首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enhanced function of the respiratory burst, measured as stimulated release of superoxide anion (O2-) or hydrogen peroxide, characterizes activated macrophages. Activated macrophages undergo a decline in their capacity to release O2- (a deactivation) when placed in culture for 3 days. To better understand the molecular basis for the enhanced respiratory burst of activated macrophages, we explored the mechanisms underlying deactivation of activated mouse peritoneal macrophages. Deactivation was observed when the assay was performed in a physiologic Na+ buffer, and by day 3 of culture, release of O2- from activated macrophages stimulated with phorbol myristate acetate (PMA) was almost identical to that in resident (nonactivated) macrophages. In contrast, when the assay was performed in a buffer in which Na+ was replaced by K+, release of O2- from activated macrophages on day 3 was equal to or greater than that on day 0, suggesting that the enzyme responsible for the respiratory burst was not altered during culture. The number and affinity of PMA receptors were not changed during culture and were not affected by high external K+. Continuous assay of O2- release by coverslip-adherent macrophages in a cuvette indicated that the lag time between addition of stimulus and release of O2- was reduced, and the initial rate of O2- release was enhanced in K+ buffer. The potency of monovalent cations to support O2- release was K+ greater than Rb+ greater than choline+ greater than Cs+ = Na+ greater than Li+, suggesting that characteristics such as ionic radius or molecular size influence this effect, and the effect is not due simply to absence of Na+. Extracellular Ca2+ or Mg2+ was required for the maximal effect of high external K+, and enhancement by high K+ and divalent cations increased progressively during culture. These findings suggest that deactivation is caused primarily by changes in signal transduction from PMA receptors to the respiratory burst enzyme, rather than by changes in these receptors or the enzyme itself, and that signal transduction can differ in different macrophage populations.  相似文献   

2.
To compare the kinetics of the O-2-generating enzyme in nonactivated and activated macrophages and granulocytes from the mouse peritoneal cavity, we sought conditions in which the activity of this enzyme in cell lysates was comparable to that in intact cells. Pretreatment of macrophages with 10 mM diethyldithiocarbamate inhibited endogenous superoxide dismutase by 70% and enhanced O-2 secretion up to 15-fold, so that it was comparable to H2O2 secretion. O-2 secretion was terminated by detergent lysis and reconstituted by addition of NAD(P)H to the lysates. Optimal detection of O-2 production in lysates depended on prior stimulation of the respiratory burst, lysis with 0.05% deoxycholate rather than any of 4 other detergents or sonication, acetylation of the cytochrome c used as an indicator, and addition of NADPH rather than NADH. Kinetic analysis using NADPH-reconstituted deoxycholate lysates, together with spectra of oxidized and reduced cells, failed to reveal either marked differences in the Vmax of the O-2-generating enzyme or correlations between O-2 secretion and cytochrome b559 content among 5 macrophage populations whose H2O2 secretion ranged from 0 to 365 nmol/90 min/mg of protein. In contrast, the Km of the oxidase for NADPH varied markedly and inversely with the capacity of the intact cells to secrete O-2 or H2O2: J774G8 histiocytoma cells, 1.43 mM; resident macrophages, 0.41 mM; proteose peptone-elicited macrophages, 0.20 mM; casein-activated macrophages, 0.05 mM; NaIO4-activated macrophages, 0.05 mM; and granulocytes, 0.04 mM. These results suggest that macrophage activation, a process that enhances oxygen-dependent antitumor and antimicrobial functions, may equip the cell to secrete increased amounts of reactive oxygen intermediates largely by increasing the affinity of the oxidase for NADPH.  相似文献   

3.
The effect of LPS on the respiratory burst in resident rat peritoneal macrophages has been examined. Rat macrophages secreted high levels of both O2- and H2O2 in response to triggering with phorbol esters, opsonized zymosan, and immune complexes. After culture in vitro with LPS these macrophages exhibited a marked diminution in their capacity to secrete high levels of respiratory burst products. The LPS-mediated loss of secretory activity was apparent after 2 hr of exposure to LPS and was inhibitable by polymyxin B in a dose-dependent fashion. The effect was not selective for any triggering agent type as inhibition of secretory activity occurred after triggering with PMA, zymosan and immune complexes. PGE2 added at levels secreted by the macrophages in response to LPS also inhibited respiratory burst product secretion. In addition, indomethacin prevented the LPS-mediated inhibition of secretion. Because the inhibition of secretion was common to all triggering agents tested, this suggested that the basis for the impaired secretion was at a level other than the receptor for the triggering agent. Both LPS and PGE2 treatment of the macrophages increased the Km of the oxidase for NADPH (1.7- to 2.3-fold) without affecting significantly the Vmax of the enzyme. These data suggest that stimulation of rat peritoneal macrophages by LPS results in an impaired ability to secrete respiratory burst products as a result of a PGE2-mediated decrease in NADPH oxidase affinity and that this alteration is independent of alterations in tumoricidal activity.  相似文献   

