首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
In the chick ciliary ganglion, neuronal number is kept constant between St. 29 and St. 34 (E6-E8) despite a large amount of cell death. Here, we characterize the source of neurogenic cells in the ganglion as undifferentiated neural crest-derived cells. At St. 29, neurons and nonneuronal cells in the ciliary ganglion expressed the neural crest markers HNK-1 and p75(NTR). Over 50% of the cells were neurons at St. 29; of the nonneuronal cells, a small population expressed glial markers, whereas the majority was undifferentiated. When placed in culture, nonneuronal cells acquired immunoreactivity for HuD, suggesting that they had commenced neuronal differentiation. The newly differentiated neurons arose from precursors that did not incorporate bromodeoxyuridine. To test whether these precursors could undergo neural differentiation in vivo, purified nonneuronal cells from St. 29 quail ganglia were transplanted into chick embryos at St. 9-14. Subsequently, quail cells expressing neuronal markers were found in the chick ciliary ganglion. The existence of this precursor pool was transient because nonneuronal cells isolated from St. 38 ganglia failed to form neurons. Since all ciliary ganglion neurons are born prior to St. 29, these results demonstrate that there are postmitotic neural crest-derived precursors in the developing ciliary ganglion that can differentiate into neurons in the appropriate environment.  相似文献   

3.
Adipose tissue-derived stromal cells (ADSC) have previously been shown to possess stem cell properties such as transdifferentiation and self-renewal. Because future clinical applications are likely to use these adult stem cells in an autologous fashion, we wished to establish and characterize rat ADSC for pre-clinical tests. In the present study, we showed that rat ADSC expressed stem cell markers CD34 and STRO-1 at passage 1 but only STRO-1 at passage 3. These cells could also be induced to differentiate into adipocytes, smooth muscle cells, and neuron-like cells, the latter of which expressed neuronal markers S100, nestin, and NF70. Isobutylmethylxanthine (IBMX), indomethacin (INDO), and insulin were the active ingredients in a previously established neural induction medium (NIM); however, here we showed that IBMX alone was as effective as NIM in the induction of morphological changes as well as neuronal marker expression. Finally, we showed that vascular smooth muscle cells could also be induced by either NIM or IBMX to differentiate into neuron-like cells that expressed NF70.  相似文献   

4.
Differentiation of monkey embryonic stem cells into neural lineages   总被引:5,自引:0,他引:5  
Embryonic stem (ES) cells are self-renewing, pluripotent, and capable of differentiating into all of the cell types found in the adult body. Therefore, they have the potential to replace degenerated or damaged cells, including those in the central nervous system. For ES cell-based therapy to become a clinical reality, translational research involving nonhuman primates is essential. Here, we report monkey ES cell differentiation into embryoid bodies (EBs), neural progenitor cells (NPCs), and committed neural phenotypes. The ES cells were aggregated in hanging drops to form EBs. The EBs were then plated onto adhesive surfaces in a serum-free medium to form NPCs and expanded in serum-free medium containing fibroblast growth factor (FGF)-2 before neural differentiation was induced. Cells were characterized at each step by immunocytochemistry for the presence of specific markers. The majority of cells in complex/cystic EBs expressed antigens (alpha-fetal protein, cardiac troponin I, and vimentin) representative of all three embryonic germ layers. Greater than 70% of the expanded cell populations expressed antigenic markers (nestin and musashi1) for NPCs. After removal of FGF-2, approximately 70% of the NPCs differentiated into neuronal phenotypes expressing either microtubule-associated protein-2C (MAP2C) or neuronal nuclear antigen (NeuN), and approximately 28% differentiated into glial cell types expressing glial fibrillary acidic protein. Small populations of MAP2C/NeuN-positive cells also expressed tyrosine hydroxylase (approximately 4%) or choline acetyltransferase (approximately 13%). These results suggest that monkey ES cells spontaneously differentiate into cells of all three germ layers, can be induced and maintained as NPCs, and can be further differentiated into committed neural lineages, including putative neurons and glial cells.  相似文献   

