首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mix of electricity consumed in any stage in the life cycle of a product, process, or industrial sector has a significant effect on the associated inventory of emissions and environmental impacts because of large differences in the power generation method used. Fossil‐fuel‐fired or nuclear‐centralized steam generators; large‐scale and small‐scale hydroelectric power; and renewable options, such as geothermal, wind, and solar power, each have a unique set of issues that can change the results of a life cycle assessment. This article shows greenhouse gas emissions estimates for electricity purchase for different scenarios using U.S. average electricity mix, state mixes, state mixes including imports, and a sector‐specific mix to show how different these results can be. We find that greenhouse gases for certain sectors and scenarios can change by more than 100%. Knowing this, practitioners should exercise caution or at least account for the uncertainty associated with mix choice.  相似文献   

2.
    
Consumption‐accounted greenhouse gas (GHG) emissions (GHGEs) vary considerably between households. Research originating from different traditions, including consumption research, urban planning, and environmental psychology, have studied different types of explanatory variables and provided different insights into this matter. This study integrates explanatory variables from different fields of research in the same empirical material, including socioeconomic variables (income, household size, sex, and age), motivational variables (proenvironmental attitudes and social norms), and physical variables (dwelling types and geographical distances). A survey was distributed to 2,500 Swedish households with a response rate of 40%. GHGEs were estimated for transport, residential energy, food, and other consumption, using data from both the survey and registers, such as odometer readings of cars and electricity consumption from utility providers. The results point toward the importance of explanatory variables that have to do with circumstances rather than motivations for proenvironmental behaviors. Net income was found to be the most important variable to explain GHGEs, followed by the physical variables, dwelling type, and the geographical distance index. The results also indicate that social norms around GHG‐intensive activities, for example, transport, may have a larger impact on a subject's emission level than proenvironmental attitudes.  相似文献   

3.
Modern agriculture is heavily dependent on fossil resources. Both direct energy use for crop management and indirect energy use for fertilizers, pesticides and machinery production have contributed to the major increases in food production seen since the 1960s. However, the relationship between energy inputs and yields is not linear. Low-energy inputs can lead to lower yields and perversely to higher energy demands per tonne of harvested product. At the other extreme, increasing energy inputs can lead to ever-smaller yield gains. Although fossil fuels remain the dominant source of energy for agriculture, the mix of fuels used differs owing to the different fertilization and cultivation requirements of individual crops. Nitrogen fertilizer production uses large amounts of natural gas and some coal, and can account for more than 50 per cent of total energy use in commercial agriculture. Oil accounts for between 30 and 75 per cent of energy inputs of UK agriculture, depending on the cropping system. While agriculture remains dependent on fossil sources of energy, food prices will couple to fossil energy prices and food production will remain a significant contributor to anthropogenic greenhouse gas emissions. Technological developments, changes in crop management, and renewable energy will all play important roles in increasing the energy efficiency of agriculture and reducing its reliance of fossil resources.  相似文献   

4.
    
The market for electric vehicles is growing rapidly, and there is a large demand for lithium-ion batteries (LIB). Studies have predicted a growth of 600% in LIB demand by 2030. However, the production of LIBs is energy intensive, thus contradicting the goal set by Europe to reduce greenhouse gas (GHG) emissions and become GHG emission free by 2040. Therefore, in this study, it was analyzed how the energy consumption and corresponding GHG emissions from LIB cell production may develop until 2030. Economic, technological, and political measures were considered and applied to market forecasts and to a model of a state-of-the art LIB cell factory. Notably, different scenarios with trend assumptions and above/below-trend assumptions were considered. It could be deduced that, if no measures are taken and if the status quo is extrapolated to the future, by 2030, ∼5.86 Mt CO2-eq will be emitted due to energy consumption from European LIB cell production. However, by applying a combination of economic, technological, and political measures, energy consumption and GHG emissions could be decreased by 46% and 56% by 2030, respectively. Furthermore, it was found that political measures, such as improving the electricity mix, are important but less dominant than improving the production technology and infrastructure. In this study, it could be deduced that, by 2030, through industrialization and application of novel production technologies, the energy consumption and GHG emissions from LIB cell production in Europe can be reduced by 24%.  相似文献   

