首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments were conducted to characterize further the biochemical defects of crib-1 (PJ30201), a coldsensitive mutant strain of Neurospora crassa with a defect in ribosome biosynthesis. The results are as follows. (i) The critical temperature for the expression of the mutant growth and ribosome phenotypes is in the range of 18 to 20 C. (ii) No preferential breakdown of 37S cytoplasmic ribosomal subunits synthesized by crib-1 at 25 C occurs after a shift to 10 C. (iii) Ribosomal subunits synthesized by crib-1 at 25 C function normally in in vivo protein synthesis at 10 C. (iv) Whereas wild type synthesizes both ribosomal subunits in a coordinate manner after either a temperature shift-down (25 to 10 C) of a shift-up (10 to 25 C), noncoordinate synthesis of ribosomal subunits owing to underproduction of 37S subunits occurs in the crib-1 strain immediately after a temperature shift-down. (v) After a shift from 10 to 25 C crib-1 exhibits a 12-h lag before the growth rate and the rate of synthesis of 37S subunits begin to increase significantly. (vi) At 10 C crib-1 synthesizes unequal amounts of 25S and 17S ribosomal ribonucleic acid (rRNA) molecules, resulting from a greatly reduced accumulation of stable 17S rRNA. The mutant phenotypes of crib-1 are proposed to be the result of a defect in rRNA processing.  相似文献   

2.
A cold-shock protein, RbfA (ribosome-binding factor A), is essential for cell growth at low temperature. In an rbfA-deletion strain, 30S and 50S ribosomal subunits increase relative to 70S monosomes with concomitant accumulation of a precursor 16S rRNA (17S rRNA). Recently, we have reported that overexpression of Era, an essential GTP-binding protein, suppresses not only the cold-sensitive cell growth but also defective ribosome biogenesis in the rbfA-deletion strain. Here, in order to elucidate how RbfA and Era functionally overlap, we characterized a cold-sensitive Era mutant (a point mutation at the Glu-200 to Lys; E200K) which shows a similar phenotype as the rbfA-deletion strain; accumulation of free ribosome subunits and 17S rRNA. To examine the effect of E200K in the rbfA-deletion strain, we constructed an E200K-inducible expression system. Interestingly, unlike wild-type Era, overexpression of Era(E200K) protein in the rbfA-deletion strain severely inhibited cell growth even at permissive temperature with further concomitant reduction of 16S rRNA. Purified Era(E200K) protein binds to 30S ribosomal subunits in a nucleotide-dependent manner like wild-type Era and retains both GTPase and autophosphorylation activities. Furthermore, we isolated spontaneous revertants of the E200K mutant. These revertants partially suppressed the accumulation of 17S rRNA. All the spontaneous mutations were found to result in higher Era(E200K) expression. These results suggest that the Era(E200K) protein has an impaired function in ribosome biogenesis without losing its ribosome binding activity. The severe growth defect caused by E200K in the rbfA-deletion strain may be due to competition between intrinsic wild-type Era and overexpressed Era(E200K) for binding to 30S ribosomal subunits. We propose that Era and RbfA have an overlapping function that is essential for ribosome biogenesis, and that RbfA becomes dispensable only at high temperatures because Era can complement its function only at higher temperatures.  相似文献   

3.
Era is a small GTP-binding protein and essential for cell growth in Escherichia coli. It consists of two domains: N-terminal GTP-binding and C-terminal RNA-binding KH domains. It has been shown to bind to 16S rRNAs and 30S ribosomal subunits in vitro. Here, we report that a precursor of 16S rRNA accumulates in Era-depleted cells. The accumulation of the precursors is also seen in a cold-sensitive mutant, E200K, in which the mutation site is located in the C-terminal domain. The major precursor molecule accumulated seems to be 17S rRNA, containing extra sequences at both 5' and 3' ends of 16S rRNA. Moreover, the amounts of both 30S and 50S ribosomal subunits relative to the amount of 70S monosomes increase in Era-depleted and E200K mutant cells. The C-terminal KH domain has a high structural similarity to the RbfA protein, a cold shock protein that also specifically associates with 30S ribosomal subunits. RbfA is essential for cell growth at low temperature, and a precursor of 16S rRNA accumulates in an rbfA deletion strain. The 16S rRNA precursor seems to be identical in size to that accumulated in Era mutant cells. Surprisingly, the cold-sensitive cell growth of the rbfA deletion cells was partially suppressed by overproduction of the wild-type Era. The C-terminal domain alone was not able to suppress the cold-sensitive phenotype, whereas Era-dE, which has a 10-residue deletion in a putative effector region of the N-terminal domain, functioned as a more efficient suppressor than the wild-type Era. It was found that Era-dE suppressed defective 16S rRNA maturation, resuming a normal polysome profile to reduce highly accumulated free 30S and 50S subunits in the rbfA deletion cells. These results indicate that Era is involved in 16S rRNA maturation and ribosome assembly.  相似文献   

