首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of immobilized subtilisin BPN' on pure cellulose-based membrane support was investigated using site-directed and random immobilization approaches. The catalytic activity of site-directed immobilized subtilisin on pure cellulose fiber-based materials was found to be 81% of that in homogeneous solution, while that of randomly immobilized subtilisin was 27%. Pure cellulose membrane supports provided large surface areas for high enzyme loading without diffusional limitations. The activity of immobilized subtilisin on pure cellulose support was more than twice that on a modified polyether sulfone (MPS) membrane, which was attributed to the higher hydrophilicity of cellulose. Immobilized subtilisin maintained its initial activity for 14 days at 4 degrees C and 7 days at 24 degrees C. The immobilized enzyme could resist higher temperature and operate over a wider range of pH without loss of activity. This study showed that pure cellulose fiber-based membranes are well suited for enzyme immobilization and biocatalysis.  相似文献   

2.
Fullerene‐based carbons are promising electrode materials for supercapacitors due to their unique carbon structures and tunable architectures at the molecular level. By introducing various functional groups with many elements on the fullerene cages, diverse in situ metal/nonmetal‐doped carbon materials with enhanced pseudocapacitances and/or double layer capacitances can be prepared. In the present work, a fullerene derivative, ferrocenylpyrrolidine C60, containing nitrogen and iron, is chosen as the only precursor. A unique microstructure is fabricated by a liquid–liquid interfacial precipitation process. Subsequently, a facile, one‐step annealing of the microstructure at different temperatures is performed. A series of in situ N and Fe‐codoped laminated 3D hierarchical carbon composites in the shape of a cross are successfully synthesized. The as‐prepared N and Fe‐codoped carbon material treated at 700 °C exhibits a high specific capacitance of 505.4 F g?1 at 0.1 A g?1. To the best knowledge, this is the highest supercapacitor capacitance based on fullerene electrode materials. The use of a fullerene derivative as an in‐situ doped carbon for applications in energy storage opens a new avenue for developing future synthetic strategies to extend the repertoire of electrode materials with high performance.  相似文献   

3.
Comparative data on the properties of four thiol proteinase inhibitors, and of four serine proteinase inhibitors (two subtilisin and two trypsin inhibitors) isolated from seeds of Vigna are presented. They were similar in their molecular weights (5000–15,000) and dissociation constants (10?8–10?9m). The range of isoelectric points of the thiol proteinase inhibitors was 6.5 to 10.6, and of the serine proteinase inhibitors was 5.0 to 5.9. The amino acid compositions of one papain isoinhibitor, one of subtilisin, and one of trypsin are presented. Papain inhibitor A1 and subtilisin inhibitor 2a were low in cystine. All of the inhibitors were stable upon heating to 80 °C for 5 min at low pH. The subtilisin inhibitor did not bind to catalytically inactive subtilisin derivatives, whereas the papain inhibitor was stoichiometrically bound to the Hg or thioacetamide derivatives of papain. Incubation of the subtilisin inhibitor with catalytic amounts of subtilisin led to the formation of a modified form with the same inhibitor activity as the native inhibitor but with a different electrophoretic mobility. There was no indication of a similar modification of the papain inhibitor by papain. Separate sites are present on the trypsin-chymotrypsin inhibitors for trypsin and chymotrypsin. The papain inhibitors have the same binding sites for papain and ficin.  相似文献   

4.
Conformational diversity within unique amino acid sequences is observed in diseases like scrapie and Alzheimer's disease. The molecular basis of such diversity is unknown. Similar phenomena occur in subtilisin, a serine protease homologous with eukaryotic pro-hormone convertases. The subtilisin propeptide functions as an intramolecular chaperone (IMC) that imparts steric information during folding but is not required for enzymatic activity. Point mutations within IMCs alter folding, resulting in structural conformers that specifically interact with their cognate IMCs in a process termed "protein memory." Here, we show a mechanism that mediates conformational diversity in subtilisin. During maturation, while the IMC is autocleaved and subsequently degraded by the active site of subtilisin, enzymatic properties of this site differ significantly before and after cleavage. Although subtilisin folded by Ile-48 --> Thr IMC (IMCI-48T) acquires an "altered" enzymatically active conformation (SubI-48T) significantly different from wild-type subtilisin (SubWT), both precursors undergo autocleavage at similar rates. IMC cleavage initiates conformational changes during which the IMC continues its chaperoning function subsequent to its cleavage from subtilisin. Structural imprinting resulting in conformational diversity originates during this reorganization stage and is a late folding event catalyzed by autocleavage of the IMC.  相似文献   