5.
This article evaluates the implications of uncertainty in the life cycle (LC) energy efficiency and greenhouse gas (GHG) emissions of rapeseed oil (RO) as an energy carrier displacing fossil diesel (FD). Uncertainties addressed include parameter uncertainty as well as scenario uncertainty concerning how RO coproduct credits are accounted for (uncertainty due to modeling choices). We have carried out an extensive data collection to build an LC inventory accounting for parameter uncertainty. Different approaches for carbon stock changes associated with converting set‐aside land to rapeseed cultivation have been considered, which result in different values: from ?0.25 t C/ha.yr (carbon uptake by the soil in tonnes per hectare year) to 0.60 t C/ha.yr (carbon emission). Energy renewability efficiency and GHG emissions of RO are presented, which show the influence of parameter versus scenario uncertainty. Primary energy savings and avoided GHG emissions when RO displaces FD have also been calculated: Avoided GHG emissions show considerably higher uncertainty than energy savings, mainly due to land use (nitrous oxide emissions from soil) and land use conversion (carbon stock changes). Results demonstrate the relevance of applying uncertainty approaches; emphasize the need to reduce uncertainty in the environmental life cycle modeling, particularly GHG emissions calculation; and show the importance of integrating uncertainty into the interpretation of results.  相似文献   

6.
    
The process of industrial modernization was characterized by fundamental changes in the interaction of socioeconomic systems with their natural environment. This paper reflects on this transformation process from an ecologically informed perspective, focusing on the interrelation of local populations, their specific mode of production, and the (agro-) ecosystem. Four Austrian villages in different agro-ecological zones serve as case studies for a comparative analysis of different types of farming systems and changes in these systems over time from the early nineteenth century to the present. The paper presents empirical results and aims at contributing to the discussion of relevant topics in human ecology and environmental history. Focusing on the changing significance of livestock in agricultural production systems, it addresses issues including the relation of population density to intensity of land use; soil fertility and nutrient management; the sustainability of preindustrial agriculture; and the gradual opening of locally closed cycles during industrialization and its effect on the landscape.  相似文献   

7.
    
Representing the greenhouse gas (GHG) emissions attributable to plug‐in electric vehicles (PEV) in vehicle GHG emissions regulations is complex because of spatial and temporal variation in fueling sources and vehicle use. Previous work has shown that the environmental performance of PEVs significantly varies depending on the characteristics of the electricity grid and how the vehicle is driven. This article evaluates the U.S. Environmental Protection Agency's (EPA's) GHG emissions accounting methodology in current and future standards for new electrified vehicles. The current approach employed by the EPA in their 2017–2025 model year light‐duty vehicle GHG regulation is compared with an accounting mechanism where the actual regional sales of PEVs, and the regional electricity emission factor in the year sold, are used to determine vehicle compliance value. Changes to the electricity grid over time and regional vehicle sales are included in the modeling efforts. A projection of a future GHG regulation past the 2017–2025 rule is used to observe the effect of such a regional regulation. The results showed that the complexity involved in tracking and accounting for regional PEV sales will not dramatically increase the effectiveness of the regulations to capture PEV electricity‐related GHG emissions in the absence of a major policy shift. A discussion of the feasibility and effectiveness of a regional standard for PEVs, and notable examples of region‐specific regulations instated in past energy policies, is also addressed.  相似文献   

8.
The number of companies with highly ambitious carbon emission targets is increasing rapidly. So-called science-based emission-reduction targets (SBTs) are aligned with the aim of the Paris Climate Agreement to limit global warming to below 2°C and preferably to 1.5°C. These voluntary corporate emission targets are substantially more challenging than companies’ prevailing reduction objectives, because climate science guides the target setting. By 2021, more than 2200 companies had publicly engaged in SBTs, covering more than a third of the global market capitalization. The number of participating firms has essentially doubled every year since the first SBTs in 2015. Despite this increased empirical relevance, the impact of SBTs on firm outcomes remains unclear. Notably, their effect on corporate financial performance (CFP) is unknown. The present study addresses this research gap by empirically examining the relationship between corporate carbon emission performance (CCP) and CFP of firms with SBTs from 2015 to 2020. The cross-country panel comprises 2014 observations of 465 firms. Our findings indicate a positive association between CCP and CFP for firms engaging in SBTs, implying a positive relation between decarbonization efforts and financial results. We thereby advance research on the important question of when it pays to be green. On a practical level, we provide transparency on the effects of SBTs for managers and climate-change advocates.  相似文献   