5.
During pancreatic development, endocrine and exocrine cell types arise from common precursors in foregut endoderm. However, little information is available regarding regulation of pancreatic epithelial differentiation in specific precursor populations. We show that undifferentiated epithelial precursors in E10.5 mouse pancreas express nestin, an intermediate filament also expressed in neural stem cells. Within developing pancreatic epithelium, nestin is co-expressed with pdx1 and p48, but not ngn3. Epithelial nestin expression is extinguished upon differentiation of endocrine and exocrine cell types, and no nestin-positive epithelial cells are observed by E15.5. In E10.5 dorsal bud explants, activation of EGF signaling results in maintenance of undifferentiated nestin-positive precursors at the expense of differentiated acinar cells, suggesting a precursor/progeny relationship between these cell types. This relationship was confirmed by rigorous lineage tracing studies using nestin regulatory elements to drive Cre-mediated labeling of nestin-positive precursor cells and their progeny. These experiments demonstrate that a nestin promoter/enhancer element containing the second intron of the mouse nestin locus is active in undifferentiated E10.5 pancreatic epithelial cells, and that these nestin-positive precursors contribute to the generation of differentiated acinar cells. As in neural tissue, nestin-positive cells act as epithelial progenitors during pancreatic development, and may be regulated by EGF receptor activity.  相似文献   

6.
The arterial pole of the heart is the region where the ventricular myocardium continues as the vascular smooth muscle tunics of the aorta and pulmonary trunk. It has been shown that the arterial pole myocardium derives from the secondary heart field and the smooth muscle tunic of the aorta and pulmonary trunk derives from neural crest. However, this neural crest-derived smooth muscle does not extend to the arterial pole myocardium leaving a region at the base of the aorta and pulmonary trunk that is invested by vascular smooth muscle of unknown origin. Using tissue marking and vascular smooth muscle markers, we show that the secondary heart field, in addition to providing myocardium to the cardiac outflow tract, also generates prospective smooth muscle that forms the proximal walls of the aorta and pulmonary trunk. As a result, there are two seams in the arterial pole: first, the myocardial junction with secondary heart field-derived smooth muscle; second, the secondary heart field-derived smooth muscle with the neural crest-derived smooth muscle. Both of these seams are points where aortic dissection frequently occurs in Marfan's and other syndromes.  相似文献   

7.
8.
Undifferentiated embryonic mesenchymal cells are round/cuboidal in shape. During development, visceral myogenesis is shortly preceded by mesenchymal cell elongation. To determine the role of the cell's shape on smooth muscle development, undifferentiated embryonic mesenchymal cells from intestine (abundant visceral muscle), lung (some visceral muscle) or kidney (no visceral muscle) were plated under conditions that maintained cell rounding or promoted elongation. Regardless of their fate in vivo, all the cells differentiated into smooth muscle upon elongation as indicated by the expression of smooth muscle-specific proteins and the development of membrane potentials of -60 mV and voltage-dependent Ca2+ currents, characteristic of excitable cells. Smooth muscle differentiation occurred within 24 hours and was independent of cell proliferation. Regardless of their fate in vivo, all the round cells remained negative for smooth muscle markers, had membrane potentials of -30 mV and showed no voltage-activated current. These cells, however, differentiated into smooth muscle upon elongation. The role of the cell's shape in controlling smooth muscle differentiation was not overcome by treatment with retinoic acid, TGF-beta1, PDGF BB or epithelial-conditioned medium (all modulators of smooth muscle differentiation). These studies suggest that the mesenchymal cell shape plays a main role in visceral myogenesis.  相似文献   

9.
Human embryonic stem cells (hESCs) are pluripotent cells that can differentiate into neural cell lineages. These neural populations are usually heterogeneous and can contain undifferentiated pluripotent cells that are capable of producing teratomas in cell grafts. The characterization of surface protein profiles of hESCs and their neural derivatives is important to determine the specific markers that can be used to exclude undifferentiated cells from neural populations. In this study, we analyzed the cluster of differentiation (CD) marker expression profiles of seven undifferentiated hESC lines using flow-cytometric analysis and compared their profiles to those of neural derivatives. Stem cell and progenitor marker CD133 and epithelial adhesion molecule marker CD326 were more highly expressed in undifferentiated hESCs, whereas neural marker CD56 (NCAM) and neural precursor marker (chemokine receptor) CD184 were more highly expressed in hESC-derived neural cells. CD326 expression levels were consistently higher in all nondifferentiated hESC lines than in neural cell derivatives. In addition, CD326-positive hESCs produced teratomas in SCID mouse testes, whereas CD362-negative neural populations did not. Thus, CD326 may be useful as a novel marker of undifferentiated hESCs to exclude undifferentiated hESCs from differentiated neural cell populations prior to transplantation.  相似文献   

