首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
O-GlcNAcylation is an abundant nutrient-driven modification linked to cellular signaling and regulation of gene expression. Utilizing precursors derived from metabolic flux, O-GlcNAc functions as a homeostatic regulator. The enzymes of O-GlcNAc cycling, OGT and O-GlcNAcase, act in mitochondria, the cytoplasm, and the nucleus in association with epigenetic “writers” and “erasers” of the histone code. Both O-GlcNAc and O-phosphate modify repeats within the RNA polymerase II C-terminal domain (CTD). By communicating with the histone and CTD codes, O-GlcNAc cycling provides a link between cellular metabolic status and the epigenetic machinery. Thus, O-GlcNAcylation is poised to influence trans-generational epigenetic inheritance.  相似文献   

4.
5.
Cytopathogenesis and Inhibition of Host Gene Expression by RNA Viruses   总被引:13,自引:0,他引:13       下载免费PDF全文
Many viruses interfere with host cell function in ways that are harmful or pathological. This often results in changes in cell morphology referred to as cytopathic effects. However, pathogenesis of virus infections also involves inhibition of host cell gene expression. Thus the term “cytopathogenesis,” or pathogenesis at the cellular level, is meant to be broader than the term “cytopathic effects” and includes other cellular changes that contribute to viral pathogenesis in addition to those changes that are visible at the microscopic level. The goal of this review is to place recent work on the inhibition of host gene expression by RNA viruses in the context of the pathogenesis of virus infections. Three different RNA virus families, picornaviruses, influenza viruses, and rhabdoviruses, are used to illustrate common principles involved in cytopathogenesis. These examples were chosen because viral gene products responsible for inhibiting host gene expression have been identified, as have some of the molecular targets of the host. The argument is made that the role of the virus-induced inhibition of host gene expression is to inhibit the host antiviral response, such as the response to double-stranded RNA. Viral cytopathogenesis is presented as a balance between the host antiviral response and the ability of viruses to inhibit that response through the overall inhibition of host gene expression. This balance is a major determinant of viral tissue tropism in infections of intact animals.  相似文献   

6.

Background

Chromatin compactness has been considered a major determinant of gene activity and has been associated with specific chromatin modifications in studies on a few individual genetic loci. At the same time, genome-wide patterns of open and closed chromatin have been understudied, and are at present largely predicted from chromatin modification and gene expression data. However the universal applicability of such predictions is not self-evident, and requires experimental verification.

Results

We developed and implemented a high-throughput analysis for general chromatin sensitivity to DNase I which provides a comprehensive epigenomic assessment in a single assay. Contiguous domains of open and closed chromatin were identified by computational analysis of the data, and correlated to other genome annotations including predicted chromatin “states”, individual chromatin modifications, nuclear lamina interactions, and gene expression. While showing that the widely trusted predictions of chromatin structure are correct in the majority of cases, we detected diverse “exceptions” from the conventional rules. We found a profound paucity of chromatin modifications in a major fraction of closed chromatin, and identified a number of loci where chromatin configuration is opposite to that expected from modification and gene expression patterns. Further, we observed that chromatin of large introns tends to be closed even when the genes are expressed, and that a significant proportion of active genes including their promoters are located in closed chromatin.

Conclusions

These findings reveal limitations of the existing predictive models, indicate novel mechanisms of epigenetic regulation, and provide important insights into genome organization and function.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-988) contains supplementary material, which is available to authorized users.  相似文献   

7.
8.
MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that have been found highly conserved among species. MiRNAs are able to negatively regulate gene expression through base pairing of 3’ UTRs of their target genes. Therefore, miRNAs have been shown to play an important role in regulating various cellular activities. Over the past decade, substantial evidences have been obtained to show that miRNAs are aberrantly expressed in human malignancies and could act as “OncomiRs” or “Tumor suppressor miRs”. In recent years, increasing number of studies have demonstrated the involvement of miRNAs in cancer metastasis. Many studies have shown that microRNAs could directly target genes playing a central role in epithelia-mesenchymal-transition (EMT), a cellular transformation process that allows cancer cells to acquire motility and invasiveness. EMT is considered an essential step driving the early phase of cancer metastasis. This review will summarize the recent findings and characterization of miRNAs that are involved in the regulation of EMT, migration, invasion and metastasis of cancer cells. Lastly, we will discuss potential use of miRNAs as diagnostic and prognostic biomarkers as well as therapeutic targets for cancer.  相似文献   

9.
杨莹  陈宇晟  孙宝发  杨运桂 《遗传》2018,40(11):964-976
表观遗传学修饰包括DNA、RNA和蛋白质的化学修饰,基于非序列改变所致基因表达和功能水平变化。近年来,在DNA和蛋白质修饰基础上,可逆RNA甲基化修饰研究引领了第3次表观遗传学修饰研究的浪潮。RNA存在100余种化学修饰,甲基化是最主要的修饰形式。鉴定RNA甲基化修饰酶及研发其转录组水平高通量检测技术,是揭示RNA化学修饰调控基因表达和功能规律的基础。本文主要总结了近年来本课题组与合作团队及国内外同行在RNA甲基化表观转录组学研究中取得的主要前沿进展,包括发现了RNA去甲基酶、甲基转移酶和结合蛋白,揭示RNA甲基化修饰调控RNA加工代谢,及其调控正常生理和异常病理等重要生命进程。这些系列研究成果证明RNA甲基化修饰类似于DNA甲基化,具有可逆性,拓展了RNA甲基化表观转录组学研究新领域,完善了中心法则表观遗传学规律。  相似文献   

