首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fate of the yolk platelets and their constituent yolk glycoproteins was studied in Strongylocentrotus purpuratus eggs and embryos cultured through the larval stage. Previous studies have shown that the yolk glycoproteins undergo limited proteolysis during early embryonic development. We present evidence that the yolk glycoproteins stored in the yolk platelets exist as large, disulfide-linked complexes that are maintained even after limited proteolysis have occurred. We provide additional evidence that acidification of the yolk platelet may activate a latent thiol protease in the yolk platelet that is capable of correctly processing the major yolk glycoprotein into the smaller yolk glycoproteins. Because we previously showed that these yolk glycoproteins are not catabolized during early embryonic development, it was of interest to study their fate during larval development. Using a specific polyclonal antibody to a yolk glycoprotein, we found that both yolk glycoproteins and the yolk platelets disappeared in feeding, Day 7, larval stage embryos, but that starvation did not significantly affect the levels of the yolk glycoproteins. We also found that the yolk glycoproteins reappeared in 30-day-old premetamorphosis larvae.  相似文献   

2.
The sea urchin Heliocidaris tuberculata undergoes typical development, forming an echinoid pluteus larva, whereas H. erythrogramma undergoes direct development via a highly modified, nonfeeding larva. Using a polyclonal antibody prepared against yolk glycoproteins from the typical developer Stronglyocentrotus purpuratus, we found that H. tuberculata contains cross-reactive proteins in abundance, but H. erythrogramma does not. In addition, we used immunoelectron microscopy to demonstrate that unfertilized eggs of H. tuberculata contain yolk platelets, but those of H. erythrogramma do not.  相似文献   

3.
Degradation of yolk proteins in sea urchin eggs and embryos   总被引:6,自引:0,他引:6  
Yolk granules isolated from unfertilized and fertilized eggs of the sea urchins, Hemicentrotus pulcherrimus and Anthocidaris crassispina, were incubated in acidic media, and the protein components were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. By the incubation, a protein (molecular weight 180,000 in H. pulcherrimus and 178,000 in A. crassispina) most abundant in unfertilized eggs decreased, while proteins (molecular weight 61,000, 72,000, 94,000, 114,000 in H. pulcherrimus and 56,000, 70,000, 92,000, 112,000 in A. crassispina) dominant in developed embryos increased. Neither alkaline nor neutral condition resulted in such changes in the electrophoretic patterns of proteins as observed in acidic media. Experiments with various inhibitors of proteases suggested that thiol protease(s), such as cathepsin B, may be the most important enzyme(s) in the degradation of yolk proteins in embryogenesis of the sea urchin.  相似文献   

4.
We have isolated a yolk glycoprotein complex from eggs and early embryos of the sea urchin, Strongylocentrotus purpuratus. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of these complexes and peptide mapping of their individual glycoprotein components indicate that developmental stage-specific changes in molecular composition of the complex are due to proteolytic processing events. Our data revealed that a 180 kDa glycoprotein of the egg complex is separated by a single proteolytic cleavage into intermediate glycoproteins of 115 and 76 kDa early in development. By the hatched blastula stage, each of these intermediate glycoproteins has been further processed to lower molecular weight forms: the 115 kDa protein is proteolytically clipped to a 84 kDa form, perhaps through 110 and 105 kDa intermediaries, while the 76 kDa molecule is directly processed to a 65 kDa form.  相似文献   

5.
6.
Echinonectin (EN) is a dimeric galactosyl-binding protein found in sea urchin eggs and embryos. It had been postulated in earlier studies that EN is secreted into the hyaline layer, a stratified matrix deposited on the apical surface of cells, and serves as an attachment substrate for cells of the blastoderm. However, the dynamics of EN expression have rendered past observations difficult to interpret on this point and others. Radioiodination experiments in this study indicate that the bulk of EN is, at any one time, maintained in its vesicular compartment beneath the plasma membrane, but that a portion of the protein is secreted onto the cell surface during early development. The primary structure of EN was determined. The protein consists of a series of coagulation factor 5/8 repeats and discoidin-like lectin domains, and bears similarity to the secreted proteins DEL-1 and lactadherin from angiogenic endothelial cells. In situ hybridization analysis indicates that EN mRNA levels are regulated to coincide with periods of reduced motility in embryonic cells, supporting the postulate that the protein is involved in cell anchoring.  相似文献   

7.
The predominant ganglioside in sea urchin eggs, M5 (NeuGc  相似文献   

8.
We detected by electrophoresis, several glycoproteins in the eggs of three species of sea urchin. The major glycoprotein band disappears as development of the embryo proceeds. This protein is enriched in the yolk fraction obtained by zone sedimentation in 2.5–30% sucrose gradients. A fractionally larger glycoprotein has been found to be the major protein in the coelomic fluid of male and female gravid sea urchins. Partial proteolysis peptide mapping shows that the major coelomic fluid protein and the major yolk protein are related, presumably in a precursor-product relationship.  相似文献   

