首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The usefulness of fluorescence parameters as drought tolerance selection criteria for winter bread wheat in the highlands of Iran was studied. A population of 142 recombinant inbred lines, derived from a cross between two common wheat varieties, Azar2 (winter type) and 87Zhong291 (facultative type), was used to analyze the correlation between grain yield and chlorophyll fluorescence parameters at the grain-filling stage under drought stress and supplementary irrigation conditions during 2006–2007 and 2007–2008 seasons at Maragheh experiment station of the Dryland Agricultural Research Institute (DARI) using a RCBD with three replications. The results showed significant differences among the lines in the grain yield and all fluorescence parameters under rainfed and irrigation conditions. The values of chlorophyll content, F 0, F m, F v, F v/F m, LWP, YPEC, NPQ, and PI in the drought-tolerant genotypes were significantly higher than those in drought-sensitive genotypes under drought stress. Significant differences were observed between slope coefficients under drought, but not under supplementary irrigation conditions except NPQ (P = 5%). It was concluded that chlorophyll content, F 0, F m, F v, F v/F m, LWP, YPEC, NPQ, and PI could be used as additional indicators in screening wheat germplasm for drought tolerance.  相似文献   

2.
The genotypic response of wheat cultivars as affected by two methods of heat stress treatment (treatment of intact plants in growth chambers versus treatment of detached leaves in test tubes) in a temperature controlled water bath were compared to investigate how such different methods of heat treatment affect chlorophyll fluorescence parameters. A set of 41 spring wheat cultivars differing in their maximum photochemical efficiency of photosystem (PS) II (Fv/Fm) under heat stress conditions was used. These cultivars were previously evaluated based on the heat treatment of intact plants. The responses of the same cultivars to heat stress were compared between the two methods of heat treatment. The results showed that in detached leaves, all of the fluorescence parameters remained almost unaffected in control (20 °C at all durations tested), indicating that the detachment itself did not affect the fluorescence parameters. In contrast, heat induced reduction in the maximum photochemical efficiency of PSII of detached leaves occurred within 2 h at 40 °C and within 30 min at 45 °C, and the response was more pronounced than when intact plants were heat stressed for three days at 40 °C. The proportion of total variation that can be ascribed to the genetic differences among cultivars for a trait was estimated as genetic determination. During heat treatment, the genetic determination of most of the fluorescence parameters was lower in detached leaves than in intact plants. In addition, the correlation of the cultivar response in intact plants versus detached leaves was low (r = 0.13 (with expt.1) and 0.02 with expt.2). The most important difference between the two methods was the pronounced difference in time scale of reaction, which may indicate the involvement of different physiological mechanisms in response to high temperatures. Further, the results suggest that genetic factors associated with cultivar differences are different for the two methods of heat treatment.  相似文献   

3.
Quantitative changes in total leaf soluble proteins, proline, carbohydrate content, chlorophyll fluorescence, guaiacol peroxidase (POD) and catalase (CAT) activities were determined in a less cold-hardy (LCH) spring cv. Kohdasht (LT50 = −6°C), a semi cold-hardy (SCH) facultative cv. Azar 2 (LT50 = −15°C), and a cold-hardy (CH) winter cv. Norstar (LT50 = −26°C) of wheat (Triticum aestivum L.) exposed to 4°C for 9 weeks. Seedlings were grown in a controlled growth room for 14 days at 20°C and then transferred to 4°C (experimental day 0) for 63 days (cold treatment); otherwise they were maintained continuously at 20°C (control treatment). The samples were harvested 0, 2, 21, 28, 42, and 63 days after exposure to 4°C. The results showed significant low temperature (LT)-induced accumulation of total soluble proteins, proline, and carbohydrates and elevation in activities of CAT and POD in leaves of SCH and CH winter cultivars rather than in LCH spring cultivar. In contrast, the chlorophyll fluorescence (F v/F m) declined during LT treatment irrespective of cultivar. The results suggest that developmental traits such as vernalization requirement of wheat affects on cold-tolerance expression system of plants.  相似文献   

