressive response to starvation selection, with mature adult females resisting starvation death 4–6 times longer than unselected controls or ancestors—up to a maximum of almost 20 days. Starvation-selected flies are already 80% more resistant to starvation death than their controls immediately upon eclosion, suggesting that a significant portion of their selection response was owing to preadult growth and acquisition of metabolites relevant to the stress. These same lines exhibited significantly longer development and lower viability in the larval and pupal stages. Weight and lipid measurements on one of the starvation-selected treatments (SB1–5), its control populations (CB1–5), and their ancestor populations (B1–5) revealed three important findings. First, starvation resistance and lipid content were linearly correlated; second, larval lipid acquisition played a major role in the evolution of adult starvation resistance; finally, increased larval growth rate and lipid acquisition had a fitness cost exacted in reduced viability and slower development. This study implicates multiple life-cycle stages in the response to selection for the stress resistance of only one stage. Our starvation-selected populations illustrate a case that may be common in nature. Patterns of genetic correlation may prove misleading unless multiple pleiotropic interconnections are resolved.  相似文献   

13.
Ecological mismatches between reproductive events and seasonal resource peaks are frequently proposed to be a key driver of population dynamics resulting from global climate change. Many local populations are experiencing reduced reproductive success as a consequence of mismatches, but few mismatches have led to species‐level population declines. To better understand this apparent paradox, we investigated the breeding phenology and chick survival of two disjunct populations of Hudsonian godwits Limosa haemastica breeding at Churchill, Manitoba and Beluga River, Alaska. Only one population experienced a mismatch: godwits bred nearly one week after the onset of the invertebrate peak at Churchill because of asynchronous climatic change occurring throughout their annual cycle. However, chicks were not uniformly affected by the mismatch — growth rates and survival of young chicks were not correlated with invertebrate abundance, but older chicks tended to suffer lower survival rates on days of low invertebrate abundance. Ecological mismatches thus resulted in a complex array of consequences, but nonetheless contributed to reductions in chick survival. In contrast, godwits at Beluga River hatched their chicks just before the invertebrate peak, such that the period of highest energetic need coincided with the period of highest invertebrate abundance. As a result, growth rates and survival of godwit chicks were unaffected by invertebrate abundance. Godwits at Beluga River were able to properly time their reproduction because of predictable rates of climatic change and strong selection imposed by high predation on late‐hatched chicks. Taken together, our results suggest that population‐specific, local‐scale selection pressures play a critical role in determining the degree and severity of ecological mismatches. The potential for global climate change to induce species‐level population declines may therefore be mediated by the spatial variation in the selection pressures acting across a species’ range.  相似文献   

14.
Phenotypic plasticity is an important mechanism for populations to respond to fluctuating environments, yet may be insufficient to adapt to a directionally changing environment. To study whether plasticity can evolve under current climate change, we quantified selection and genetic variation in both the elevation (RNE) and slope (RNS) of the breeding time reaction norm in a long‐term (1973–2016) study population of great tits (Parus major). The optimal RNE (the caterpillar biomass peak date regressed against the temperature used as cue by great tits) changed over time, whereas the optimal RNS did not. Concordantly, we found strong directional selection on RNE, but not RNS, of egg‐laying date in the second third of the study period; this selection subsequently waned, potentially due to increased between‐year variability in optimal laying dates. We found individual and additive genetic variation in RNE but, contrary to previous studies on our population, not in RNS. The predicted and observed evolutionary change in RNE was, however, marginal, due to low heritability and the sex limitation of laying date. We conclude that adaptation to climate change can only occur via micro‐evolution of RNE, but this will necessarily be slow and potentially hampered by increased variability in phenotypic optima.  相似文献   