10.
11.
The post-lactational regression of mammary gland is a complex multi-step process designed to conserve the biological function of the gland for next pregnancy. This developmental stage is a biological intrigue with great relevance to breast cancer research, and thus has been the subject of intensive scrutiny. Multipronged studies (microarray, proteomics profiling, animal knock-out models) have provided a repertoire of genes critical to involution. However, the caveat of these approaches remains in their failure to reveal post-translational modification(s), an emerging and critical aspect of gene regulation in developmental processes and mammary gland remodeling. The massive surge in the lysosomal enzymes concurrent with the onset of involution has been known for decades, and considered essential for “clearance” purposes. However, functional significance of these enzymes in diverse biological processes distinct from their proteolytic activity is just emerging. Studies from our laboratory had indicated specific post-translational modifications of the aspartyl endopeptidase Cathepsin D (CatD) at distinct stages mammary gland development. This study addresses the biological significance of these modifications in the involution process, and reveals that post-translational modifications drive CatD into the nucleus to cleave Histone 3. The cleavage of Histone 3 has been associated with cellular differentiation and could be critical instigator of involution process. From functional perspective, deregulated expression and increased secretion of CatD are associated with aggressive and metastatic phenotype of breast cancer. Thus unraveling CatD’s physiological functions in mammary gland development will bridge the present gap in understanding its pro-tumorigenic/metastatic functions, and assist in the generation of tailored therapeutic approaches.  相似文献   

12.
L. Ryan Baugh 《Genetics》2013,194(3):539-555
It is widely appreciated that larvae of the nematode Caenorhabditis elegans arrest development by forming dauer larvae in response to multiple unfavorable environmental conditions. C. elegans larvae can also reversibly arrest development earlier, during the first larval stage (L1), in response to starvation. “L1 arrest” (also known as “L1 diapause”) occurs without morphological modification but is accompanied by increased stress resistance. Caloric restriction and periodic fasting can extend adult lifespan, and developmental models are critical to understanding how the animal is buffered from fluctuations in nutrient availability, impacting lifespan. L1 arrest provides an opportunity to study nutritional control of development. Given its relevance to aging, diabetes, obesity and cancer, interest in L1 arrest is increasing, and signaling pathways and gene regulatory mechanisms controlling arrest and recovery have been characterized. Insulin-like signaling is a critical regulator, and it is modified by and acts through microRNAs. DAF-18/PTEN, AMP-activated kinase and fatty acid biosynthesis are also involved. The nervous system, epidermis, and intestine contribute systemically to regulation of arrest, but cell-autonomous signaling likely contributes to regulation in the germline. A relatively small number of genes affecting starvation survival during L1 arrest are known, and many of them also affect adult lifespan, reflecting a common genetic basis ripe for exploration. mRNA expression is well characterized during arrest, recovery, and normal L1 development, providing a metazoan model for nutritional control of gene expression. In particular, post-recruitment regulation of RNA polymerase II is under nutritional control, potentially contributing to a rapid and coordinated response to feeding. The phenomenology of L1 arrest will be reviewed, as well as regulation of developmental arrest and starvation survival by various signaling pathways and gene regulatory mechanisms.  相似文献   

13.
14.
15.
Emerging evidence is shedding light on a large and complex network of epigenetic modifications at play in human stem cells. This “epigenetic landscape” governs the fine-tuning and precision of gene expression programs that define the molecular basis of stem cell pluripotency, differentiation and reprogramming. This review will focus on recent progress in our understanding of the processes that govern this landscape in stem cells, such as histone modification, DNA methylation, alterations of chromatin structure due to chromatin remodeling and non-coding RNA activity. Further investigation into stem cell epigenetics promises to provide novel advances in the diagnosis and treatment of a wide array of human diseases.  相似文献   

16.
17.
Since alternative splicing of pre-mRNAs is essential for generating tissue-specific diversity in proteome, elucidating its regulatory mechanism is indispensable to understand developmental process or tissue-specific functions. We have been focusing on tissue-specific regulation of mutually exclusive selection of alternative exons because this implies the typical molecular mechanism of alternative splicing regulation and also can be good examples to elicit general rule of “splice code”. So far, mutually exclusive splicing regulation has been explained by the outcome from the balance of multiple regulators that enhance or repress either of alternative exons discretely. However, this “balance” model is open to questions of how to ensure the selection of only one appropriate exon out of several candidates and how to switch them. To answer these questions, we generated an original bichromatic fluorescent splicing reporter system for mammals using fibroblast growth factor-receptor 2 (FGFR2) gene as model. By using this splicing reporter, we demonstrated that FGFR2 gene is regulated by the “switch-like” mechanism, in which key regulators modify the ordered splice-site recognition of two mutually exclusive exons, eventually ensure single exon selection and their distinct switching. Also this finding elucidated the evolutionally conserved “splice code,” in which combination of tissue-specific and broadly expressed RNA binding proteins regulate alternative splicing of specific gene in a tissue-specific manner. These findings provide the significant cue to understand how a number of spliced genes are regulated in various tissue-specific manners by a limited number of regulators, eventually to understand developmental process or tissue-specific functions.  相似文献   

18.
19.
Epigenetic modifications of the chromatin structure are crucial for many biological processes and act on genes during the development and germination of seeds. The spatial distribution of 3 epigenetic markers, i.e. H4K5ac, H3K4me2 and H3K4me1 was investigated in ‘matured,’ ‘dry,’ ‘imbibed” and ‘germinating’ embryos of a model grass, Brachypodium. Our results indicate that the patterns of epigenetic modification differ in the various types of tissues of embryos that were analyzed. Such a tissue-specific manner of these modifications may be linked to the switch of the gene expression profiles in various organs of the developing embryo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号