4.
Two tomato (Lycopersicon esculentum L.) cultivars: Robin (tolerant) and Roma (sensitive to heat stress) were studied. Chlorophyll fluorescence induction parameters (Fv/Fp, Amax, and Rfd) at 25 °C showed that the PS2 activity was similar for both cultivars. The parameters, measured at 38 °C, decreased in both cultivars, but more in cv. Roma. Exogenous application of 4 mM spermidine improved the plant heat-resistance in both cultivars, and especially in cv. Roma. Analysis of chlorophyll fluorescence changes during linear increase in temperature showed that cv. Robin plants have higher ability to hardening and higher resistance to thermal damage of the pigment-protein complexes structure and the activity of PS2 than cv. Roma.  相似文献   

5.
The effects of nitrogen fertilization on the growth, photosynthetic pigment contents, gas exchange, and chlorophyll (Chl) fluorescence parameters in two tall fescue cultivars (Festuca arundinacea cv. Barlexas and Crossfire II) were investigated under heat stress at 38/30 °C (day/night) for two weeks. Shoot growth rate of two tall fescue cultivars declined significantly under heat stress, and N supply can improved the growth rates, especially for the Barlexas. Chl content, leaf net photosynthetic rate, stomatal conductance, water use efficiency, and the maximal efficiency of photosystem 2 photochemistry (Fv/Fm) also decreased less under heat stress by N supply, especially in Crossfire II. Moreover, cultivar variations in photosynthetic performance were associated with their different response to heat stress and nitrogen fertilization, which were evidenced by shoot growth rate and photosynthetic pigment contents.  相似文献   

6.
After saturating light illumination for 3 h the potential photochemical efficiency of photosystem Ⅱ (PSII) (FJF,, the ratio of variable to maximal fluorescence) decreased markedly and recovered basically to the level before saturating light illumination after dark recovery for 3 h in both soybean and wheat leaves, indicating that the decline in FJ/Fm is a reversible down-regulation. Also, the saturating light illumination led to significant decreases in the low temperature (77 K) chlorophyll fluorescence parameters F685 (chlorophyll a fluorescence peaked at 685 nm) and F685/F735 (F735, chlorophyll a fluorescence peaked at 735 nm) in soybean leaves but not in wheat leaves. Moreover, trypsin (a protease) treatment resulted in a remarkable decrease in the amounts of PsbS protein (a nuclear gene psbS-encoded 22 kDa protein) in the thylakoids from saturating light-illuminated (SI), but not in those from darkadapted (DT) and dark-recovered (DRT) soybean leaves. However, the treatment did not cause such a decrease in amounts of the PsbS protein in the thylakoids from saturating light-illuminated wheat leaves. These results support the conclusion that saturating light illumination induces a reversible dissociation of some light-harvesting complex Ⅱ (LHClI) from PSII reaction center complex in soybean leaf but not in wheat leaf.  相似文献   

7.
Sensitivity to ozone is highly variable in cultivars of different wheat species, leading to differences in leaf injury and yield. Not much is known about the physiological background of these differences. The objective of this study was to compare the effects of ozone on photosynthetic parameters in Triticum aestivum L. (spring wheat cv. Nandu, winter wheat cv. Perlo) and Triticum durum Desf. (cv. Extradur). Plants cultivated in pots were exposed to 80 nmol mol?1 ozone, or were used as control plants in a greenhouse. Stages of growth and senescence of single leaves were recorded. Light-saturated net photosynthesis, leaf conductance for water vapour, and chlorophyll fluorescence were measured. Stomatal limitation was calculated from CO2 response curves, and the free radical content of whole leaves measured by EPR spectroscopy. Senescence of single leaves was enhanced by the ozone-treatment in all three cultivars, in the order Nandu > Perlo > Extradur. Development of whole plants was slightly delayed in Perlo and Nandu, but was accelerated significantly in Extradur. The rate of net photosynthesis under light saturation (Asat) decreased significantly in older, ozone-fumigated leaves of Perlo and Nandu but not of Extradur. Leaf conductance (g1) showed a similar behaviour, but stomatal limitation (l) was similar between ozone-treated and control plants. Thus, an ozone-induced closure of stomata was not the reason for the observed difference in Asat. Perlo and Nandu showed a significant, only partly reversible decrease in Fv/Fm in ozone-fumigated leaves, whereas in Extradur the decrease was fully reversible only in older leaves. Whole leaves of Extradur, in contrast to Perlo and Nandu, showed no increase in EPR free radical signals. The higher ozone tolerance of Extradur was thus not caused by decreased ozone uptake via the stomata, but by a better ability of photosynthetically active mesophyll cells to cope with photooxidative stress.  相似文献   