4.
RbfA, a 30S ribosome-binding factor, is a multicopy suppressor of a cold-sensitive C23U mutation of the 16S rRNA and is required for efficient processing of the 16S rRNA. At 37 degrees C, DeltarbfA cells show accumulation of ribosomal subunits and 16S rRNA precursor with a significantly reduced polysome profile in comparison with wild-type cells. RbfA is also a cold-shock protein essential for Escherichia coli cells to adapt to low temperature. In this study, we examined its association with the ribosome and its role in 16S rRNA processing and ribosome profiles at low temperature. In wild-type cells, following cold shock at 15 degrees C, the amount of free RbfA remained largely stable, while that of its 30S subunit-associated form became several times greater than that at 37 degrees C and a larger fraction of total 30S subunits was detected to be RbfA-containing. In DeltarbfA cells, the pre-16S rRNA amount increased after cold shock with a concomitant reduction of the mature 16S rRNA amount and the formation of polysomes was further reduced. A closer examination revealed that 30S ribosomal subunits of DeltarbfA cells at low temperature contained primarily pre-16S rRNA and little mature 16S rRNA. Our results indicate that the cold sensitivity of DeltarbfA cells is directly related to their lack of translation initiation-capable 30S subunits containing mature 16S rRNA at low temperature. Importantly, when the C-terminal 25 residue sequence was deleted, the resulting RbfADelta25 lost the abilities to stably associate with the 30S subunit and to suppress the dominant-negative, cold-sensitive phenotype of the C23U mutation in 16S rRNA but was able to suppress the 16S rRNA processing defect and the cold-sensitive phenotype of the DeltarbfA cells, suggesting that RbfA may interact with the 30S ribosome at more than one site or function in more than one fashion in assisting the 16S rRNA maturation at low temperature.  相似文献   

5.
6.
7.
Temperature-sensitive mutants defective in 60S ribosomal subunit protein L16 of Saccharomyces cerevisiae were isolated through hydroxylamine mutagenesis of the RPL16B gene and plasmid shuffling. Two heat-sensitive and two cold-sensitive isolates were characterized. The growth of the four mutants is inhibited at their restrictive temperatures. However, many of the cells remain viable if returned to their permissive temperatures. All of the mutants are deficient in 60S ribosomal subunits and therefore accumulate translational preinitiation complexes. Three of the mutants exhibit a shortage of mature 25S rRNA, and one accumulates rRNA precursors. The accumulation of rRNA precursors suggests that ribosome assembly may be slowed in this mutant. These phenotypes lead us to propose that mutants containing the rpl16b alleles are defective for 60S subunit assembly rather than function. In the mutant carrying the rpl16b-1 allele, ribosomes initiate translation at the noncanonical codon AUA, at least on the rpl16b-1 mRNA, bringing to light a possible connection between the rate and the fidelity of translation initiation.  相似文献   

8.
Escherichia coli dnaK-ts mutants are defective in the late stages of ribosome biogenesis at high temperature. Here, we show that the 21S, 32S and 45S ribosomal particles that accumulate in the dnaK756-ts mutant at 44 degrees C contain unprocessed forms of their 16S and 23S rRNAs (partially processed in the case of 45S particles). Their 5S rRNA stoichiometry and ribosomal protein composition are typical of the genuine ribosomal precursors found in a wild-type (dnaK+) strain. Despite the lack of a functional DnaK, a very slow maturation of these 21S, 32S and 45S particles to structurally and functionally normal 30S and 50S ribosomal subunits still occurs at high temperature. This conversion is accompanied by the processing of p16S and p23S rRNAs to their mature forms. We conclude that: (i) 21S, 32S and 45S particles are not dead-end particles, but true precursors to active ribosomes (21S particles are converted to 30S subunits, and 32S and 45S to 50S subunits); (ii) DnaK is not absolutely necessary for ribosome biogenesis, but accelerates the late steps of this process considerably at high temperature; and (iii) 23S rRNA processing depends on the stage reached in the stepwise assembly of the 50S subunit, not directly on DnaK.  相似文献   