4.
Capability to release superoxide anion in response to phorbol myristate acetate by intact cells has been compared with Kinetic properties of NADPH oxidase by lysates of human monocytes and monocyte-derived macrophages. Maturation of monocytes in vitro is accompanied by substantial decrease of the capability to release superoxide anion in response to phorbol myristate acetate. Exposure of mature macrophages to recombinant interferon gamma enhances respiratory burst activity up to 3-4 fold. Modifications of NADPH oxidase accompany changes in the ability to release superoxide anion. The affinity of the oxidase for its substrate is higher in monocytes and gamma interferon treated macrophages, while Vmax is not changed.  相似文献   

5.
Protein kinase C may be important in leukocyte function, because it is activated by phorbol myristate acetate (PMA), a potent stimulus of the respiratory burst in neutrophils. The localization of protein kinase C was compared in unstimulated and PMA-stimulated human neutrophils. Protein kinase C was primarily cytosolic in unstimulated cells but became associated with the particulate fraction after treatment of cells with PMA. The particulate-associated kinase activity did not require added calcium and lipids, but when extracted by Triton X-100 (greater than or equal to 0.2%), calcium and phospholipid dependence could be demonstrated. The EC50 of PMA for stimulating kinase redistribution and activation of NADPH oxidase, the respiratory burst enzyme, were similar (30 to 40 nM). Redistribution of protein kinase C occurred rapidly (no lag) and preceded NADPH oxidase activation (30 sec lag). These results suggest that redistribution of protein kinase C is linked to activation of the respiratory burst in human neutrophils.  相似文献   

6.
A method was developed for testing the cytotoxicity of various bandage-like wound dressings and gel wound dressings. In this method, the ability of human polymorphonuclear neutrophils (PMNs) to initiate a respiratory burst after exposure to the various wound dressings is used as a marker of cytotoxicity. Luminol-amplified chemiluminescence stimulated with opsonised zymosan or phorbol 12-myristate 13-acetate (PMA) is used to measure the degree of activation of the respiratory burst, i.e. the NADPH oxidase activity, after exposure to wound dressings. Opsonised zymosan (material from yeast cell walls) is a phagocytic stimulus that activates the NADPH oxidase by binding to FC-receptors and complement receptors, and functions as an artificial bacterium, whereas PMA activates the NADPH oxidase by direct activation of protein kinase C. NADPH oxidase activity was inhibited by several wound dressings. The down-regulation of the respiratory burst is detrimental to the bactericial effect of PMNs, and can be used as a marker for the cytotoxicity of wound dressing materials.  相似文献   

7.
To establish whether NADPH oxidase activation, responsible for previously demonstrated Trichinella spiralis-induced respiratory burst, results from assembling of membrane and cytosolic NADPH oxidase components and/or increased expression of the oxidase complex proteins, the superoxide anion production and expression of the regulatory p47(phox) subunit were measured in cultured alveolar macrophages obtained during T. spiralis infection of guinea pigs. The results demonstrate for the first time helminth parasite-infection-induced stimulation of NADPH oxidase p47(phox) subunit protein expression, with the effect being decreased by in vivo treatment with cyclosporin A, previously shown to inhibit T. spiralis infection-induced respiratory burst in guinea-pig alveolar macrophages. However, although the expression of the p47(phox) subunit protein remained induced during secondary infection, it was accompanied by superoxide anion production that was significantly suppressed in comparison with that observed during primary infection, suggesting suppressive action of T. spiralis on host's alveolar macrophage immune response, presumably connected with NADPH oxidase complex activity attenuation.  相似文献   