8.
The use of chlorophyll fluorescence as a method for detecting and monitoring plant stress arising from Tetranychus urticae (Koch) feeding injury was investigated. The effect of mite density (1–32 mites per 1.5 cm2 of leaf) and the duration of the feeding period (1–5 days) on the chlorophyll fluorescence parameters of bean (Phaseolus vulgaris) leaves were examined. Changes in chlorophyll fluorescence parameters were dependent both on mite density and duration of feeding. Decreases in F o, the initial fluorescence and F m, the maximum fluorescence led to a decrease in the ratio of variable to maximum fluorescence, F v/F m. The decrease in F v/F m is typical of the response of many plants to a wide range of environmental stresses and indicates a reduced efficiency of photosystem II (PSII) photochemistry. T 1/2, which is proportional to the pool size of electron acceptors on the reducing side of PSII, was also reduced in response to mite-feeding injury. The leaf chlorophyll content decreased with increasing mite density and duration of feeding but did not appear to contribute to the decrease in F v/F m. Chlorophyll fluorescence is an effective method for detecting and monitoring stress in T. urticae-injured bean leaves.  相似文献   

9.
The chlorophyll fluorescence parameter Fv/Fm reflects the maximum quantum efficiency of photosystem II (PSII) photochemistry and has been widely used for early stress detection in plants. Previously, we have used a three‐tiered approach of phenotyping by Fv/Fm to identify naturally existing genetic variation for tolerance to severe heat stress (3 days at 40°C in controlled conditions) in wheat (Triticum aestivum L.). Here we investigated the performance of the previously selected cultivars (high and low group based on Fv/Fm value) in terms of growth and photosynthetic traits under moderate heat stress (1 week at 36/30°C day/night temperature in greenhouse) closer to natural heat waves in North‐Western Europe. Dry matter accumulation after 7 days of heat stress was positively correlated to Fv/Fm. The high Fv/Fm group maintained significantly higher total chlorophyll and net photosynthetic rate (PN) than the low group, accompanied by higher stomatal conductance (gs), transpiration rate (E) and evaporative cooling of the leaf (ΔT). The difference in PN between the groups was not caused by differences in PSII capacity or gs as the variation in Fv/Fm and intracellular CO2 (Ci) was non‐significant under the given heat stress. This study validated that our three‐tiered approach of phenotyping by Fv/Fm performed under increasing severity of heat was successful in identifying wheat cultivars differing in photosynthesis under moderate and agronomically more relevant heat stress. The identified cultivars may serve as a valuable resource for further studies to understand the physiological mechanisms underlying the genetic variability in heat sensitivity of photosynthesis.  相似文献   

10.
Trehalose was supplied to wheat (Triticum aestivum L.) seedlings just before a high temperature (40 °C) treatment and some physiological parameters were measured during the heat stress and recovery. The application of trehalose decreased the net photosynthetic rate (PN) of wheat seedlings under the heat stress, but to a small extent increased the dry mass (DM) and leaf water content (LWC) after recovery from the heat stress. The trehalose-induced decrease in PN under the heat stress was not associated with a stomatal response. The heat stress slightly decreased the maximal efficiency of photosystem II (PS II) photochemistry (the variable to maximum chlorophyll a fluorescence ratio, Fv/Fm) similarly in the trehalose treated or non-treated plants. Under the heat stress, the actual efficiency of PS II photochemistry (ΦPSII) and the efficiency of excitation energy capture by open reaction centers (Fv′/Fm′) were lower in the trehalose-pretreated seedlings, whereas they were higher after the recovery. The patterns of changes in nonphotochemical quenching (NPQ) were contrary to those of ?PS II and Fv′/Fm′. The chlorophyll content was lower, whereas the β-carotene content and the degree of de-epoxidation (DEPS) of xanthophyll cycle pigments were higher in the trehalose-pretreated wheat seedlings under the heat stress. These results suggest that exogenous trehalose partially promotes recovery of wheat by the increase of NPQ, β-carotene content, and DEPS.  相似文献   