5.
Rabbit liver fructose 1,6-bisphosphatase is converted by subtilisin to a form with smaller subunits and modified catalytic and allosteric properties. Analysis of the changes in the catalytic properties of the enzyme during digestion with subtilisin indicates that these properties depend on the presence of strong functional interactions between all four subunits in the molecule. On the other hand, sensitivity to inhibition by AMP appears to depend only on intrachain interactions. Changes in subunit interaction relating to relaxation in protein conformation during digestion with subtilisin were also inferred from the changes in concentration dependency for the effects of urea on the fluorescent emission spectrum. Structural changes around the region containing the single tryptophan residue appear to be related to the changes in catalytic properties.  相似文献   

6.
Time-resolved emission and anisotropy have been measured for the tryptophan (Trp) residues of two closely related subtilisin proteins. The single Trp of subtilisin Carlsberg shows complex lifetime properties, and anisotropy consistent with a fast (ca. 200 ps) segmental motion, on the "wobbling in a cone model" the semi angle is in the range 38 to 47 degrees. The lifetime and anisotropy properties for this single Trp residue suggest that the predominant state is that of an effectively non-emitting statically quenched fluorophore. This fast component is also resolved in the anisotropy of subtilisin BPN' but with relatively low amplitude, due to the dominant emission of the other Trp residues. The diversity of the photophysical properties is not readily correlated with the structure of the proteins, though the observed complexity is consistent with the likely heterogeneity of environment due to the surface location of all the Trp residues.  相似文献   

7.
《FEBS letters》1989,250(2):389-394
This note briefly corrects previous information about the time-resolved fluorescence properties of preparations of subtilisin Carlsberg and subtilisin BPN′. We confirm the observation of segmental motion of the single tryptophan in subtilisin Carlsberg by analysis of the time-resolved fluorescence anisotropy, and present circular dichroism and spectroscopic data on the two proteins. Near-UV properties clearly differentiate between the two proteins. Far-UV circular dichroism confirms that the two subtilisins have closely similar secondary structure in solution; the multi-component analysis is consistent with the established X-ray conformations, but the quantitative agreement is still somewhat imperfect.  相似文献   

8.
Yeast proteinase B inhibitor 2 (YIB2), which is composed of 74 amino acid residues, is an unusual serine protease inhibitor, since it lacks disulfide bonds. To identify its reactive site for proteases, we constructed an expression system for a synthetic YIB2 gene and then attempted to change the inhibitory properties of YIB2 by amino acid replacements. The purified wild-type YIB2 inhibited the activity of subtilisin BPN', a protein homologous to yeast proteinase B, although its binding ability was not strong, and a time-dependent decrease in its inhibitory activity was observed, demonstrating that wild-type YIB2 behaves as a temporary inhibitor when subtilisin BPN' is the target protease. Since YIB2 exhibits sequence homology to the propeptide of subtilisin, which inhibits a cognate protease using its C-terminal region, we replaced the six C-termi nal residues of YIB2 with those of the propeptide of subtilisin BPN' to make the mutant YIB2m1. This mutant exhibited markedly increased inhibitory activity toward subtilisin BPN' without a time-dependent decrease in its inhibitory activity. Replacement of only the C-terminal Asn of YIB2 by Tyr, or deletion of the C-terminal Tyr of YIB2m1, inhibited subtilisin, but the ability of these mutants to bind subtilisin and their resistance to proteolytic attack were weaker than those of YIB2m1, indicating that the C-terminal residue contributes to the interaction with the protease to a greater extent than the preceding five residues and that the resistance of YIB2 to proteolyic attack is closely related to its ability to bind a protease. These results demonstrate that YIB2 is a unique protease inhibitor that involves its C-terminal region in the interaction with the protease.  相似文献   

9.
Circular-dichroism and fluorescence studies indicate that the 5-dimethylaminonaphthalene-1-sulphonyl and phenylmethanesulphonyl derivatives of subtilisin DY have three-dimensional structure closely similar to that of native enzyme. The single tryptophan residue is largely accessible to the aqueous solvent, and is not directly involved in the enzyme-substrate interactions, since its photochemical modification causes only a partial inhibition of the enzyme activity. It appears very likely that the location of the single tryptophan residue in the three-dimensional structure of subtilisin DY is similar to that of the single tryptophan residue in subtilisin Carlsberg. Fluorescence-quenching experiments further indicate that the 14 tyrosine residues are also largely accessible to the aqueous solvent, and probably interact with hydrated peptide carbonyl groups. The charge environment for tryptophan and tyrosine residues in subtilisin DY, as deduced by quenching experiments with ionic species, is also discussed. In general, subtilisin DY displays strong similarities to subtilisin Carlsberg, as suggested by a comparative analysis of the amino acid composition and fluorescence properties.  相似文献   

