首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Haddock Melanogrammus aeglefinus in the North sea increased their distributional range when more abundant, but this density dependent habitat selection (DDHS) explained only a small part of the year‐on‐year variation in distribution patterns. The condition of haddock was examined at 24 sites in the North Sea in August and September 2004 and related to their abundance, to examine if the ideal free distribution theory (IFD), which assumes that organisms select habitats that maximize their rate of food intake, can be used to explain this variation in large scale distribution patterns. At a given temperature, condition (hepato‐somatic index, I H) was better at stations where haddock were most abundant. Therefore, haddock were not distributed perfectly according to the IFD in 2004. The positive correlation between abundance and I H, however, indicated there was some habitat selection by haddock, as in the total absence of habitat selection no correlation between I H and abundance, and no spatial variation in abundance was expected. DDHS may only explain a small part of the yearly variation in the distribution because haddock did not equalize and maximize their fitness at the scale of the North Sea. In addition, stable isotope analysis of muscle samples showed that haddock did not avoid competition for food when at high abundance by feeding at a lower or wider range of trophic levels.  相似文献   

2.
Abstract: Identifying how habitat use is influenced by environmental heterogeneity at different scales is central to understanding ungulate population dynamics on complex landscapes. We used resource selection functions (RSF) to study summer habitat use in a reintroduced and expanding elk (Cervus elaphus nelsoni) population in the Chequamegon National Forest, Wisconsin, USA. Factors were examined that influenced where elk established home ranges and that influenced habitat use within established home ranges. We also determined grain sizes over which elk responded to environmental heterogeneity and the number of categories of habitat selection from low to high that the elk distinguished. At a large spatial extent, elk home-range establishment was largely explained by the spatial distribution of wolf (Canis lupus) territories. Forage abundance was also influential but was relatively more important at a small spatial extent when elk moved within established home ranges. Areas near roads were avoided when establishing a home-range, but areas near roads were selected for use within the established home range. Elk distinguished among 4 different categories of habitat selection when establishing and moving within home ranges. Spatial and temporal cross validation demonstrated that to improve the predictive strength of habitat models in areas of low inter-annual variability in the environment, it is better to follow more individuals across diverse environmental conditions than to follow the same individuals over a longer time period. Last, our results show that the effects of environmental variables on habitat use were scale-dependent and reemphasize the necessity of analyzing habitat use at multiple scales that are fit to address specific research questions.  相似文献   

3.
Theory on density-dependent habitat selection predicts that as population density of a species increases, use of higher quality (primary) habitat by individuals declines while use of lower quality (secondary) habitat rises. Habitat partitioning is often considered the primary mechanism for coexistence between similar species, but how this process evolves with changes in population density remains to be empirically tested for free-ranging ungulates. We used resource-selection functions to quantify density effects on landscape-scale habitat selection of two sympatric species of ungulates [moose (Alces alces) and elk (Cervus canadensis manitobensis)] in Riding Mountain National Park, Manitoba, Canada (2000–2011). The density of elk was actively reduced from 1.2 to 0.4 elk km?2 through increased hunting effort during the period of study, while moose density decreased without additional human influence from 1.6–0.7 moose km?2. Patterns of habitat selection during winter by both species changed in accordance to expectations from density-dependent habitat-selection theory. At low intraspecific density, moose and elk did not partition habitat, as both species selected strongly for mixed forest (primary habitat providing both food and cover), but did so in different areas segregated across an elevational gradient. As intraspecific density increased, selection for primary habitat by both species decreased, while selection for secondary, lower quality habitat such as agricultural fields (for elk) and built-up areas (for moose) increased. We show that habitat-selection strategies during winter for moose and elk, and subsequent effects on habitat partitioning, depend heavily on the position in state space (density) of both species.  相似文献   