9.
Thirteen X-linked, cold-sensitive lethal, female-sterile mutants of Drosophila melanogaster located at eight separate loci were screened for their ability to assemble ribosomes at the restrictive temperature of 17°. Females were labelled with 3H-uridine for either 2 or 20 hours at 17°. A mitochondria-free extract was prepared and analyzed by means of sucrose gradient centrifugation. Four of the mutants, l(1)TW-2 cs, l(1)HM16cs, l(1)HM23cs, and l(1)HM20 cs, had a lower ratio of cpm in the 40S subunit to cpm in the 60S subunit (40S:60S ratio) than wild type with a 2-hour label. The same was true of a 20-hour label of l(1)TW-2cs, l(1)HM16cs, and l(1)HM23cs, which are allelic, resulted in a 40S:60S ratio higher than wild type. Four other cs mutants were found to have less drastic effects on ribosome assembly. The ribosomal subunits of mutants l(1)HM16sc and l(1)HM20cs sediment at the same rate as their wild-type counterparts. The same is true for the RNA in their ribosomal particles. Sucrose gradient analysis of ribosomes from cold-sensitive lethal, female-sterile mutants appears to be an effective method for finding mutants that affect ribosome assembly.  相似文献   

10.
Four mutant strains from Saccharomyces cerevisiae were used to study ribosome structure and function. They included a strain carrying deletions of the two genes encoding ribosomal protein L24, a strain carrying a mutation spb2 in the gene for ribosomal protein L39, a strain carrying a deletion of the gene for L39, and a mutant lacking both L24 and L39. The mutant lacking only L24 showed just 25% of the normal polyphenylalanine-synthesizing activity followed by a decrease in P-site binding, suggesting the possibility that protein L24 is involved in the kinetics of translation. Each of the two L39 mutants displayed a 4-fold increase of their error frequencies over the wild type. This was accompanied by a substantial increase in A-site binding, typical of error-prone mutants. The absence of L39 also increased sensitivity to paromomycin, decreased the ribosomal subunit ratio, and caused a cold-sensitive phenotype. Mutant cells lacking both ribosomal proteins remained viable. Their ribosomes showed reduced initial rates caused by the absence of L24 but a normal extent of polyphenylalanine synthesis and a substantial in vivo reduction in the amount of 80S ribosomes compared to wild type. Moreover, this mutant displayed decreased translational accuracy, hypersensitivity to the antibiotic paromomycin, and a cold-sensitive phenotype, all caused mainly by the deletion of L39. Protein L39 is the first protein of the 60S ribosomal subunit implicated in translational accuracy.  相似文献   

11.
We have studied the interactions between the ribosome and the domains of Escherichia coli translation initiation factor 2, using an in vitro ribosomal binding assay with wild-type forms, N- and C-terminal truncated forms of IF2 as well as isolated structural domains. A deletion mutant of the factor consisting of the two N-terminal domains of IF2, binds to both 30S and 50S ribosomal subunits as well as to 70S ribosomes. Furthermore, a truncated form of IF2, lacking the two N-terminal domains, binds to 30S ribosomal subunits in the presence of IF1. In addition, this N-terminal deletion mutant IF2 possess a low but significant affinity for the 70S ribosome which is increased by addition of IF1. The isolated C-terminal domain of IF2 has no intrinsic affinity for the ribosome nor does the deletion of this domain from IF2 affect the ribosomal binding capability of IF2. We conclude that the N-terminus of IF2 is required for optimal interaction of the factor with both 30S and 50S ribosomal subunits. A structural model for the interaction of IF2 with the ribosome is presented.  相似文献   