10.
The structural gene for a subtilisin J from Bacillus stearothermophilus NCIMB10278 was cloned in Bacillus subtilis using pZ124 as a vector, and its nucleotide sequence was determined. The nucleotide sequence revealed only one large open reading frame, composed of 1,143 base pairs and 381 amino acid residues. A Shine-Dalgarno sequence was found 8 bp upstream from the translation start site (GTG). The deduced amino acid sequence revealed an N-terminal signal peptide and pro-peptide of 106 residues followed by the mature protein comprised of 275 residues. The productivity of subtilisin in the culture broth of the Bacillus subtilis was about 46-fold higher than that of the Bacillus stearothermophilus. The amino acid sequence of the extracellular alkaline protease subtilisin J is highly homologous to that of subtilisin E and it shows 69% identity with subtilisin Carlsberg, 89% with subtilisin BPN' and 70% with subtilisin DY. Some properties of the subtilisin J that had been purified from the Bacillus subtilis were examined. The subtilisin J has alkaline pH characteristics and a molecular weight of 27,500. It retains about 50% of its activity even after treatment at 60 degrees C for 30 min in the presence of 2 mM calcium chloride.  相似文献   

11.
This review presents a systematization of available data on subtilisin-like serine proteinases of plants. Enzymatic and physicochemical properties of the enzymes, their structure and processing, as well as their biological functions and origin are considered. Subtilisin-like proteinases of plants have a number of substantial differences from such typical subtilisins as subtilisin BPN or subtilisin Carlsberg. The plant subtilisins are characterized by much greater molecular mass, long inserts and C-terminal regions, and several cysteine residues, while typical subtilisins have no cysteine residues, and thiol-dependent bacterial subtilisins contain only one cysteine residue required for enzymatic activity.  相似文献   

12.
With the rise in human population across the globe especially in developing countries, the incidence of microbial infections are increasing with greater pace. On the other hand, available medication and therapies are found to be insufficient for the complete cure of such microbial infections due to the development of resistance against various antibiotics. Therefore, to cope up the menace of microbial infections and drug resistance, there is demand for new and compelling technology, which has the ability to impede these problems. Many research groups worldwide are finding a ray of hope in nanomaterials owing to their unique properties. In the present review we have discussed the reasons behind the development of new materials based on nanotechnology. It is mainly focused on pioneering studies on application of nanomaterials like carbon nanotube, fullerene, dendrimers, nanocomposite and metal nanoparticles in combating dreadful pathogens. Moreover, the concerns about their toxicity have also been discussed.  相似文献   

13.
Effect of hydration on the morphology of enzyme powder   总被引:2,自引:0,他引:2  
We report the first direct images of the hydration of protein powders. Using an environmental scanning electron microscope (ESEM) we have taken a series of micrographs of a region of the enzyme (subtilisin) power whilst hydrating the sample. In addition, the sample has been viewed during exposure to toluene vapors. The ESEM is a remarkable new instrument that will have wide applicability in imaging of biological materials in their native environments.  相似文献   

14.
The influence of the polymer/fullerene blend ratio on the morphological properties of organic solar cells is investigated. Spectroscopic ellipsometry is applied as a tool for analyzing fullerene domains and the influence on polymer crystallinity within the film. Furthermore, the measurements are correlated with a percolation limit of as‐cast films at around 40 wt% fullerene content.  相似文献   

15.
Studies of the properties of subtilisin, Novo type, immobilized on porous glass with the aid of hexamethylene diisocyanate were carried out. The immobilized proteinase preparation shows optimum activity at a pH value of 10.7 and at a temperature between 60–65°C. It was stable in a wider range of pH and temperature values than the native subtilisin. The KM values for hemoglobin and BAEE were 9.2 × 10?5 [M] and 139 × 10?5 [M], respectively. Under relatively non-aqueous conditions, immobilised subtilisin was able to synthesize phenylacetic acid ethyl ester.  相似文献   

16.
We have coevolved high activity and hyperstability in subtilisin by sequentially randomizing 12 amino acid positions in calcium-free subtilisin. The optimal amino acid for each randomized site was chosen based on stability and catalytic properties and became the parent clone for the next round of mutagenesis. Together, the 12 selected mutations increased the half-life of calcium-free subtilisin at elevated temperature by 15,000-fold. The catalytic properties of the mutants were examined against a range of substrates. In general, only mutations occurring at or near the substrate-binding surface have measurable effects on catalytic constants. No direct influence of stability on catalytic properties was observed. A high-stability mutant, Sbt140, was a more efficient enzyme in terms of k(cat)/K(m) than a commercial version of subtilisin across a range of substrates but had a lower k(cat) against tight-binding substrates. The reason for this behavior was discerned by examining microscopic rate constants for the hydrolysis of a tight-binding peptide substrate. Burst kinetics were observed for this substrate, indicating that acylation is not rate-limiting. Although acylation occurs at the rate of substrate binding, k(cat) is attenuated by the slow release of the N-terminal product. Natural evolution appears to have optimized catalytic activity against a range of sequences by achieving a balance between substrate binding and the rate of release of the N-terminal product.  相似文献   