4.
Habitat selection fundamentally drives the distribution of organisms across landscapes; density-dependent habitat selection (DDHS) is considered a central component of ecological theories explaining habitat use and population regulation. A preponderance of DDHS theories is based on ideal distributions, such that organisms select habitat according to either the ideal free, despotic, or pre-emptive distributions. Models that can be used to simultaneously test competing DDHS theories are desirable to help improve our understanding of habitat selection. We developed hierarchical, piecewise linear models that allow for simultaneous testing of DDHS theories and accommodate densities from multiple habitats and regional populations, environmental covariates, and random effects. We demonstrate the use of these models with data on mule deer (Odocoileus hemionus) abundance and net energy costs in different snow depths within winter ranges of five regional populations in western Idaho, USA. Regional population density explained 40 % of the variation in population growth, and we found that deer were ideal free in winter ranges. Deer occupied habitats with lowest net energy costs at higher densities and at a higher rate than compared to habitats with intermediate and high energy costs. The proportion of a regional population in low energy cost habitat the previous year accounted for a significant amount of variation in population growth (17 %), demonstrating the importance of winter habitat selection in regulating deer populations. These linear models are most appropriate for empirical data collected from centralized habitat patches within the local range of a species where individuals are either year-round residents or migratory (but have already arrived from migration).  相似文献   

5.
Understanding and predicting the distribution of organisms in heterogeneous environments lies at the heart of ecology, and the theory of density-dependent habitat selection (DDHS) provides ecologists with an inferential framework linking evolution and population dynamics. Current theory does not allow for temporal variation in habitat quality, a serious limitation when confronted with real ecological systems. We develop both a stochastic equivalent of the ideal free distribution to study how spatial patterns of habitat use depend on the magnitude and spatial correlation of environmental stochasticity and also a stochastic habitat selection rule. The emerging patterns are confronted with deterministic predictions based on isodar analysis, an established empirical approach to the analysis of habitat selection patterns. Our simulations highlight some consistent patterns of habitat use, indicating that it is possible to make inferences about the habitat selection process based on observed patterns of habitat use. However, isodar analysis gives results that are contingent on the magnitude and spatial correlation of environmental stochasticity. Hence, DDHS is better revealed by a measure of habitat selectivity than by empirical isodars. The detection of DDHS is but a small component of isodar theory, which remains an important conceptual framework for linking evolutionary strategies in behavior and population dynamics.  相似文献   

6.
Abstract: Incomplete population counts indicate change in population sizes when constant proportionality holds, a condition that is rarely met. However, researchers have not explored whether constant proportionality holds for a segment of a population. I examined whether the female segment (juv, subadult M, subadult and ad F) of a Roosevelt elk (Cervus elaphus roosevelti) population displayed constant proportionality. When most food is in particular habitats, females of polygynous species should use that habitat frequently, even when food is limited, because they are more familiar with food distribution and abundance than males. I obtained counts of elk and tallies of naturally marked animals from vehicle surveys of a population inhabiting a landscape where forage was in meadows that were interspersed in closed-canopied forest. I conducted population surveys in January or February and estimated population size with Bowden's mark-resight estimator. Population size estimates declined from 130 in 1997 to 37 in 2006. The proportion of the population counted during surveys was inversely related to population size estimates. Estimated population sizes were inversely related to male (r2 = 0.56) but not female sighting probabilities (r2 = 0.004), which were ≥0.9. Constant proportionality in counts held for only the female segment of the population. Counts of the female segment of the population can inform managers about changes in this segment of the population over time.  相似文献   