9.
目前几乎所有有机化学品和塑料是从原油和天然气中生产的, 而生物技术的应用使得利用可再生资源进行大规模化工生产成为可能。以下主要综述了白色生物技术, 即利用细菌、酵母或酶将可发酵糖转化为特定的化学产品的技术。白色生物技术极大节省了不可再生能源的消耗, 减少了温室气体的排放。在有利条件下, 如果化工生产中相关技术有了发展并且可以成功以木质纤维素为原料, 那么到2050年不可再生能源的消耗将减少将近2/3 (67%)。欧洲(EU-25)地区的分析表明, 白色生物技术相关的用地在未来几年的欧洲不会受到制约, 尤其是有大量闲置资源的东欧。另外, 虽然原则上可以在白色生物技术中使用自然的细菌和酶, 但是很多专家认为, 利用经遗传改造生物体(GMO)可以达到高产量、高浓度、高效率, 这对实现经济活力是必要的。值得注意的是, 目前并不是所有的重组基因和其他物种间的相互作用所带来的后果都可预见, 因此化工生产释放的GMOs的安全失活和处理非常重要, 但是如果采取足够的预防措施, 在白色生物技术中应用GMOs的风险是可以控制的。我们认为, 生物生产过程的技术突破、下游生产过程的控制、化石燃料的高价格、可发酵糖的低价获得是生物质化学产业发展中的关键因素, 这4个因素及其他伴随策略是发展整体白色生物技术的要求。  相似文献   

10.
    
This study explored the impacts of electricity allocation protocols on the life cycle greenhouse gas (GHG) emissions of electricity consumption. The selection of appropriate electricity allocation protocols, methodologies that assign pools of electricity generators to electricity consumers, has not been well standardized. This can lead to very different environmental profiles of similar, electricity‐intensive processes. In an effort to better represent the interconnected nature of the U.S. electrical grid, we propose two new protocols that utilize inter‐regional trade information and localized emission factors to combine generating pools that are sub‐ or supersets of one another. This new nested approach increases the likelihood of capturing important inter‐regional electricity trading and the appropriate assignment of generator emissions to consumers of local and regional electricity. We applied the new and existing protocols to the U.S. primary aluminum industry, an industry whose environmental impact is heavily tied to its electricity consumption. Our analysis found GHG emission factors that were dramatically different than those reported in previous literature. We calculated production‐weighted average emission factors of 19.0 and 19.9 kilograms carbon dioxide equivalent per kilogram of primary aluminum ingot produced when using our two nested electricity allocation protocols. Previous studies reported values of 10.5 and 11.0, at least 42% lower than those found by our study.  相似文献   

11.
    
A striking increase of the depth of giant petroleum discoveries in the past 15 years coincides with a shift to discoveries in subsalt plays that require more challenging exploration and drilling. Technological advances have facilitated these changes, but technological advances alone could not have induced these changes in petroleum exploration on a planet in which shallow and less challenging targets remained in abundance like that of previous decades. Instead, the trends toward greater discovery depths and more challenging plays suggest that most of the conventional petroleum accumulations of the kind that fueled the global economic system of the 1900s have already been found.  相似文献   

12.
    
This article presents a modeling framework that enhances our ability to analyze the implications of policy for future sustainability of industrial systems. The framework quantifies the relationship between physical input and waste flows, capital vintage, and investment behavior in the U.S. pulp and paper industry. A regional vintage model is developed that simultaneously incorporates investment decisions, vintage structure of the capital stock, and physical material and energy flows, in addition to paper demand. Each capital vintage is specified by size, output structure, and age-specific retirement rates, as well as fiber use and energy intensities. Both embodied and disembodied technological change are incorporated, as well as greenhouse gas emissions from fuel use, and decomposition and incineration of waste. Estimated equations are used to simulate industrial futures until 2020, from a system of nonlinear differential equations.
Our results demonstrate the economic and physical inter-dependence between material and energy flows and the central role energy prices have in decision-making. For instance, an increase in average energy prices, ceteris paribus , will on average discourage paper recycling, which has implications for greenhouse gas emissions as well as for changes in energy intensity. The analysis of the data reveals diminishing rates of energy self-generation, and the immense longevity of capital, which hampers rapid change in input and carbon intensity. This stresses the importance of investment-led strategies in facilitating faster capital turnover to enhance future sustainability of the system.  相似文献   

13.
    