17.
The gene encoding subtilisin-like protease T. kodakaraensis subtilisin was cloned from a hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. T. kodakaraensis subtilisin is a member of the subtilisin family and composed of 422 amino acid residues with a molecular weight of 43,783. It consists of a putative presequence, prosequence, and catalytic domain. Like bacterial subtilisins, T. kodakaraensis subtilisin was overproduced in Escherichia coli in a form with a putative prosequence in inclusion bodies, solubilized in the presence of 8 M urea, and refolded and converted to an active molecule. However, unlike bacterial subtilisins, in which the prosequence was removed from the catalytic domain by autoprocessing upon refolding, T. kodakaraensis subtilisin was refolded in a form with a putative prosequence. This refolded protein of recombinant T. kodakaraensis subtilisin which is composed of 398 amino acid residues (Gly(-82) to Gly(316)), was purified to give a single band on a sodium dodecyl sulfate (SDS)-polyacrylamide gel and characterized for biochemical and enzymatic properties. The good agreement of the molecular weights estimated by SDS-polyacrylamide gel electrophoresis (44,000) and gel filtration (40,000) suggests that T. kodakaraensis subtilisin exists in a monomeric form. T. kodakaraensis subtilisin hydrolyzed the synthetic substrate N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide only in the presence of the Ca(2+) ion with an optimal pH and temperature of pH 9.5 and 80 degrees C. Like bacterial subtilisins, it showed a broad substrate specificity, with a preference for aromatic or large nonpolar P1 substrate residues. However, it was much more stable than bacterial subtilisins against heat inactivation and lost activity with half-lives of >60 min at 80 degrees C, 20 min at 90 degrees C, and 7 min at 100 degrees C.  相似文献   

18.
Fullerenes are chemical structures made of carbon atoms. The stable form is molecule composed of 60 carbon atoms arranged in a soccer ball-shaped structure. With respect to its electron donor and acceptor capability and photochemical behavior fullerenes can be effective antioxidants and radical scavengers or prooxidants and photosensitizers. These properties of fullerenes have paid attention on their possible biological applications. Results of previous studies point to the great dependance of fullerenes activity upon quality, quantity and geometry of substituents in fullerene derivatives. Some of fullerene derivatives show antiviral and antimicrobial activity, including anti-HIV properties. C60 and its derivatives are able to exhibit cytotoxic and enzyme-inhibiting abilities as well as radical-quenching and antioxidative abilities. Generation of reactive oxygen species under influence of visible light is another ability of fullerene derivetives desired in photodynamic therapy.  相似文献   

19.
新型功能性纳米材料在设计和制备技术方面的进步为纳米医学的发展提供了很大的机遇。在过去十年中,介孔碳纳米材料在制备和应用方面获得了巨大的进步。作为一种新型无机材料体系,介孔碳纳米材料结合了介孔的结构以及碳质组成的特点,显示出不同于传统介孔二氧化硅以及其它一些碳基材料体系(碳纳米管、石墨烯、富勒烯等)的优越特性。介孔碳纳米材料在药物的吸附与控释、光热治疗、协同治疗、肿瘤细胞的荧光标记、催化、生物传感、生物大分子的分离等诸多领域表现出其他多孔材料难以达到的优越性和应用潜力。本文对介孔碳纳米材料的制备和修饰技术进行介绍,重点关注介孔碳纳米颗粒在药物负载和光热控释方面的应用,最后对介孔碳纳米材料在生物医学领域的应用前景和所面临的关键问题进行讨论。  相似文献   

20.
F Adebodun  F Jordan 《Biochemistry》1989,28(19):7524-7531
Two different nuclear magnetic resonance experiments were conducted to elucidate the properties of the Ca(II) binding locus on serine proteases in solution. Trypsin, alpha-chymotrypsin, and subtilisin were inactivated with diisopropyl fluorophosphate, and the distance of the phosphorus from Gd(III) in place of Ca(II) was determined from the lanthanide-induced relaxation on the 31P resonance. The distances found (between 20 and 21 A) were in excellent agreement with those reported in the X-ray crystallographic structures of trypsin and subtilisin, demonstrating that the method has wide applicability to systems for which no X-ray structure is available. Subsequently, the 113Cd spectra [in place of Ca(II)] were examined in the presence of the native enzymes. At ambient temperatures only a single 113Cd resonance could be observed, presumably representing the weighted average of the variously weakly bound ions and the free ion. At 280 K for trypsin and chymotrypsin, and at 268 K for subtilisin there was observed a resonance at ca. 65-70 ppm higher field than the previous averaged resonance that could be attributed to tightly bound Cd. The chemical shift of the resonance was consistent with its assignment to an octahedral environment around Cd with oxygen ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号