15.
Phenotypic plasticity may be an important initial mechanism to counter environmental change, yet we know relatively little about the evolution of plasticity in nature. Species with widespread distributions are expected to have evolved higher levels of plasticity compared with those with more restricted, tropical distributions. At the intraspecific level, temperate populations are expected to have evolved higher levels of plasticity than their tropical counterparts. However, empirical support for these expectations is limited. In addition, no studies have comprehensively examined the evolution of thermal plasticity across life stages. Using populations of Drosophila simulans collected from a latitudinal cline spanning the entire east coast of Australia, we assessed thermal plasticity, measured as hardening capacity (the difference between basal and hardened thermal tolerance) for multiple measures of heat and cold tolerance across both adult and larval stages of development. This allowed us to explicitly ask whether the evolution of thermal plasticity is favoured in more variable, temperate environments. We found no relationship between thermal plasticity and latitude, providing little support for the hypothesis that temperate populations have evolved higher levels of thermal plasticity than their tropical counterparts. With the exception of adult heat survival, we also found no association between plasticity and ten climatic variables, indicating that the evolution of thermal plasticity is not easily predicted by the type of environment that a particular population occupies. We discuss these results in the context of the role of plasticity in a warming climate.  相似文献   

16.
Phenotypic plasticity is important for species responses to global change and species coexistence. Phenotypic plasticity differs among species and traits and changes across environments. Here, we investigated phenotypic plasticity of the widespread grass Arrhenatherum elatius in response to winter warming and frost stress by comparing phenotypic plasticity of 11 geographically and environmentally distinct populations of this species to phenotypic plasticity of populations of different species originating from a single environment. The variation in phenotypic plasticity was similar for populations of a single species from different locations compared to populations of functionally and taxonomically diverse species from one environment for the studied traits (leaf biomass production and root integrity after frost) across three indices of phenotypic plasticity (RDPI, PIN, slope of reaction norm). Phenotypic plasticity was not associated with neutral genetic diversity but closely linked to the climate of the populations’ origin. Populations originating from warmer and more variable climates showed higher phenotypic plasticity. This indicates that phenotypic plasticity can itself be considered as a trait subject to local adaptation to climate. Finally, our data emphasize that high phenotypic plasticity is not per se positive for adaptation to climate change, as differences in stress responses are resulting in high phenotypic plasticity as expressed by common plasticity indices, which is likely to be related to increased mortality under stress in more plastic populations.  相似文献   

17.
Seasons vary in the average environmental conditions a species experiences, meaning that optimum strategies for concealment or feeding may also vary. Populations of the ladybird Harmonia axyridis contain both melanic and non-melanic forms and changes in allele frequency in some populations suggest that melanism may be advantageous in winter, but costly in summer. This could favour the evolution of phenotypic plasticity in colour pattern, as individuals which changed colour throughout the year would be able to maximise their fitness. We have previously shown in the laboratory that melanisation in the “non-melanic” morph of H. axyridis, f. succinea, is predominantly controlled by temperature during development. We now report that wild populations of H. axyridis f. succinea also conform to this principle: lower field temperatures during development produce individuals with more and larger spots. Furthermore, we have found that the critical period of development where temperature affects the level of melanisation covers the pupal and late larval stages, and melanisation increases with the length of time spent at cold temperature. We conclude it is likely that the temperature experienced during this period is used to predict the temperature encountered as an adult. This may allow individuals to produce the level of melanisation necessary to maintain activity levels at the temperatures encountered when they emerge. The long sensitive period seen in H. axyridis may be in order to avoid mismatches between melanisation and seasonal environment.  相似文献   

18.
The evolution of environmentally-induced changes in phenotype or reaction norm implies both the existence at some time of genetic variation within a population for that plasticity measured by the presence of genotype x environment interaction (G x E), and that phenotypic variation affects fitness. Otherwise, the genetic structure of polygenic traits may restrict the evolution of the reaction norm by the lack of independent evolution of a given trait in different environments or by genetic trade-offs with other traits that affect fitness. In this paper, we analyze the existence of G x E in metamorphic traits to two environmental factors, larval density and pond duration in a factorial experiment with Bufo calamita tadpoles in semi-natural conditions and in the laboratory. Results showed no plastic temporal response in metamorphosis to pond durability at low larval density. The rank of genotypes did not change across different hydroperiods, implying a high genetic correlation that may constrain the evolution of the reaction norm. At high larval density a significant G x E interaction was found, suggesting the potential for the evolution of the reaction norm. A sibship (#1) attained the presumed “optimal” reaction norm by accelerating developmental rate in short duration ponds and delaying it in longer ponds. This could be translated in fitness by an increment in metamorphic survival and size at metamorphosis in short and long ponds respectively with respect to non-plastic sibships. However, genetic variability for plasticity suggests that optimal reaction norm for developmental rates may be variable and hard to achieve in the heterogeneous pond environment. Mass at metamorphosis was not plastic across different pond durations but decreased at high larval density. Significant adaptive plasticity for growth rates appeared in environments that differed drastically in level of crowding conditions, both in the field and in the laboratory. The fact that survival of juveniles metamorphosed at high density ponds was a monotonic function of metamorphic size, implies that response to selection may occur in this population of natterjacks and that genetic variability in plasticity may be a reliable mechanism maintaining adaptive genetic variation in growth rates in the highly variable pond environment.  相似文献   