11.
利用不同剂量的137Cs-γ射线对毛竹(Phyllostachys heterocycla ‘Pubescens’)种子进行辐射,测定实生苗叶片中的光合色素含量和叶绿素荧光参数等指标,探讨辐射对毛竹幼苗生长的影响,为筛选有利的突变单株奠定良好基础。结果表明:30或60Gy的137Cs-γ射线辐射后,毛竹幼苗的光合色素含量以及最大荧光强度(Fm)、可变荧光强度(Fv)、PSII最大光化学效率(Fv/Fm)、PSII的潜在活性(Fv/Fo)、PSII实际光化学效率(Yield)和表观光合电子传递速率(ETR)等荧光参数值均高于90Gy辐射处理,说明较低剂量辐射后PSII反应中心的能量捕获效率高,且具有较强的光合能力;而90Gy的137Cs-γ射线辐射对毛竹的影响则与之相反。不同处理剂量之间叶片光能耗散程度以及表观光合电子传递速率-光合有效辐射(ETR-PAR)响应曲线的分析结果也进一步证实了以上结论。  相似文献   

12.
The influence of NaCl on senescence-related parameters (proteinand chlorophyll concentrations, membrane permeability and chlorophyllfluorescence) was investigated in young and old leaves of fiverice cultivars differing in salt resistance. NaCl hastened thenaturally-occurring senescence of rice leaves which normallyappears during leaf ontogeny: it decreased chlorophyll and proteinconcentrations and increased membrane permeability and malondialdehydesynthesis. Such an acceleration of deteriorative processes affectedall leaves in salt-sensitive cultivars while it was more markedin oldest than in youngest leaves of salt-resistant genotypes.NaCl-induced senescence also involved specific modifications,such as an increase in basal non-variable chlorophyll fluorescence(F 0) recorded in all cultivars or a transient increase in solubleprotein concentration recorded in salt-resistant genotypes only.Alteration of membrane permeability appeared as one of the firstsymptoms of senescence in rice leaves and allowed discriminationamong cultivars after only 7 d of stress. In contrast, F v/F mratio (variable fluorescence/maximal fluorescence) was thesame for all cultivars during the first 18 d of stress and thuscould not be used for identifying salt-resistant rice exposedto normal light conditions. Relationships between parametersinvolved in leaf senescence are discussed in relation to salinityresistance of rice cultivars. Chlorophyll concentration; chlorophyll fluorescence; electrolyte leakage; magnesium; malondialdehyde; membrane permeability; NaCl; Oryza sativa L.; protein; rice; salinity resistance; senescence; UV absorbing substances  相似文献   

13.
Fluorometers that measure the kinetics of chlorophyll fluorescence have become invaluable tools for determining the photosynthetic performance of plants. Many of these instruments use high frequency modulated light to measure the rate, efficiency and regulation of photosynthesis. The technique is non-invasive and is effective under diverse environmental conditions. Recently, imaging fluorometers have been introduced that reveal variability in photosynthesis over the surface of a leaf or between individual plants. Most imaging instruments depend on continuous light or low frequency modulated light for fluorescence excitation, which imposes serious limitations on measurements of the fluorescence parameters, especially the minimum fluorescence (F0) and variable fluorescence (FV). Here, we describe a new instrument that combines the advantage of high frequency modulated light with two-dimensional imaging of chlorophyll fluorescence. The fluorometer produces dynamic images of chlorophyll fluorescence from leaves or plants, providing accurate mapping of F0 and FV, and non-photochemical quenching. A significant feature of the instrument is that it can record fluorescence images of leaves in daylight under field conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Two modern cultivars [Yangmai16 (Y16) and Yangfumai 2 (Y2)] of winter wheat (Triticum aestivum L.) with almost identical phenology were investigated to determine the impacts of elevated ozone concentration (E‐O3) on physiological characters related to photosynthesis under fully open‐air field conditions in China. The plants were exposed from the initiation of tillering to final harvest, with E‐O3 of 127% of the ambient ozone concentration (A‐O3). Measurements of pigments, gas exchange rates, chlorophyll a fluorescence and lipid oxidation were made in three replicated plots throughout flag leaf development. In cultivar Y2, E‐O3 significantly accelerated leaf senescence, as indicated by increased lipid oxidation as well as faster declines in pigment amounts and photosynthetic rates. The lower photosynthetic rates were mainly due to nonstomatal factors, e.g. lower maximum carboxylation capacity, electron transport rates and light energy distribution. In cultivar Y16, by contrast, the effects of E‐O3 were observed only at the very last stage of flag leaf ageing. Since the two cultivars had almost identical phenology and very similar leaf stomatal conductance before senescence, the greater impacts of E‐O3 on cultivars Y2 than Y16 cannot be explained by differential ozone uptake. Our findings will be useful for scientists to select O3‐tolerant wheat cultivars against the rising surface [O3] in East and South Asia.  相似文献   