7.
ABSTRACT The abundance and distribution of carnivores and their habitat are key information needed for status assessment, conservation planning, population management, and assessment of the effects of human development on their habitat and populations. We developed a habitat quality rating system, using existing wolverine (Gulo gulo) distribution, wolverine food, ecosystem mapping, and human development data. We used this and empirically derived estimates of wolverine density to predict wolverine distribution and abundance at a provincial scale. Density estimates for wolverines in high-quality habitat averaged 6.2 wolverines/1,000 km2 (95% CI = 4.2–9.5). We predicted mean densities ranging from 0.3/1,000 km2 in rare-quality habitat to 4.1/1,000 km2 in moderate-quality habitat. Our predicted population estimate for wolverines in British Columbia was 3,530 (95% CI = 2,700-4,760). We predicted highest densities of wolverines in interior mountainous regions, moderate densities in interior plateau and boreal forest regions, and low densities in mainland coastal regions and drier interior plateaus. We predicted that wolverines would be rare on Vancouver Island, along the outer mainland coast, and in the dry interior forests, and absent from the Queen Charlotte Islands, interior grassland environments, and areas of intensive urban development.  相似文献   

8.
We investigated how density‐dependent processes and subsequent variation in nutritional condition of individuals influenced both timing and duration of sexual segregation and selection of resources. During 1999–2001, we experimentally created two population densities of North American elk (Cervus elaphus), a high‐density population at 20 elk/km2, and a low‐density population at 4 elk/km2 to test hypotheses relative to timing and duration of sexual segregation and variation in selection of resources. We used multi‐response permutation procedures to investigate patterns of sexual segregation, and resource selection functions to document differences in selection of resources by individuals in high‐ and low‐density populations during sexual segregation and aggregation. The duration of sexual segregation was 2 months longer in the high‐density population and likely was influenced by individuals in poorer nutritional condition, which corresponded with later conception and parturition, than at low density. Males and females in the high‐density population overlapped in selection of resources to a greater extent than in the low‐density population, probably resulting from density‐dependent effects of increased intraspecific competition and lower availability of resources.  相似文献   

9.
PEDRO P. OLEA 《Ibis》2011,153(4):832-845
Animals can select breeding sites using non‐social information (habitat characteristics) and social information (conspecific presence or abundance). The availability of both types of information is expected to vary over time during the colonization of a new area, conditioning their use by colonizers. However, if and how both types of information are exploited during the colonization process remains unclear. We hypothesized that non‐social information should be predominant at the beginning of a colonization episode (when conspecific presence is low) and that social information should gain in importance as the colonization progresses. We tested this hypothesis by studying habitat selection by the Griffon Vulture Gyps fulvus, a long‐lived colonial raptor, during a natural colonization process spanning 40 years. In NW Spain, the population showed a sharp increase from 15 breeding pairs in three colonies in the 1970s to 586 breeding pairs in 120 colonies in 2008, expanding its range from 90 km2 in the 1970s to 6403 km2 in 2008, with directions of expansion following areas rich in nesting cliffs. The main determinants of habitat selection varied over time. Livestock density and the characteristics of nesting cliffs were the main predictors of settlement at the onset of colonization. Breeding density of conspecifics increased its importance over time, having the greatest relative weight in habitat selection later in the colonization process. Our results indicated a prevalent use of non‐social information during the early stages of the colonization and an increasing role of social information as the expansion progressed.  相似文献   

10.
1. Despite carrying capacity being one of the most important parameters in population management and modelling, we lack substantial evidence for habitat limitations on freshwater species. Here we tested the ideal free distribution (IFD) hypothesis using an indirect behaviour‐based method for small closed populations assuming that animals can effectively estimate habitat suitability and distribute themselves accordingly in time and space. 2. We analysed spatiotemporal variations in the density of the European eel Anguilla, a catadromous species with good colonisation abilities in a small coastal catchment in France. The general linear model used enabled us to test simultaneously the effect of temporal, macro‐ and meso‐scale habitat factors on the presence and abundance of eels at 30 sites over an 8‐year period. 3. Almost every site sampled had eels, whatever its location on the catchment and its habitat characteristics. Density estimates (overall mean ± SD of 0.40 ± 0.48 m?2) were at the upper range of other values for European catchments. Moreover, eel densities were mainly influenced by the availability of suitable habitats (rocky substratum and instream cover), which suggests that their distribution reflects an IFD. 4. Despite marked variability in recruitment, the density of the oldest size‐class remained stable over the study, suggesting that density‐dependent mortality occurred, probably due to intraspecific competition for space and food and to predation. 5. These findings suggest that eel habitats are saturated in the Frémur. Therefore, we suggest that the mean abundance of eels observed could serve as a threshold value for other male‐dominated river stocks (provided they have a similar overall percentage of suitable habitats) that are common in small, low gradient streams on the north‐Atlantic coast of Europe.  相似文献   