12.
Summary A heat-sensitive mutant of Neurospora crassa, strain 4M(t), was isolated using ultraviolet-light mutagenesis followed by the inositol-less death enrichment technique. The heat-sensitivity is the result of a single gene mutation which maps to the distal end of the right arm of linkage group II. The mutation defines the rip-1 gene locus. Both conidial germination and mycelial extension are inhibited in the mutant at 35°C and above (the nonpermissive temperature) but prolonged incubation at that temperature is not lethal to either cell type. Analysis of the lateral mycelial growth rates of wild type and of the rip-1 mutant at a variety of temperatures between 10 and 40°C indicated that the maximal growth rate occurs at 35°C in the wild type, and at 25°C in the rip-1 strain. The rip-1 mutant grows 239-times slower at 35°C than at 25°C, whereas the wild type grows 1.4-times faster. Temperature shift-up experiments showed that even 3 h at 20°C is not sufficient to allow germination at 37°C, thereby showing that the mutant cannot accumulate enough heat-sensitive product at the permissive temperature to contribute to germination at 37°C. The reciprocal temperature shift-down experiments showed that the molecular events at 37°C may be qualitatively useful for germination after shifting to 20°C. Studies of macromolecular synthesis showed that the biochemical defect in the heat-sensitive strain appears to affect RNA synthesis before protein synthesis, although there were differences in the relative effects depending on the age of the germinating conidia and the inhibition of the two processes was never complete. Messenger RNA synthesis is normal in the mutant at 37°C. Previous work has shown that the rip-1 mutant strain has a conditional defect in the accumulation of 25S rRNA and, hence, in 60S ribosomal subunit production (Loo et al. 1981). There are also indications from those studies that the 60S ribosomal subunit may be functionally impaired at the higher temperature. Thus, the growth and macromolecular synthesis phenotypes may result as a consequence of a conditional, ribosome function defect and leads to the hypothesis that the mutation in the rip-1 strain may be in a gene for a 60S ribosomal subunit component, perhaps a ribosomal protein.  相似文献   

13.
A mutant (CLP-8) of Saccharomyces cerevisiae possesses an abnormal ratio of native ribosomal subunits since it has an apparent deficiency of cytoplasmic 40 S subparticles. The mutant also has an abnormal anti-association factor activity. The lesion(s) responsible for the ribosomal subunit inbalance is not temperature-sensitive and is incomplete since the mutant still grows, albeit at a reduced rate compared to that of its parent. The lesion(s) in CLP-8 is, however, expressed at the level of 20 S ribosomal precursor RNA maturation. Thus, relative to the wild-type strain, there is both a slowed transport of 20 S ribosomal precursor RNA from the nucleus to the cytoplasm and a slowed cytoplasmic conversion of this RNA component into the mature 18 S form.  相似文献   

14.
Assembly helpers exist for the formation of ribosomal subunits. Such a function has been suggested for the DnaK system of chaperones (DnaK, DnaJ, GrpE). Here we show that 50S and 30S ribosomal subunits from an Escherichia coli dnaK-null mutant (containing a disrupted dnaK gene) grown at 30 degrees C are physically and functionally identical to wild-type ribosomes. Furthermore, ribosomal components derived from mutant 30S and 50S subunits are fully competent for in vitro reconstitution of active ribosomal subunits. On the other hand, the DnaK chaperone system cannot circumvent the necessary heat-dependent activation step for the in vitro reconstitution of fully active 30S ribosomal subunits. It is therefore questionable whether the requirement for DnaK observed during in vivo ribosome assembly above 37 degrees C implicates a direct or indirect role for DnaK in this process.  相似文献   

15.
Biogenesis of the small and large ribosomal subunits requires modification, processing, and folding of pre-rRNA to yield mature rRNA. Here, we report that efficient biogenesis of both small- and large-subunit rRNAs requires the DEAH box ATPase Prp43p, a pre-mRNA splicing factor. By steady-state analysis, a cold-sensitive prp43 mutant accumulates 35S pre-rRNA and depletes 20S, 27S, and 7S pre-rRNAs, precursors to the small- and large-subunit rRNAs. By pulse-chase analysis, the prp43 mutant is defective in the formation of 20S and 27S pre-rRNAs and in the accumulation of 18S and 25S mature rRNAs. Wild-type Prp43p immunoprecipitates pre-rRNAs and mature rRNAs, indicating a direct role in ribosome biogenesis. The Prp43p-Q423N mutant immunoprecipitates 27SA2 pre-rRNA threefold more efficiently than the wild type, suggesting a critical role for Prp43p at the earliest stages of large-subunit biogenesis. Consistent with an early role for Prp43p in ribosome biogenesis, Prp43p immunoprecipitates the majority of snoRNAs; further, compared to the wild type, the prp43 mutant generally immunoprecipitates the snoRNAs more efficiently. In the prp43 mutant, the snoRNA snR64 fails to methylate residue C2337 in 27S pre-rRNA, suggesting a role in snoRNA function. We propose that Prp43p promotes recycling of snoRNAs and biogenesis factors during pre-rRNA processing, similar to its recycling role in pre-mRNA splicing. The dual function for Prp43p in the cell raises the possibility that ribosome biogenesis and pre-mRNA splicing may be coordinately regulated.  相似文献   