15.
Conifers of the boreal zone encounter considerable combined stress of low temperature and high light during winter, when photosynthetic consumption of excitation energy is blocked. In the evergreen Pinus sylvestris L. these stresses coincided with major seasonal changes in photosystem II (PSII) organisation and pigment composition. The earliest changes occurred in September, before any freezing stress, with initial losses of chlorophyll, the D1-protein of the PSII reaction centre and of PSII light-harvesting-complex (LHC II) proteins. In October there was a transient increase in F0, resulting from detachment of the light-harvesting antennae as reaction centres lost D1. The D1-protein content eventually decreased to 90%, reaching a minimum by December, but PSII photochemical efficiency [variable fluorescence (Fv)/maximum fluorescence (Fm)] did not reach the winter minimum until mid-February. The carotenoid composition varied seasonally with a twofold increase in lutein and the carotenoids of the xanthophyll cycle during winter, while the epoxidation state of the xanthophylls decreased from 0.9 to 0.1 from October to January. The loss of chlorophyll was complete by October and during winter much of the remaining chlorophyll was reorganised in aggregates of specific polypeptide composition, which apparently efficiently quench excitation energy through non-radiative dissipation. The timing of the autumn and winter changes indicated that xanthophyll de-epoxidation correlates with winter quenching of chlorophyll fluorescence while the drop in photochemical efficiency relates more to loss of D1-protein. In April and May recovery of the photochemistry of PSII, protein synthesis, pigment rearrangements and zeaxanthin epoxidation occurred concomitantly. Indoor recovery of photosynthesis in winter-stressed branches under favourable conditions was completed within 3 d, with rapid increases in F0, the epoxidation state of the xanthophylls and in light-harvesting polypeptides, followed by recovery of D1-protein content and Fv/Fm, all without net increase in chlorophyll. The fall and winter reorganisation allow Pinus sylvestris to maintain a large stock of chlorophyll in a quenched, photoprotected state, allowing rapid recovery of photosynthesis in spring.Abbreviations Elips early light-induced proteins - EPS epoxidation state - F0 instantaneous fluorescence - Fm maximum fluorescence - Fv variable fluorescence - LHC II light-harvesting complex of PSII - LiDS lithium dodecyl sulfate This research was supported by the Swedish Natural Science Research Council. We wish to thank Dr. Adrian Clarke1 (Department of Plant Physiology, University of Umeå, Sweden) for advice on electrophoresis, valuable discussion and providing antibodies. Dr. Stefan Jansson1 and Dr. Torill Hundal (Department for Biochemistry, University of Stockholm, Sweden) provided antibodies. Jan Karlsson1 helped with the HPLC, Dr. Marianna Krol gave advice on green gels and Dr. Vaughan Hurry (Cooperative Research Centre for Plant Sciences, Australian National University, Canberra, Australia) provided valuable discussion.  相似文献   

16.
For the first time, the adaptive role of the rolling leaf trait for tolerance of wheat plants (Triticum aestivum L.) to the main factor of drought, high temperature, was demonstrated. Cv. Otan with high degree of this trait expression was more tolerant to temperature stress (40°C, 4 h during 2 days (2h/day)). Changes in parameters of chlorophyll fluorescence, F v/F m and R Fd690, suggest that cv. Otan was tolerant to inhibition of photochemical activities of photosystem II (PSII) and photosystem I (PSI). Furthermore, high temperature had no effect on the rate of net photosynthesis (P N) in cv. Otan, although it decreased this parameter in the other wheat cultivars. The main factors, which provid for this tolerance, were adaptation of the photosynthetic pigment system by active accumulation of carotenoids, more stable structural organization of PSII and PSI, and their high photosynthetic activities, as well as efficient stomatal regulation of transpiration and supplying of mesophyll cells with CO2. It is hypothesized that the physiological role of the rolling leaf trait is the maintenance of adaptation potential by increasing the efficiency of water metabolism in the flag leaves of wheat under high temperature.  相似文献   