9.
The major yolk protein of sea urchins is an iron-binding, transferrin-like molecule that is made in the adult gut. Its final destination though is the developing oocytes that are embedded in somatic accessory cells and encompassed by two epithelial layers of the ovary. In this study, we address the dynamics of yolk transport, endocytosis, and packaging during the vitellogenic phase of oogenesis in the sea urchin by use of fluorescently labeled major yolk protein (MYP). Incorporation of MYP into the accessory cells of the ovary and its packaging into yolk platelets of developing oocytes is visualized in isolated oocytes, ovary explants, and in whole animals. When MYP is introduced into the coelom of adult females, it is first accumulated by the somatic cells of the ovarian capsule and is then transported to the oocytes and packaged into yolk platelets. This phenomenon is specific for MYP and accurately reflects the endogenous MYP packaging. We find that oocytes cultured in isolation are endocytically active and capable of selectively packaging MYP into yolk platelets. Furthermore, oocytes that packaged exogenous MYP are capable of in vitro maturation, fertilization, and early development, enabling an in vivo documentation of MYP utilization and yolk platelet dynamics. These results demonstrate that the endocytic uptake of yolk proteins in sea urchins does not require a signal from their surrounding epithelial cells and can occur autonomous of the ovary. In addition, these results demonstrate that the entire population of yolk platelets is competent to receive new yolk protein input, suggesting that they are all made simultaneously during oogenesis.  相似文献   

10.
Embryos of the sea urchin, Stronglyocentrotus purpuratus, synthesize several classes of sulfated and non-sulfated glycoproteins during gastrulation. The antibiotic tunicamycin, which is a specific inhibitor of the N-glycosylation of proteins, inhibits the synthesis of lipid-linked oligosaccharides in these embryos at concentrations which have little effect on the biosynthesis of other classes of glycolipids or on protein synthesis. As a consequence of this inhibition, glycoproteins with oligosaccharide side chains of the general type (Man)5-7-(GlcNAc)2 are not synthesized. In addition, the biosynthesis of a novel class of sulfated glycoproteins is inhibited. In contrast, no effect upon the synthesis of sulfated glycosaminoglycans is seen. The morphogenetic consequence of tunicamycin treatment is that development of embryos from the mesenchyme blastula to the gastrula stage is arrested. The results provide evidence that during development glycoproteins containing both unsulfated and sulfated N-glycosidically linked oligosaccharide chains are synthesized via the lipid-linked pathway. The biosynthesis of these molecules appears to be a prerequisite to the differentiation and morphogenesis that occurs during gastrulation.  相似文献   

11.
Sea urchins of both sexes store the nutrients necessary for gametogenesis in nutritive phagocytes of the agametogenic gonad. A zinc-binding protein termed the major yolk protein (MYP) is stored here as two isoforms: the egg-type (predominant in egg yolk granules) and the coelomic fluid-type (a precursor with greater zinc-binding capacity). MYP is used during gametogenesis as material for synthesizing gametic proteins and other components. We investigated its accumulation and relationship to zinc contents in gonads during the non-reproductive season in Pseudocentrotus depressus. MYP constituted most of the protein in coelomic fluid and gonads. Both ovaries and testes grew gradually, accumulating MYP and zinc during the year. Total zinc contents and the ratio of coelomic fluid-type to egg-type protein were higher in ovaries than in testes as gametogenesis approached. Most of the zinc in the coelomic fluid was bound to MYP, and the concentrations of MYP and zinc were elevated toward the onset of oogenesis in the female coelomic fluid. Thus, MYP accumulates in the agametogenic ovaries and testes during the non-reproductive season, playing a role as a carrier to transport zinc to the gonad. Transportation of zinc by MYP is more active in females than in males.  相似文献   

12.
Previous in vivo studies using drugs that inhibit the N-glycosylation of proteins have demonstrated that newly synthesized N-linked glycoproteins are required for gastrulation in embryos of two species of sea urchins, Strongylocentrotus purpuratus and Arbacia punctulata. To understand the biochemical events regulating glycoprotein synthesis during gastrulation in S. purpuratus embryos, we examined the in vitro activities of enzymes catalyzing several of the early steps in N-linked glycoprotein synthesis. The activities of glycosyl transferases responsible for production of N,N-diacetylchitobiosylpyrophosphoryldolichol and glucosylphosphoryldolichol, two intermediates in the formation of oligosaccharylpyrophosphoryldolichol (the carbohydrate donor for N-glycosylation), were low but detectable in membranes from eggs. After fertilization these activities remained constant or increased slowly up to the blastula stage and thereafter increased rapidly at gastrulation. In agreement with these in vitro findings, in vivo labeling experiments revealed that the rate of incorporation of [3H]Man into oligosaccharylpyrophosphoryldolichol and into protein increased three- to fourfold prior to gastrulation and then slightly more at the prism stage. In contrast, in vitro activity of mannosylphosphoryldolichol synthase, another enzyme in the pathway of N-linked glycosylation, was maximal in membranes from egg and embryos in the early stages of development and declined prior to gastrulation. Furthermore, the level of this activity was at least 100-fold greater than that for enzymes involved in the formation of the chitobiosyl and glucosyl lipids. With the exception of mannosylphosphoryldolichol synthase activity, these data indicate that there is a general activation of the glycosylation apparatus before gastrulation in sea urchin embryos. Possible explanations for the decrease in mannosylphosphoryldolichol synthase activity are discussed.  相似文献   