8.
It has been reported that respiratory bursts with N-formylmethionylleucylphenylalanine, A23187, phorbol ester and fatty acids are switched off and on by modulating the net charges of plasma membranes in guinea-pig neutrophils (Miyahara, M. et al. (1987), Biochim. Biophys. Acta, 929, 253-262). In the present study, this was further extended in cells treated with protein kinase C inhibitors which completely suppressed the phorbol ester-dependent respiratory burst. This suggested that the initiation of the respiratory burst, which is generally accepted as linked to protein kinase C activation, might also be implicated in the net charge changes of plasma membranes. The above results were also supported by data obtained with a cell-free system reconstituted with plasma membranes and cytosolic fractions from unstimulated neutrophils, guanosine 5'-[gamma-thio]triphosphate and NADPH. Arachidonate stimulated NADPH oxidase activity accompanied by a marked phosphorylation of membrane proteins. The phosphorylation was sensitive to H-7, but it did not appear to be essential for the respiratory burst, because the oxidase activation was insensitive to H-7. Pretreating the plasma membranes with positively charged cetylamine inhibited the oxidase activation by arachidonate. These results suggest that a charge-dependent process, which does not use protein kinase C, may play an important role in the reaction leading to NADPH oxidase activation, and this may be related to the interaction of plasma membranes with the cytosolic activation factor.  相似文献   

9.
Molecular basis for the enhanced respiratory burst of activated macrophages   总被引:11,自引:0,他引:11  
Macrophages elicited by injection of agents that produce inflammation or obtained from animals infected with intracellular parasites are primed so that they respond to phagocytosis or exposure to phorbol myristate acetate with a marked increase in the respiratory burst. This capacity to respond to stimulation with increased release of reactive oxygen metabolites appears to play an essential role in the increased microbicidal capability of activated macrophages. Macrophages can be primed for this capacity by incubation in vitro with bacterial products, proteases, or gamma interferon. The molecular basis for this priming is presently under investigation. An increase in the number or affinity of plasma membrane receptors does not appear to explain priming. Changes in one or more of the transduction events responsible for stimulus-response coupling might lead to more efficient stimulation or function of the enzyme responsible for the respiratory burst; these events are just beginning to be studied in macrophages. Priming can be explained at least in part by a modification of the respiratory burst enzyme such that it binds its substrate NADPH, the source of electrons for reduction of oxygen to superoxide anion, more efficiently. Understanding the molecular basis for priming of the respiratory burst might permit its eventual therapeutic manipulation.  相似文献   

10.
The effect of bacterial lipopolysaccharide on the Fc-receptor-mediated respiratory burst in murine peritoneal macrophages has been examined. After treatment overnight with small quantities of LPS, macrophages exhibited dramatic diminution of their capacity to generate and secrete H2O2 when triggered with immune complexes. The effect of LPS treatment was dependent on the state of macrophage functional activation; only cells that were primed or fully activated in vivo or were treated with interferon-gamma in vitro were sensitive to this effect of LPS. The LPS-mediated loss of secretory function was both dose and time dependent and could be reproduced with the lipid A moiety of LPS. The effect was selective for H2O2 secretion triggered through the Fc receptor; the respiratory burst stimulated by phorbol diesters remained unaltered. Furthermore, LPS treatment did not alter either binding or ingestion of radiolabeled immune complexes in parallel with the change in H2O2 secretion, indicating that the suppressive effect was not due to compromised endocytic function. These results indicate that LPS treatment of primed macrophages regulates the function of Fc receptors and may uncouple receptor occupancy from generation and secretion of H2O2.  相似文献   

11.
The effects of hydrocortisone on the respiratory burst oxidase (NADPH oxidase, EC 1.6.99.6) from human neutrophils in both whole-cell and full soluble (cell-free) systems were investigated. In the whole-cell system, hydrocortisone inhibited the generation of superoxide by neutrophils exposed to phorbol myristate acetate, suggesting that steroids inhibit the bactericidal capacity of the body in an acute inflammatory phase. Hydrocortisone, which was added to the cuvette after the addition of NADPH and before the addition of sodium dodecyl sulfate, in a cell-free system, was found to inhibit the activation of superoxide-generating NADPH oxidase by sodium dodecyl sulfate. The concentration of hydrocortisone required for 50% inhibition of oxidase was 40 microM. Its inhibition was dose- and time-dependent in the cell-free system. However, hydrocortisone did not alter the Km of the oxidase for NADPH. These results suggest that steroids inhibit the reconstitution of NADPH oxidase by sodium dodecyl sulfate in the cell-free system, and that they do not alter the affinity to NADPH of the oxidase.  相似文献   