10.
We have previously demonstrated that the neural stem-cell marker nestin is expressed in hair follicle stem cells. Nestin-expressing cells were initially identified in the hair follicle bulge area (BA) using a transgenic mouse model in which the nestin promoter drives the green fluorescent protein (ND-GFP). The hair-follicle ND-GFP-expressing cells are keratin 15-negative and CD34-positive and could differentiate to neurons, glia, keratinocytes, smooth muscle cells and melanocytes in vitro. Subsequently, we showed that the nestin-expressing stem cells could affect nerve and spinal cord regeneration after injection in mouse models. In the present study, we separated the mouse vibrissa hair follicle into three parts (upper, middle and lower). Each part of the follicle was cultured separately in DMEM-F12 containing B-27 and 1% methylcellulose supplemented with basic FGF. After 2 mo, the nestin-expressing cells from each of the separated parts of the hair follicle proliferated and formed spheres. Upon transfer of the spheres to RPMI 1640 medium containing 10% FBS, the nestin-expressing cells in the spheres differentiated to neurons, as well as glia, keratinocytes, smooth muscle cells and melanocytes. The differentiated cells were produced by spheres which formed from nestin-expressing cells from all segments of the hair follicle. However, the differentiation potential is greatest in the upper part of the follicle. This result is consistent with trafficking of nestin-expressing cells throughout the hair follicle from the bulge area to the dermal papilla that we previously observed. The nestin-expressing cells from the upper part of the follicle produced spheres in very large amounts, which in turn differentiated to neurons and other cell types. The results of the present study demonstrate that multipotent, nestin-expressing stem cells are present throughout the hair follicle and that the upper part of the follicle can produce the stem cells in large amounts that could be used for nerve and spinal cord repair.  相似文献   

11.
Cardiac neural crest cells are essential for normal development of the great vessels and the heart, giving rise to a range of cell types, including both neuronal and non-neuronal adventitial cells and smooth muscle. Endothelin (ET) signaling plays an important role in the development of cardiac neural crest cell lineages, yet the underlying mechanisms that act to control their migration, differentiation, and proliferation remain largely unclear. We examined the expression patterns of the receptor, ET(A), and the ET-specific converting enzyme, ECE-1, in the pharyngeal arches and great vessels of the developing chick embryo. In situ hybridization analysis revealed that, while ET(A) is expressed in the pharyngeal arch mesenchyme, populated by cardiac neural crest cells, ECE-1 expression is localized to the outermost ectodermal cells of the arches and then to the innermost endothelial cells of the great vessels. This dynamic pattern of expression suggests that only a subpopulation of neural crest cells in these regions is responsive to ET signaling at particular developmental time points. To test this, retroviral gene delivery was used to constitutively express preproET-1, a precursor of mature ET-1 ligand, in the cardiac neural crest. This resulted in a selective expansion of the outermost, adventitial cell population in the great vessels. In contrast, neither differentiation nor proliferation of neural crest-derived smooth muscle cells was significantly affected. These results suggest that constitutive expression of exogenous preproET-1 in the cardiac neural crest results in expansion restricted to an adventitial cell population of the developing great vessels.  相似文献   

12.
CNS stem cells express a new class of intermediate filament protein.   总被引:263,自引:0,他引:263  
U Lendahl  L B Zimmerman  R D McKay 《Cell》1990,60(4):585-595
Multipotential CNS stem cells receive and implement instructions governing differentiation to diverse neuronal and glial fates. Exploration of the mechanisms generating the many cell types of the brain depends crucially on markers identifying the stem cell state. We describe a gene whose expression distinguishes the stem cells from the more differentiated cells in the neural tube. This gene was named nestin because it is specifically expressed in neuroepithelial stem cells. The predicted amino acid sequence of the nestin gene product shows that nestin defines a distinct sixth class of intermediate filament protein. These observations extend a model in which transitions in intermediate filament gene expression reflect major steps in the pathway of neural differentiation.  相似文献   