16.
The genes for ribosomal proteins S4, S13 or S15 were fused with the gene for staphylococcal protein A, or derivatives thereof (2A'-7A'). The gene fusions were introduced into Escherichia coli strains, mutated in the corresponding ribosomal protein gene, by transformation. These mutated ribosomal proteins cause a phenotype that can be complemented. Thus, the phenotype of the transformants was tested and the ribosomal proteins were analyzed. The S4 N-terminal fusion protein severely disturbed growth of both the mutant and the wild-type strains. The S13 C-terminal fusion protein was proteolyzed close to the fusion point, giving a ribosomal protein moiety that could assemble into the ribosome normally. S15 N-terminal fusion proteins complemented a cold-sensitive strain lacking protein S15 in its ribosomes. These fused proteins were assembled into active ribosomes. The position of S15 in the 30S ribosomal subunit is well known. Therefore, in structural studies of the ribosome in vivo, the S15 fusion proteins can be used as a physical reporter for S15.  相似文献   

17.
Summary A double mutant strain combining two ribosomal mutations conferring resistance to cycloheximide exhibits a cold-sensitive phenotype. At low temperature the biosynthesis of the 60S subunit is impaired. Genetic analysis of cold-resistant revertants have shown that this double mutant strain can be used efficiently to isolate new ribosomal mutations.  相似文献   

18.
19.
A gene encoding a yeast homologue of translation elongation factor 1 gamma (EF-1 gamma), TEF3, was isolated as a gene dosage extragenic suppressor of the cold-sensitive phenotype of the Saccharomyces cerevisiae drs2 mutant. The drs2 mutant is deficient in the assembly of 40S ribosomal subunits. We have identified a second gene, TEF4, that encodes a protein highly related to both the Tef3p protein (Tef3p), and EF-1 gamma isolated from other organisms. In contrast to TEF3, the TEF4 gene contains an intron. Gene disruptions showed that neither gene is required for mitotic growth. Haploid spores containing disruptions of both genes are viable and have no defects in ribosomal subunit composition or polyribosomes. Unlike TEF3, extra copies of TEF4 do not suppress the cold-sensitive 40S ribosomal subunit deficiency of a drs2 strain. Low-stringency genomic Southern hybridization analysis indicates there may be additional yeast genes related to TEF3 and TEF4.  相似文献   

20.
Summary A cytoplasmic mutant of Saccharomyces cerevisiae (E23-1) has been isolated that is resistant to erythromycin and cold sensitive for growth on nonfermentable carbon sources at 18°. Genetic analysis has shown that both of these properties probably result from a single mutation at the rib2 locus which maps close to or within the gene for the 21S rRNA of the mitochondrial 50S ribosomal subunit. Electrophoresis of total RNA extracted from purified mitochondria demonstrated that the 21S and 14S rRNA species from both mutant and wild-type cells were present in roughly equimolar quantities regardless of growth temperature. The mutant is therefore not defective in the synthesis of the 21S rRNA. Sucrose gradient analysis of the mitochondrial ribosomes in Mg2+-containing buffers revealed that approximate values for the ratio of 50S to 37S subunits were 1:1 for wild-type cells grown at either 18° or 32°, 0.5:1 for the mutant grown at 32° and 0.2:1 for the mutant grown at 18°. The subunit ratios were approximately 1:1 when Ca2+-containing buffers were used, however, In alls cases, 50S particles from the mutant grown at 18° lacked or contained markedly reduced amounts of two distinctive protein components that were present in the mutant at 32° and in the wild-type at both temperatures. In addition, no intact 21S RNA could be recovered from the mitochondrial ribosomes of the mutant grown at the restrictive temperature, even in the presence of Ca2+. These findings indicate that mitochondrial 50S ribosomal subunits produced by the mutant at 18° are structurally defective and raise the possibility that the defect results from an alteration in the gene for 21S rRNA.A preliminary report of this work was presented at the meeting on The Molecular Biology of Yeast, Cold Spring Harbor Laboratory, August 18–22, 1977  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号