12.
Diverse particulate and soluble stimuli trigger two metabolic bursts in mouse peritoneal macrophages important in the inflammatory and/or cytotoxic actions of the cells: release, oxygenation, and further metabolism of arachidonic acid from endogenous phospholipids and reduction of molecular oxygen to reactive intermediates. We tested the hypothesis that the release of arachidonic acid or formation of its metabolites are obligatory intermediate steps in triggering the NADPH oxidase that reduces O2 to O-2. With phorbol diesters as stimuli, the following inhibitors of phospholipase A2 and lipoxygenase suppressed release of H2O2 at nontoxic concentrations (microM range): p-bromophenacyl bromide, quinacrine, eicosatetraenoic acid, nordihydroguaiaretic acid, and phenidone. Indomethacin and acetylsalicylic acid were ineffective. However, the suppressive effect of the first five agents on H2O2 release could be attributed to their suppression of macrophage glucose uptake at the same concentrations, a previously unrecognized effect of these compounds. Further, concanavalin A, wheat germ agglutinin, and thrombin each stimulated abundant arachidonate release without H2O2 release. Finally, noncytolytic concentrations of cycloheximide and/or emetine suppressed arachidonate release without affecting H2O2 secretion triggered either by phorbol esters or zymosan. Release and metabolism of arachidonic acid and secretion of reactive oxygen intermediates appear to be two frequently coincident but mutually independent metabolic pathways in the mouse peritoneal macrophage.  相似文献   

13.
The kinetics of sodium dodecyl sulfate-induced activation of respiratory burst oxidase (NADPH oxidase) in a fully soluble cell-free system from resting (control) or phorbol myristate acetate (PMA)-stimulated human neutrophils were investigated. In a cell-free system containing solubilized membranes and cytosol fractions (cytosol) derived from control neutrophils (control cell-free system), the values of Km and Vmax for NADPH of the NADPH oxidase from control neutrophils continuously increased with increasing concentrations of cytosol, but with increasing concentrations of solubilized membranes from the control neutrophils, Km values continuously decreased, suggesting cytosolic activation factor-dependent continuous changes in the affinity of NADPH oxidase to NADPH. In a cell-free system containing solubilized membranes and cytosol prepared from PMA-stimulated neutrophils, NADPH oxidase was not activated after the addition of NADPH. However, cytosol from control neutrophils activated the NADPH oxidase of PMA-stimulated neutrophils in a cell-free system. Cytosol from PMA-stimulated neutrophils did not activate the control neutrophil oxidase, although it contained no inhibitors of NADPH oxidase activation. The results suggest that, in PMA-stimulated neutrophils, cytosolic activation factors may be consumed or exhausted with an increasing period of time after the stimulation of neutrophils, and that the affinity of PMA-stimulated neutrophil NADPH oxidase to NADPH may almost be the same as that of control neutrophil oxidase. It was concluded that the affinity of NADPH oxidase to NADPH was closely associated with interaction between solubilized membranes and cytosolic activation factors, as indicated by the concentration ratio.  相似文献   

14.
Oxygen radicals are thought to play an important role in the promotion phase of carcinogenesis and the action of phorbol esters. Inflammatory cells are an abundant source of reactive oxygen intermediates (ROI) in the body and release large quantities of ROI when exposed to phorbol esters. Both protein kinase C (PKC), the receptor for phorbol esters, and the NADPH oxidase which generates ROI are Ca2+- and Mg2+-dependent. We investigated the requirements for Ca2+ and Mg2+ of macrophages from strains of mice sensitive and resistant to the promotion of tumors by phorbol esters. Macrophages from SENCAR mice, which are sensitive to phorbol ester promotion, required much lower levels of Ca2+ or Mg2+ to mount a full respiratory burst, as measured by the release of H2O2 in response to phorbol ester stimulation, than macrophages from C57BL/6 mice, which are resistant to promotion by phorbol esters. Conversely, when the particulate stimulus zymosan was used, there was little difference between macrophages from the two strains in requirements for Ca2+ and Mg2+ to release H2O2. Lowering the concentration of either cation in the absence of the other was more inhibitory than in the presence of the other cation. The studies demonstrate that differences in sensitivity to divalent cations by macrophages from these two strains is selective for phorbol ester stimulation and that lower requirements for Ca2+ and Mg2+ for ROI release correlates with sensitivity to the promotion of tumors by phorbol esters.  相似文献   