13.
We have previously demonstrated that the neural stem-cell marker nestin is expressed in hair follicle stem cells. Nestin-expressing cells were initially identified in the hair follicle bulge area (BA) using a transgenic mouse model in which the nestin promoter drives the green fluorescent protein (ND-GFP). The hair-follicle ND-GFP-expressing cells are keratin 15-negative and CD34-positive and could differentiate to neurons, glia, keratinocytes, smooth muscle cells and melanocytes in vitro. Subsequently, we showed that the nestin-expressing stem cells could affect nerve and spinal cord regeneration after injection in mouse models. In the present study, we separated the mouse vibrissa hair follicle into three parts (upper, middle and lower). Each part of the follicle was cultured separately in DMEM-F12 containing B-27 and 1% methylcellulose supplemented with basic FGF. After 2 mo, the nestin-expressing cells from each of the separated parts of the hair follicle proliferated and formed spheres. Upon transfer of the spheres to RPMI 1640 medium containing 10% FBS, the nestin-expressing cells in the spheres differentiated to neurons, as well as glia, keratinocytes, smooth muscle cells and melanocytes. The differentiated cells were produced by spheres which formed from nestin-expressing cells from all segments of the hair follicle. However, the differentiation potential is greatest in the upper part of the follicle. This result is consistent with trafficking of nestin-expressing cells throughout the hair follicle from the bulge area to the dermal papilla that we previously observed. The nestin-expressing cells from the upper part of the follicle produced spheres in very large amounts, which in turn differentiated to neurons and other cell types. The results of the present study demonstrate that multipotent, nestin-expressing stem cells are present throughout the hair follicle and that the upper part of the follicle can produce the stem cells in large amounts that could be used for nerve and spinal cord repair.  相似文献   

14.
The recent discovery of several myogenic cardiac progenitor cells in the post-natal heart suggests that some myocardial cells may remain undifferentiated during embryonic development. In this study, we examined the subcellular characteristics of the embryonic (E) mouse ventricular myocardial cells using transmission electron microscopy (TEM). At the ultrastructural level, we identified three different cell populations within the myocardial layer of the E11.5 heart. These cells were designated as undifferentiated cells (43 +/- 6%), moderately differentiated cells (43 +/- 2%) and mature cardiomyocytes (14 +/- 4%). Undifferentiated cells contained a large nucleus and sparse cytoplasm with no myofibrillar bundles. Moderately differentiated cells contained randomly arranged myofilaments in the cytoplasm. In contrast, mature cardiomyocytes contained well-developed sarcomere structures. We also confirmed the presence of similar undifferentiated cells albeit at low levels in the E16.5 ( approximately 20%) and E18.5 ( approximately 7%) myocardium. Further we used immunogold labeling technique to test whether these distinct cell populations were also positive for markers such as Nkx2.5, ISL1 and ANF. A preponderance of anti-Nkx2.5 label was found in the undifferentiated and moderately differentiated cell types. Anti-ANF label was found only in the cytoplasmic compartment of moderately differentiated and mature myocardial cells. All of the undifferentiated cells were negative for anti-ANF labeling. We did not find immuno-gold labeling with ISL1 in any of the three myocardial cell types. Based on these results, we suggest that embryonic myocardial cell differentiation is a gradual process and undifferentiated cells expressing Nkx2.5 in post-chamber myocardium may represent a progenitor cell population while cells expressing Nkx2.5 and ANF represent differentiating myocytes.  相似文献   

15.
Summary We have established a multipotent clonal cell line, named MEB5, from embryonic mouse forebrains after the infection of a retrovirus carrying E7 oncogene of human papillomavirus type 16. MEB5 cells proliferated in serum-free, epidermal growth factor (EGF)-supplemented medium. They expressed markers for neural precursor cells (nestin, A2B5, and RC1) and did not express markers for neurons (class III β-tubulin), astrocytes (glial fibrillary acidic protein), and oligodendrocytes (galactocerebroside). MEB5 cells were stably maintained in an undifferentiated state with a diploid karyotype in the presence of EGF. When they were deprived of EGF, about 50% of the cells died due apoptosis within 24 h. The remaining cells differentiated into neurons, astrocytes, or oligodendrocytes within 2 wk. The newly developed cells with neuronal morphology were immunoreactive for γ-aminobutyric acid and exhibited neuronal electrophysiological properties. When MEB5 cells were treated with leukemia inhibitory for 7 d, they were induced to differentiate exclusively into astrocytes. These results inducate that MEB5 is a cell line with characteristics of EGF-dependent, multipotent neural precursor cells. This cell line should provide a good model system to study the mechanisms of survival, proliferation, and differentiation of the multipotent precursor cells in the central nervous system.  相似文献   