11.
Nummi  P.  Pöysä  H.  Elmberg  J.  Sjöberg  K. 《Hydrobiologia》1994,(1):247-252
The mallard (Anas platyrhynchos Linnaeus) is a generalist feeder, breeding in a wide range of habitats, yet showing considerable between site differences in density. Variations in density and habitat use may result from inter- and intea-specific competition, habitat structure or food.We studied habitat selection of the mallard in four regions of Finland and Sweden. In each region, ten lakes were chosen ranging from oligotrophic to eutrophic. Habitat distribution of the mallard did not differ between regions despite variation in the density of the species and congenerics. Mallard density did not correlate with vegetation structure, but increased with food abundance and the number and density of congenerics although there were regional differences in mallard response.  相似文献   

12.
Habitat selection is complex due to density dependence and functional responses, defined as variation in relative habitat use depending on availability. In this study we unite these concepts by empirically testing for density‐dependent functional responses in habitat selection using a large herbivore, elk Cervus canadensis manitobensis, as a model species. Theory on density‐dependent habitat selection predicts specialised behaviour when densities are low with a gradual switch to generalist behaviour (more even selection of habitat) as competition intensifies. This suggests that functional responses in habitat selection should be positive when competition is low, but that density may have a negative effect on the functional response due to constraining effects of competition on habitat use and availability. We tested this prediction using data from Global Positioning System (GPS) collared elk (n = 33) and empirical data on spatiotemporal variation in local density during winter in Riding Mountain National Park, Manitoba, Canada (2002–2011). As local density increased, winter home range size decreased and the proportion of mixed forest (providing shelter and forage to elk) used and available within the home range also decreased. Our resource selection function (RSF) revealed clear density‐dependent effects in selection, being strongest (or weakest) for high quality (or low quality) habitat types at lowest observed density leading to more even selection as densities increased. The functional response in mixed forest selection was negatively affected by local density. Increasing availability of mixed forest in the home range was associated with higher selection at low density (positive functional response); no effect of availability on selection at moderate density (no functional response); and lower selection as availability increased at high density (negative functional response). Our study demonstrates that this process is largely driven by the negative effect of density on home range size as it constrains use and availability of habitat.  相似文献   

13.
Determining habitat quality for wildlife populations requires relating a species' habitat to its survival and reproduction. Within a season, species occurrence and density can be disconnected from measures of habitat quality when resources are highly seasonal, unpredictable over time, and patchy. Here we establish an explicit link among dynamic selection of changing resources, spatio‐temporal species distributions, and fitness for predictive abundance and occurrence models that are used for short‐term water management and long‐term restoration planning. We used the wading bird distribution and evaluation models (WADEM) that estimate (1) daily changes in selection across resource gradients, (2) landscape abundance of flocks and individuals, (3) conspecific foraging aggregation, and (4) resource unit occurrence (at fixed 400 m cells) to quantify habitat quality and its consequences on reproduction for wetland indicator species. We linked maximum annual numbers of nests detected across the study area and nesting success of Great Egrets (Ardea alba), White Ibises (Eudocimus albus), and Wood Storks (Mycteria americana) over a 20‐year period to estimated daily dynamics of food resources produced by WADEM over a 7490 km2 area. For all species, increases in predicted species abundance in March and high abundance in April were strongly linked to breeding responses. Great Egret nesting effort and success were higher when birds also showed greater conspecific foraging aggregation. Synthesis and applications: This study provides the first empirical evidence that dynamic habitat selection processes and distributions of wading birds over environmental gradients are linked with reproductive measures over periods of decades. Further, predictor variables at a variety of temporal (daily‐multiannual) resolutions and spatial (400 m to regional) scales effectively explained variation in ecological processes that change habitat quality. The process used here allows managers to develop short‐ and long‐term conservation strategies that (1) consider flexible behavioral patterns and (2) are robust to environmental variation over time.  相似文献   