15.
Staurosporine (STAR), a potent protein kinase C (PKC) antagonist, was found to modulate the chemoattractant-induced respiratory burst of human polymorphonuclear leukocytes (PMNs) according to drug concentration. Low STAR concentrations from 10 to 200 nM potentiated the N-formyl-methionyl-leucyl-phenylalanine (fMLP) and platelet activating factor (Paf)-induced respiratory burst, affecting both the initial rate and the total amount of superoxide anion generated. The maximal increase occurred in the presence of 100 nM STAR and optimal fMLP concentration and reached 60-100% of control values. Above 250 nM, STAR inhibited the respiratory burst with an IC50 of 360 and 320 nM for fMLP and Paf, respectively. The respiratory burst induced by PKC activators such as phorbol myristate acetate or phorbol 12, 13 dibutyrate was inhibited effectively by STAR, with a low IC50 (25 nM) for both stimuli. Thus, the use of low STAR concentrations points to two possible roles of PKC in the regulation of NADPH oxidase activity, i.e. a positive regulation in phorbol ester-treated cells and a negative regulation in chemoattractant-stimulated PMNs.  相似文献   

16.
Partially reduced oxygen species are toxic, yet activated sea urchin eggs produce H2O2, suggesting that the control of oxidant stress might be critical for early embryonic development. We show that the Ca2(+)-stimulated NADPH oxidase that generates H2O2 in the "respiratory burst" of fertilization is activated by a protein kinase, apparently to regulate the synthesis of this potentially lethal oxidant. The NADPH oxidase was separated into membrane and soluble fractions that were both required for H2O2 synthesis. The soluble fraction was further purified by anion exchange chromatography. The factor in the soluble fraction that activated the membrane-associated oxidase was demonstrated to be protein kinase C (PKC) by several criteria, including its Ca2+/phophatidylserine/diacyl-glycerol-stimulated histone kinase activity, its response to phorbol ester, its inhibition by a PKC pseudosubstrate peptide, and its replacement by purified mammalian PKC. Neither calmodulin-dependent kinase II, the catalytic subunit of cyclic AMP-dependent protein kinase, casein kinase II, nor myosin light chain kinase activated the oxidase. Although the PKC family has been ubiquitously implicated in cellular regulation, enzymes that require PKC for activation have not been identified; the respiratory burst oxidase is one such enzyme.  相似文献   

17.
In an attempt to understand better the molecular basis for the enhanced respiratory burst of activated macrophages (M phi), we investigated the relationship between stimulus-induced changes in membrane potential and release of superoxide anion (O2-) in mouse peritoneal M phi. Resident M phi and M phi elicited by injection of lipopolysaccharide (LPS-M phi) or obtained from animals infected with bacille Calmette-Guérin (BCG-M phi) were used. LPS-M phi and BCG-M phi showed more pronounced changes in membrane potential (depolarization) and greater release of O2- on contact with phorbol myristate acetate (PMA) than did resident macrophages. The lag time between addition of stimulus and onset of release of O2- was reduced in activated compared with resident cells. Membrane potential changes began 60 to 90 sec before release of O2- could be detected in each cell type. The dose-response curves for triggering of membrane potential changes and O2- release by PMA were identical. The magnitude of membrane potential changes and of O2- release in LPS-M phi and BCG-M phi declined progressively during in vitro culture, and values on day 3 approached those in resident macrophages ("deactivation"). Extracellular glucose was required for effective stimulated change in membrane potential and O2- release. These findings indicate that membrane potential changes are closely associated with O2- -releasing capacity in macrophages, and that the systems that mediate membrane potential changes and production of O2- develop or decline concomitantly during activation or deactivation of the cells. Although the plasma membrane was highly depolarized by high extracellular K+ or by the sodium ionophore gramicidin, O2- release was not induced by these maneuvers, indicating that changes in membrane potential by themselves are not sufficient to trigger the respiratory burst in macrophages. Release of O2- was not impaired in buffers in which Na+ was completely replaced with equimolar concentrations of K+ or choline+; thus, induction or maintenance of the respiratory burst in M phi does not require an influx of Na+.  相似文献   