16.
骨髓间质干细胞修复受损心肌研究进展   总被引:3,自引:1,他引:2  
骨髓间充质干细胞是一种多潜能干细胞。在体外培养时,多种诱导因素可使其分化为心肌细胞等。目前进行的动物实验和临床研究表明骨髓间充质干细胞具有促进血管增生以及改善心肌梗死后心脏功能的作用,为受损心肌的治疗提供了广阔前景。但是其修复受损心肌的机制仍具有很大争议。本文就以上内容进行综述。  相似文献   

17.
Cell transplantation to repair or regenerate injured myocardium is a new frontier in the treatment of cardiovascular disease. Most studies on stem cell transplantation therapy in both experimental heart infarct and in phase-I human clinical trials have focused on the use of undifferentiated stem cells. Based on our previous observations demonstrating the presence of multipotent progenitor cells in human adult skeletal muscle, in this study we investigated the capacity of these progenitors to differentiate into cardiomyocytes. Here we show an efficient protocol for the cardiomyogenic differentiation of human adult skeletal muscle stem cells in vitro. We found that treatment with Retinoic Acid directed cardiomyogenic differentiation of skeletal muscle stem cells in vitro. After Retinoic Acid treatment, cells expressed cardiomyocyte markers and acquired spontaneous contraction. Functional assays exhibited cardiac-like response to increased extracellular calcium. When cocultured with mouse cardiomyocytes, Retinoic Acid-treated skeletal muscle stem cells expressed connexin43 and when transplanted into ischemic heart were detectable even 5 weeks after injection. Based on these results, we can conclude that human adult skeletal muscle stem cells, if opportunely treated, can transdifferentiate into cells of cardiac lineage and once injected into infarcted heart can integrate, survive in cardiac tissue and improve the cardiac function.  相似文献   

18.
Human marrow stromal cells (hMSCs) are multipotential stem cells that can be differentiated into bone, cartilage, fat, and muscle. In the experiments here, we found that undifferentiated cultures of hMSCs express some markers characteristic of neural cells such as microtubule-associated protein 1B (MAP1B), neuron-specific tubulin (TuJ-1), neuron-specific enolase (NSE), and vimentin. By treating hMSCs with 0.5 mM isobutylmethylxanthine (IBMX)/1 mM dibutyryl cyclic AMP (dbcAMP) for 6 days, about 25% of the hMSCs differentiated into cells with a typical neural cell morphology and with increased levels of both NSE and vimentin. The data suggested that the hMSCs may have been differentiated into early progenitors of neural cells in vitro under conditions that increase the intracellular level of cAMP.  相似文献   

19.
The purpose of this study is to characterize the smooth muscle differentiation of purified human muscle‐derived cells (hMDCs). The isolation and purification of hMDCs were conducted by modified preplate technique and Dynal CD34 cell selection. Smooth muscle cell differentiation was induced by the use of smooth muscle induction medium (SMIM) and low‐serum medium. The gene expressions at the mRNA and protein levels of undifferentiated and differentiated hMDCs were tested by RT‐PCR, Western blot and immunofluorescence studies. Western blot and immunofluorescence studies demonstrated the purified hMDCs cultured in SMIM for 4 weeks and expressed significant amount of smooth muscle myosin heavy chain (MHC) and α‐smooth muscle actin (ASMA). The cells cultured in low‐serum medium for 4 weeks also expressed ASMA, while the control group did not. RT‐PCR analysis showed increased gene expression of smooth muscle markers, such as ASMA, Calponin, SM22, Caldesmon, Smoothelin and MHC when purified hMDCs were exposed to SMIM for 2 and 4 weeks when compared to the controls. In conclusion, we confirmed the smooth muscle differentiation capability of purified hMDCs. The gene expression of smooth muscle differentiation of purified hMDCs was characterized. These cells may be potential biomaterials for human tissue regeneration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号