14.
We used isodars to analyse habitat‐dependent population regulation by long‐nosed bandicoots Perameles nasuta during an irruption and subsequent population crash in three habitats (heath, woodland and forest) at Booderee National Park, south‐eastern Australia. Specifically, we aimed to see whether patterns of habitat‐dependent population regulation matched a priori estimates of quantitative and qualitative differences between habitats. We also tested if habitat preference changed between the increasing and decreasing phase of the irruption as predicted by the reciprocating dispersal theory. Quantitative differences in habitat quality were indexed by the relative abundance of the main food of long‐nosed bandicoots (terrestrial invertebrates), while qualitative differences were indexed by the availability of refuge from predation (vegetation understorey density). One index of fitness, body weight, was highest in forest, and lowest in heath, suggesting an ideal despotic model of habitat selection. Over the entire course of the irruption, there was density‐dependent habitat selection with forest and woodland both quantitatively superior to heath. This reflected the overall abundance of invertebrates with highest abundance in woodland and forest and less in heath. Isodar analysis also revealed that although forest was quantitatively better than heath and equivalent to woodland it was qualitatively poorer than either habitat. Heath had a higher density of understorey than woodland and woodland having a higher density of understorey than forest giving crossover population regulation. When the increasing and declining phase of the irruption were analysed separately, no habitat was quantitatively superior to any other during either phase. The lack of switching in preference between habitats from the increasing to the declining phase of the irruption and the virtual absence of any dispersal by adults, does not support the reciprocating dispersal hypothesis.  相似文献   

15.
Traditional elk habitat management on public land has focused on providing security habitat for bull elk during the hunting season to provide for both adequate hunter opportunity and bull survival. This paradigm has given less consideration to adult female elk habitat use, patterns of adjacent land ownership, and hunter access. This paradigm also was developed when elk population sizes were much smaller in many areas. In many Rocky Mountain states, the focus of elk population management has recently shifted to reducing or maintaining elk population sizes, necessitating a better understanding of the implications of security habitat management, as well as patterns of adjacent land ownership and hunter access, on adult female elk. We addressed this need by testing the hypotheses that during the hunting season: 1) adult female elk selection for areas prohibiting or limiting hunter access is stronger than elk selection for publicly owned and managed elk security habitat, 2) these effects occur during the archery hunting period and intensify during the rifle hunting period, and 3) the effects of hunter access on selection are consistent among herds that occupy landscapes characterized by a matrix of public and private lands. We used global position system locations collected from 82 females in 2 different Greater Yellowstone Ecosystem (GYE) elk herds to evaluate effects of hunter access, security habitat as defined by the Hillis paradigm, and other landscape attributes on adult female elk resource selection during the pre-hunting, archery, rifle, and post-hunting periods. We found that female elk selection for areas restricting public hunting access was stronger than selection for security habitat in both study areas, and that the density of roads open to motorized use was the strongest predictor of elk distribution. Increases in selection for areas that restricted hunting access occurred during the rifle hunting period, and we did not find consistent evidence these movements were triggered by the archery hunting period. Our results provide evidence that in landscapes characterized by a matrix of public and privately owned lands, traditional concepts of elk security habitat need to be expanded to also include areas that restrict hunter access to plan for elk population management that is regulated through adult female harvest. Future efforts should investigate whether elk use of areas that restrict hunter access are flexible behavioral responses to hunting risk, or if these behaviors are passed from generation to generation such that a learned pattern of private land use becomes the normal movement pattern rather than a short-term behavioral response. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