18.
Reactive nitrogen intermediates are important in the anti-tumor and anti-microbial activities of rodent macrophages, but it is not known whether this is the case for human macrophages. In the present study, nitrite concentrations in vitro were used as an indicator of reactive nitrogen intermediate production by mouse, rat, and human macrophages. Human macrophages derived by culturing peripheral blood monocytes did not consistently produce detectable nitrite levels in response to any stimulus examined. Human macrophages were viable and metabolically active as indicated by the MTT assay, and their respiratory burst response to phorbol myristate acetate was increased following incubation with Interferon-gamma, as expected for typical macrophages. In contrast, rat or mouse peritoneal macrophages produced nitrite concentrations of approximately 20-100 microM in response to lipopolysaccharide, Interferon-gamma, or both. These results demonstrate substantial differences in the production of nitrites by rodent and human macrophages. Because of the heterogeneity among macrophage populations, these findings may not be applicable to all human macrophage populations, but they suggest a need for caution in extrapolating from rodent studies regarding the role of reactive nitrogen intermediates in anti-tumor or anti-microbial functions of human macrophages.  相似文献   

19.
Intact neutrophils possess a cellular mechanism that efficiently deactivates the microbicidal O2-generating NADPH oxidase during the respiratory burst (Akard, L. P., English, D., and Gabig, T. G. (1988) Blood 72, 322-327). The present studies directed at identifying the molecular mechanism(s) involved in NADPH oxidase deactivation showed that a heat- and trypsin-insensitive species in the cytosolic fraction from normal unstimulated neutrophils was capable of deactivating the membrane-associated NADPH oxidase isolated from opsonized zymosan- or phorbol 12-myristate 13-acetate-stimulated neutrophils. This cytosolic species also deactivated the cell-free-activated oxidase. Deactivation by this cytosolic species occurred in the absence of NADPH-dependent catalytic turnover and was reversible, since NADPH oxidase activity could be subsequently reactivated in the cell-free system. The sedimentable particulate fraction from unstimulated neutrophils did not demonstrate deactivator activity. Deactivator activity was demonstrated in the neutral lipid fraction of neutrophil cytosol extracted with chloroform:methanol. Following complete purification of cytosolic deactivator activity by thin layer chromatography and reversed phase high performance liquid chromatography, the deactivator species was shown to be a lipid thiobis ester compound by mass spectroscopy. Cellular metabolism of this compound in human neutrophils may reveal a unique mechanism for enzymatic control of the NADPH oxidase system and thereby play an important role in regulation of the inflammatory response.  相似文献   

20.
Alveolar macrophages, which generate high levels of reactive oxygen species, especially O(2)(*-), are involved in the recruitment of neutrophils to sites of inflammation and injury in the lung, and the generation of chemotactic proteins triggers this cellular recruitment. In this study, we asked whether O(2)(*-) generation in alveolar macrophages had a role in the expression of chemokines. Specifically, we hypothesized that O(2)(*-) generation is necessary for chemokine expression in alveolar macrophages after TNF-alpha stimulation. We found that alveolar macrophages have high constitutive NADPH oxidase activity that was not increased by TNF-alpha, but TNF-alpha increased the activity of the mitochondrial respiratory chain. In addition, the mitochondrial respiratory chain increased O(2)(*-) generation if the NADPH oxidase was inhibited. O(2)(*-) generation was necessary for macrophage inflammatory protein-2 (MIP-2) gene expression, because inhibition of NADPH oxidase or the mitochondrial respiratory chain or overexpression of Cu,Zn-superoxide dismutase significantly inhibited expression of MIP-2. TNF-alpha activated the ERK MAP kinase, and ERK activity was essential for chemokine gene expression. In addition, overexpression of the MEK1-->ERK pathway significantly increased IL-8 expression, and a small interfering RNA to the NADPH oxidase inhibited ERK- and TNF-alpha-induced chemokine expression. Collectively, these results suggest that in alveolar macrophages, O(2)(*-) generation mediates chemokine expression after TNF-alpha stimulation in an ERK-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号