A hybrid approach combining life cycle assessment and input‐output analysis was used to demonstrate the economic and environmental benefits of current and future improvements in agricultural and industrial technologies for ethanol production in Brazilian biorefineries. In this article, three main scenarios were evaluated: first‐generation ethanol production with the average current technology; the improved current technology; and the integration of improved first‐ and second‐generation ethanol production. For the improved first‐generation scenario, a US$1 million increase in ethanol demand can give rise to US$2.5 million of total economic activity in the Brazilian economy when direct and indirect purchases of inputs are considered. This value is slightly higher than the economic activity (US$1.8 million) for an energy equivalent amount of gasoline. The integration of first‐ and second‐generation technologies significantly reduces the total greenhouse gas emissions of ethanol production: 14.6 versus 86.4 grams of carbon dioxide equivalent per megajoule (g CO2‐eq/MJ) for gasoline. Moreover, emissions of ethanol can be negative (–10.5 g CO2‐eq/MJ) when the system boundary is expanded to account for surplus bioelectricity by displacement of natural gas thermal electricity generation considering electricity produced in first‐generation optimized biorefineries.  相似文献   

14.
15.
    
This article compares climate impacts of two heat‐pump systems for domestic heating, that is, energy consumption for space heating of a residential building. Using a life cycle approach, the study compared the energy use and greenhouse gas (GHG) emissions of direct electric heating, a conventional air‐source heat pump, and a novel ground‐source air heat pump innovated by a citizen user, to assess whether such user innovation holds benefit. The energy use of the heat pumps was modeled at six temperature intervals based on duration curves of outdoor temperature. Additionally, two heat pump end‐of‐life scenarios were analyzed. Probabilistic uncertainty analysis was applied using a Monte Carlo simulation. The results indicated that, in ideal conditions, that is, assuming perfect air mixing, the conventional air‐source heat pump's emissions were over 40% lower and the ground‐air heat pump's emissions over 70% lower than in the case of direct electric heating. Although proper handling of the refrigerant is important, total leakage from the retirement of the heat‐pump appliance would increase GHG emissions by just 10%. According to the sensitivity analysis, the most influential input parameters are the emission factor related to electricity and the amount of electricity used for heating.  相似文献   

16.
The seasonal and hourly variation of electricity grid emissions and building operational energy use are generally not accounted for in carbon footprint analyses of buildings. This work presents a technique for and results of such an analysis and quantifies the errors that can be encountered when these variations are not appropriately addressed. The study consists of an hour‐by‐hour analysis of the energy used by four different variations of a five‐story condominium building, with a gross floor area of approximately 9,290 square meters (m2), planned for construction in Markham, Ontario, Canada. The results of the case studied indicate that failure to account for variation can, for example, cause a 4% error in the carbon footprint of a building where ground source heat pumps are used and a 6% and 8% error in accounting for the carbon savings of wind and photovoltaic systems, respectively. After the building envelope was enhanced and sources of alternative energy were incorporated, the embodied greenhouse gas (GHG) emissions were more than 50% of the building's operational emissions. This work illustrates the importance of short‐time‐scale GHG analysis for buildings.  相似文献   

17.
    
Greenhouse gas (GHG) emissions from energy use in the water sector in China have not received the same attention as emissions from other sectors, but interest in this area is growing. This study uses 2011 data to investigate GHG emissions from electricity use for urban water supply in China. The objective is to measure the climate cobenefit of water conservation, compare China with other areas on a number of emissions indicators, and assist in development of policy that promotes low‐emission water supply. Per capita and per unit GHG emissions for water supplied to urban areas in China in 2011 were 24.5 kilograms carbon dioxide equivalent (kg CO2‐eq) per capita per year and 0.213 kg CO2‐eq per cubic meter, respectively. Comparison of provinces within China revealed that GHG emissions for urban water supply as a percentage of total province‐wide emissions from electricity use correlate directly with the rate of leakage and water loss within the water distribution system. This highlights controlling leakage as a possible means of reducing the contribution of urban water supply to GHG emissions. An inverse correlation was established between GHG emissions per unit water and average per capita daily water use, which implies that water demand tends to be higher when per unit emissions are lower. China's high emission factor for electricity generation inflates emissions for urban water supply. Shifting from emissions‐intensive electricity sources is crucial to reducing emissions in the water supply sector.  相似文献   