16.
Abstract: We used spatial data to identify potential areas for elk (Cervus elaphus) restoration in Arkansas. To assess habitat, we used locations of 239 elk groups collected from helicopter surveys in the Buffalo National River area of northwestern Arkansas, USA, from 1992 to 2002. We calculated the Mahalanobis distance (D2) statistic based on the relationship between those elk-group locations and a suite of 9 landscape variables to evaluate winter habitat in Arkansas. We tested model performance in the Buffalo National River area by comparing the D2 values of pixels representing areas with and without elk pellets along 19 fixed-width transects surveyed in March 2002. Pixels with elk scat had lower D2 values than pixels in which we found no pellets (logistic regression: Wald χ2 = 24.37, P < 0.001), indicating that habitat characteristics were similar to those selected by the aerially surveyed elk. Our D2 model indicated that the best elk habitat primarily occurred in northern and western Arkansas and was associated with areas of high landscape heterogeneity, heavy forest cover, gently sloping ridge tops and valleys, low human population density, and low road densities. To assess the potential for elk-human conflicts in Arkansas, we used the analytical hierarchy process to rank the importance of 8 criteria based on expert opinion from biologists involved in elk management. The biologists ranked availability of forage on public lands as having the strongest influence on the potential for elk-human conflict (33%), followed by human population growth rate (22%) and the amount of private land in row crops (18%). We then applied those rankings in a weighted linear summation to map the relative potential for elk-human conflict. Finally, we used white-tailed deer (Odocoileus virginianus) densities to identify areas where success of elk restoration may be hampered due to meningeal worm (Parelaphostrongylus tenuis) transmission. By combining results of the 3 spatial data layers (i.e., habitat model, elk-human conflict model, deer density), our model indicated that restoration sites located in west-central and north-central Arkansas were most favorable for reintroduction.  相似文献   

17.
ABSTRACT Although it is known that forest loss and degradation negatively impact most forest‐dwelling primates, such relationships are difficult to quantify because many primates are difficult to survey over large areas. Furthermore, recovery times are also difficult to assess due to a lack of long‐term data. Here, we determined how forest characteristics and habitat disturbance correlate with the abundance of pileated gibbons, Hylobates pileatus. We studied a population in Khao Ang Rue Nai Wildlife Sanctuary in southeastern Thailand, assessed its density using an auditory method combined with distance sampling at 24 randomly placed sample sites. In addition, we determined how simple forest structural characteristics and habitat disturbance correlate with the gibbon abundance. Average gibbon density per site was 1.02 ± 0.16 (SE) groups/km2 (range 0–2.74). Bivariate analyses indicated that densities depended on food tree biomass, level of disturbance, evergreen forest cover, time since protection, and distance to the sanctuary boundary. Multiple regression analysis suggested evergreen forest cover and distance to boundary were the most influential factors. Because evergreen forest cover, time since protection, and habitat disturbance are correlated, these results suggest a direct dependence of gibbon densities on mature, undisturbed evergreen forest. While gibbons can persist in disturbed areas if the forest is protected, it appears that recovery to previous densities may take decades. We suggest that this is due to the slow pace of forest regeneration and/or poor recovery potential of gibbons.  相似文献   