13.
Unfertilized Paracentrotus lividus eggs accumulate very little thymidine. Upon fertilization, however, uptake increases sharply. The pool for thymidine and/or its metabolic products is saturated after 40 min of exposure. Its size is expandable and proportional to the initial concentration of thymidine in the medium. The uptake rate is low shortly after fertilization, increases until 40 min after fertilization and remains constant thereafter. Of the radioactivity taken up in the form of [3H]thymidine during a 30 min exposure beginning at 60 min after fertilization, about 1% is associated with the acid-insoluble fraction and 99% with the acid-soluble fraction.  相似文献   

14.
Major yolk protein (MYP), a transferrin superfamily protein contained in yolk granules of sea urchin eggs, also occurs in the coelomic fluid of male and female adult sea urchins regardless of their reproductive cycle. MYP in the coelomic fluid (CFMYP; 180 kDa) has a zinc-binding capacity and has a higher molecular mass than MYP in eggs (EGMYP; 170 kDa). CFMYP is thought to be synthesized in the digestive tract and secreted into the coelomic fluid where it is involved in the transport of zinc derived from food. To clarify when and where MYP synthesis starts, we investigated the expression of MYP during larval development and growth in Pseudocentrotus depressus. MYP mRNA was detected using RT-PCR in the early 8-arm pluteus stage and its expression persisted until after metamorphosis. Real-time RT-PCR revealed that MYP mRNA increased exponentially from the early 8-arm stage to metamorphosis. Western blotting showed that maternal EGMYP disappeared by the 4-arm stage and that newly synthesized CFMYP was present at and after the mid 8-arm stage. In the late 8-arm larvae, MYP mRNA was detected in the digestive tract using in situ hybridization, and the protein was found in the somatocoel and the blastocoel-derived space between the somatocoel and epidermis using immunohistochemistry. These results suggest that CFMYP is synthesized in the digestive tract and secreted into the body cavities at and after the early 8-arm stage. We assume that in larvae, CFMYP transports zinc derived from food via the body cavities to various tissues, as suggested for adults.  相似文献   

15.
16.
17.
The major yolk protein (MYP) is localized to the egg and coelomic fluid of the adult sea urchin. While the egg‐localized MYP has been extensively studied, much less is known about the coelomic fluid‐localized protein. Therefore, we have conducted a comparative biochemical analysis of these proteins. Sucrose density gradient ultracentrifugation revealed unique elution profiles for the MYP species present in the egg, 170‐ and 240 kDa, and the coelomic fluid, 180‐ and 250 kDa. Fractionation in polyacrylamide gels revealed that under reducing conditions both species were present in each location. However, in the absence of reducing agent only one species was present in each fraction: 240 kDa in the egg and 250 kDa in the coelomic fluid. In addition, V8 peptide mapping indicated that all four species have very similar primary structures. Circular dichroic spectral analysis and endogenous tryptophan measurements of the purified 170‐ and 180 kDa species revealed distinctive secondary and tertiary structural features with notable differences in their responses to calcium: apparent Kds of 245‐ and 475 μmol/L were measured for the 170‐ and 180 kDa species, respectively. Further analysis revealed that both species have differing calcium requirements for binding to membranes as well as protein‐dependent, membrane‐membrane interaction. We discuss the functional implications arising from the structural differences which exist between the egg and coelomic fluid resident MYPs.  相似文献   

18.
The eggs of many animal species contain a large store of yolk platelets, lipid droplets and glycogen granules; these are consumed during early embryogenesis. However, the mechanisms by which degradation of these stored materials occurs during early embryogenesis are not clearly understood. The mechanisms underlying yolk degradation in amphibian (newt) embryos were investigated. Electron microscopy using an anion marker, cationic ferritin, revealed that yolk platelets were degraded after fusion with late endosomes containing primary lysosomes. Electron microscopy and the results of experiments using a number of reagents with selective effects on intracellular transport suggested that yolk degradation activity in early amphibian embryos may be regulated at the point of fusion between late endosomes and yolk platelets.  相似文献   

19.
20.
Stress proteins by zinc ions in sea urchin embryos   总被引:2,自引:0,他引:2  
In Paracentrotus lividus embryos, treatment with zinc ions induces the synthesis of the two major stress proteins with the same molecular weight as those induced by heat shock. The developmental stages responsive to zinc ion treatment are the same as those responsive to heat shock. However, zinc treatment induces a longer lasting synthesis of the stress proteins, and, unlike heat shock, does not induce thermotolerance and does not inhibit synthesis of the bulk proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号