19.
Substantial interannual variability in marine fish recruitment (i.e., the number of young fish entering a fishery each year) has been hypothesized to be related to whether the timing of fish spawning matches that of seasonal plankton blooms. Environmental processes that control the phenology of blooms, such as stratification, may differ from those that influence fish spawning, such as temperature‐linked reproductive maturation. These different controlling mechanisms could cause the timing of these events to diverge under climate change with negative consequences for fisheries. We use an earth system model to examine the impact of a high‐emissions, climate‐warming scenario (RCP8.5) on the future spawning time of two classes of temperate, epipelagic fishes: “geographic spawners” whose spawning grounds are defined by fixed geographic features (e.g., rivers, estuaries, reefs) and “environmental spawners” whose spawning grounds move responding to variations in environmental properties, such as temperature. By the century's end, our results indicate that projections of increased stratification cause spring and summer phytoplankton blooms to start 16 days earlier on average (±0.05 days SE) at latitudes >40°N. The temperature‐linked phenology of geographic spawners changes at a rate twice as fast as phytoplankton, causing these fishes to spawn before the bloom starts across >85% of this region. “Extreme events,” defined here as seasonal mismatches >30 days that could lead to fish recruitment failure, increase 10‐fold for geographic spawners in many areas under the RCP8.5 scenario. Mismatches between environmental spawners and phytoplankton were smaller and less widespread, although sizable mismatches still emerged in some regions. This indicates that range shifts undertaken by environmental spawners may increase the resiliency of fishes to climate change impacts associated with phenological mismatches, potentially buffering against declines in larval fish survival, recruitment, and fisheries. Our model results are supported by empirical evidence from ecosystems with multidecadal observations of both fish and phytoplankton phenology.  相似文献   

20.
Environmental variation often induces shifts in functional traits, yet we know little about whether plasticity will reduce extinction risks under climate change. As climate change proceeds, phenotypic plasticity could enable species with limited dispersal capacity to persist in situ, and migrating populations of other species to establish in new sites at higher elevations or latitudes. Alternatively, climate change could induce maladaptive plasticity, reducing fitness, and potentially stalling adaptation and migration. Here, we quantified plasticity in life history, foliar morphology, and ecophysiology in Boechera stricta (Brassicaceae), a perennial forb native to the Rocky Mountains. In this region, warming winters are reducing snowpack and warming springs are advancing the timing of snow melt. We hypothesized that traits that were historically advantageous in hot and dry, low‐elevation locations will be favored at higher elevation sites due to climate change. To test this hypothesis, we quantified trait variation in natural populations across an elevational gradient. We then estimated plasticity and genetic variation in common gardens at two elevations. Finally, we tested whether climatic manipulations induce plasticity, with the prediction that plants exposed to early snow removal would resemble individuals from lower elevation populations. In natural populations, foliar morphology and ecophysiology varied with elevation in the predicted directions. In the common gardens, trait plasticity was generally concordant with phenotypic clines from the natural populations. Experimental snow removal advanced flowering phenology by 7 days, which is similar in magnitude to flowering time shifts over 2–3 decades of climate change. Therefore, snow manipulations in this system can be used to predict eco‐evolutionary responses to global change. Snow removal also altered foliar morphology, but in unexpected ways. Extensive plasticity could buffer against immediate fitness declines due to changing climates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号