18.
Density‐dependent habitat selection has been used to predict and explain patterns of abundance of species between habitats. Thermal quality, a density‐independent component of habitat suitability, is often the most important factor for habitat selection in ectotherms which comprise the vast majority of animal species. Ectotherms may reach high densities such that individual fitness is reduced in a habitat due to increased competition for finite resources. Therefore, density and thermal quality may present conflicting information about which habitat will provide the highest fitness reward and ectotherm habitat selection may be density‐independent. Using ornate tree lizards Urosaurus ornatus at 10 sites each straddling two adjacent habitats (wash and upland), we tested the hypothesis that habitat selection is density‐dependent even when thermal quality differs between habitats. We first tested that fitness proxies decline with density in each habitat, indicating density‐dependent effects on habitat suitability. We also confirmed that the two habitats vary in suitability (quantified by food abundance and thermal quality). Next, we tested the predictions that habitat selection depends on density with isodar analyses and that fitness proxies are equal in the two habitats within a site. We found that monthly survival rates decreased with density, and that the wash habitat had more prey and higher thermal quality than the upland habitat. Lizards preferred the habitat with more food and higher thermal quality, lizard densities in the two habitats were positively correlated, and fitness proxies of lizards did not differ between habitats. These patterns are consistent with density‐dependent habitat selection, despite differences in thermal quality between habitats. We expect that density‐dependent habitat selection is widespread in terrestrial ectotherms when densities are high and temperatures are close to their optimal performance range. In areas where thermal quality is low, however, we expect that depletable resources, such as food, become less limiting because assimilating resources is more difficult.  相似文献   

19.
B. K. Orr  V. H. Resh 《Oecologia》1992,90(4):474-482
Summary The surface cover produced by aquatic macrophytes is the primary habitat for immature stages (eggs, larvae, and pupae) ofAnopheles mosquitoes. We hypothesized that both the abundance of immatureAnopheles and the recruitment ofAnopheles (from oviposition or larval movement) is positively related to the amount of surface cover present. Field sampling documented a positive correlation betweenAnopheles egg and larval abundance and the amount of vegetative cover present (measured as the number of emergent stems m-2) in monospecific beds ofMyriophyllum aquaticum in a California, USA, wetland. Experiments conducted to determine the influence ofMyriophyllum stem density on selection of oviposition sites by adultAnopheles females clearly indicate that oviposition rate (eggs m-2 d-1) increases as stem density increases from 0 to 1000 stems m-2 but decreases as stem density approaches 2000 stems m-2. In selecting microhabitats,Anopheles larvae preferred patches with high stem densities over patches with few or no plant stems; this preference correlates with differences in habitat quality (e.g., increased refuge from predation and enriched food sources). The optimal habitat for anopheline mosquitoes apparently occurs above a threshold plant density of approximately 500Myriophyllum stems m-2. Habitat heterogeneity produced by variability in the distribution and structure of aquatic vegetation strongly influences the local distribution and abundance of anopheline mosquitoes.  相似文献   

20.
Hebblewhite M  Merrill EH 《Oecologia》2007,152(2):377-387
While migration is hypothesized to reduce predation risk for ungulates, there have been few direct empirical tests of this hypothesis. Furthermore, few studies examined multiscale predation risk avoidance by migrant ungulates, yet recent research reveals that predator–prey interactions occur at multiple scales. We test the predation risk reduction hypothesis at two spatial scales in a partially migratory elk (Cervus elaphus) population by comparing exposure of migrant and resident elk to wolf (Canis lupus) predation risk. We used GPS and VHF telemetry data collected from 67 migrant and 44 resident elk over the summers of 2002–2004 in and adjacent to Banff National Park (BNP), Canada. We used wolf GPS and VHF telemetry data to estimate predation risk as a function of the relative probability of wolf occurrence weighted by a spatial density model that adjusted for varying pack sizes. We validated the predation risk model using independent data on wolf-killed elk, and showed that combining wolf presence and spatial density best predicted where an elk was likely to be killed. Predation risk on summer ranges of migrant elk was reduced by 70% compared to within resident elk summer ranges. Because wolves avoided areas near high human activity, however, fine-scale selection by resident elk for areas near high human activity reduced their predation risk exposure to only 15% higher than migrants, a difference significant in only one of three summers. Finally, during actual migration, elk were exposed to 1.7 times more predation risk than residents, even though migration was rapid. Our results support the hypothesis that large-scale migrations can reduce predation. However, we also show that where small-scale spatial variation in predation risk exists, nonmigratory elk may equally reduce predation risk as effectively as migrants under some circumstances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号