18.
Corn-ethanol production is expanding rapidly with the adoption of improved technologies to increase energy efficiency and profitability in crop production, ethanol conversion, and coproduct use. Life cycle assessment can evaluate the impact of these changes on environmental performance metrics. To this end, we analyzed the life cycles of corn-ethanol systems accounting for the majority of U.S. capacity to estimate greenhouse gas (GHG) emissions and energy efficiencies on the basis of updated values for crop management and yields, biorefinery operation, and coproduct utilization. Direct-effect GHG emissions were estimated to be equivalent to a 48% to 59% reduction compared to gasoline, a twofold to threefold greater reduction than reported in previous studies. Ethanol-to-petroleum output/input ratios ranged from 10:1 to 13:1 but could be increased to 19:1 if farmers adopted high-yield progressive crop and soil management practices. An advanced closed-loop biorefinery with anaerobic digestion reduced GHG emissions by 67% and increased the net energy ratio to 2.2, from 1.5 to 1.8 for the most common systems. Such improved technologies have the potential to move corn-ethanol closer to the hypothetical performance of cellulosic biofuels. Likewise, the larger GHG reductions estimated in this study allow a greater buffer for inclusion of indirect-effect land-use change emissions while still meeting regulatory GHG reduction targets. These results suggest that corn-ethanol systems have substantially greater potential to mitigate GHG emissions and reduce dependence on imported petroleum for transportation fuels than reported previously.  相似文献   

19.
    
The concept of a circular bioeconomy has become a new economic leitmotif for reducing greenhouse gas (GHG) emissions. Its central narrative rests on the idea of replacing fossil resources with biobased ones for a broad spectrum of products including, for example, heat, electricity, fuels, plastics, or chemicals. Yet, the amount of available bio-resources is limited, rendering some technologies successful while leaving behind others. Lignocellulosic biomass (LBM) is a key resource already used on a large scale for heating purposes or electricity production and increasingly for the production of chemicals and biofuels. Because market mechanisms do not necessarily drive a cost-optimal use with respect to their GHG-reduction potential, a new bi-objective linear optimization model under long-term scenarios was developed for Germany accounting for competition with non-biobased technologies. In the biofuels and biochemicals sectors, multi-output processes that address industrial symbiosis and fossil references are used to compute profits and GHG emission savings of biobased products. However, in the absence of a reference for heat, a detailed representation of the heat sector is used in which heat demand for 19 subsectors is met, thus deriving costs and emission savings endogenously. When explicitly accounting for GHG emission reduction targets, biomass is optimally used in high-temperature industries whereas heat pumps dominate in building heat. Because of the optimal use of biomass in industrial usage, subsidies for biomass heating are found to be inefficient in the building sector. Catalytic hydropyrolysis to produce biogasoline and biodiesel using LBM dominates the production of biofuels while biochemicals—strongly depending on oil price developments—will become competitive on a large scale after 2030.  相似文献   

20.
    
China has more than 1,500 industrial parks, which, collectively, play a crucial role in facilitating industrialization and urbanization. A key characteristic of these parks is that most rely on shareable energy infrastructure, an efficient configuration that can also deliver substantial and sustainable reductions in greenhouse gas (GHG) emissions. This study offers strategies for mitigating GHG emissions from Chinese industrial parks. We focus on extensive data collection for the 106 industrial parks listed in the national demonstration eco‐industrial park (EIP) program. In doing so, we carefully examine the evolution of 608 serviceable energy infrastructure units by vintage year, fuel type, energy output, and technologies of combined heat and power units. We assess direct GHG emissions from both energy infrastructure and the parks, and then identify the features and driving forces of energy infrastructure development in the EIPs. We also offer recommendations for ways to mitigate the GHG emissions from these industrial parks. The energy infrastructure stocks in Chinese EIPs are characterized by heavy coal dependence (87% of capacity) and high ratios of direct GHG emissions versus the total direct emissions of the park (median value: 75.2%). These findings establish a baseline from which both technology and policy decisions can then be made in an informed way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号