17.
The cadmium (Cd), being a widespread soils pollutant and one of the most toxic heavy metals in the environment, adversely affects sustainable crop production and food safety. Pot experiment was conducted to quantify and simulate the response of purslane (Portulaca oleracea L.) plants to Cd toxicity. The purslane germinated seeds were cultivated in twelve Cd concentrations (from 0 to 300 mg/kg of Cd in soil) for six weeks and then some growth characteristics, photosynthesis pigments, and chlorophyll a fluorescence parameters were measured. The influence of Cd gradients in the soil on all growth parameters, photosynthesis pigments and chlorophyll a fluorescence parameters (except Fm and carotenoid content) were described by a segmented model. Furthermore, Fm and carotenoid contents were fitted to a linear model. The growth characteristics, chlorophyll content, photosynthetic pigments and some parameters of chlorophyll a fluorescence such as Fv, Fv/Fm, Y(II) and ETR decreased when Cd concentration increased. In contrast, F0, Y(NPQ) and Y(NO) increased and Fm was not significantly affected. In general, most variations in the studied parameters were recorded with low concentrations of cadmium, which ranged from 0 to 125 mg/kg. Also, the growth characteristics (especially stem, leaf, and shoot dry weights) were more sensitive to Cd contamination than other parameters. Moreover, among chlorophyll fluorescence parameters, Y(NPQ) was the most sensitive to Cd concentration gradients in the soil that can be due to disturbances of antennae complex of PSII.  相似文献   

18.
Photosynthetic gas exchange, vegetative growth, water relations and fluorescence parameters as well as leaf anatomical characteristics were investigated on young plants of two Olea europaea L. cultivars (Chemlali and Zalmati), submitted to contrasting water availability regimes. Two-year-old olive trees, grown in pots in greenhouse, were not watered for 2 months. Relative growth rate (RGR), leaf water potential (ΨLW) and the leaf relative water content (LWC) of the two cultivars decreased with increasing water stress. Zalmati showed higher values of RGR and LWC and lower decreased values of ΨLW than Chemlali, in response to water deficit, particularly during severe drought stress. Water stress also caused a marked decline on photosynthetic capacity and chlorophyll fluorescence. The net photosynthetic rate, stomatal conductance, transpiration rate, the maximal photochemical efficiency of PSII (F v/F m) and the intrinsic efficiency of open PSII reaction centres (F′ v/F′ m) decreased as drought stress developed. In addition, drought conditions, reduced leaf chlorophyll and carotenoids contents especially at severe water stress. However, Zalmati plants were the less affected when compared with Chemlali. In both cultivars, stomatal control was the major factor affecting photosynthesis under moderate drought stress. At severe drought-stress levels, the non-stomatal component of photosynthesis is inhibited and inactivation of the photosystem II occurs. Leaf anatomical parameters show that drought stress resulted in an increase of the upper epidermis and palisade mesophyll thickness as well as an increase of the stomata and trichomes density. These changes were more characteristic in cv. ‘Zalmati’. Zalmati leaves also revealed lower specific leaf area and had higher density of foliar tissue. From the behaviour of Zalmati plants, with a smaller reduction in relative growth rate, net assimilation rate and chlorophyll fluorescence parameters, and with a thicker palisade parenchyma, and a higher stomatal and trichome density, we consider this cultivar more drought-tolerant than cv. Chemlali and therefore, very promising for cultivation in arid areas.  相似文献   

19.
Five winter and five spring wheat ( Triticum aestivum L.) cultivars were grown under either control conditions (20°C/250 photosynthetic photon flux density (PPFD) [μmol m−2 s−1]), high irradiance (20°C/800 PPFD) or at low temperature (either 5°C/250 PPFD or 5°C/50 PPFD). To eliminate any potential bias, the wheat cultivars were arbitrarily chosen without any previous knowledge of their freezing tolerance or photosynthetic competence. We show that the differential susceptibilities to photoinhibition exhibited between spring and winter wheat cultivars, as assessed by chlorophyll fluorescence cannot be explained on the basis of either growth irradiance or low growth temperature per se. The role of excitation pressure is discussed. We assessed the correlation between susceptibility to low-temperature photoinhibition, maximum ribulose 1,5-bisphosphate carboxylase-oxygenase (EC 4.1.1.39) and NADP-dependent malate dehydrogenase (EC 1.1.1.82) activities, chlorophyll and protein concentrations and freezing tolerance determined by electrolyte leakage. Susceptibility to photoinhibition is the only parameter examined that is strongly and negatively correlated with freezing tolerance. We suggest that the assessment of susceptibility to photoinhibition may be a useful predictor of freezing tolerance and field survival of cereals.  相似文献   

20.
In vivo room temperature chlorophyll a fluorescence coupled with CO2 and O2 exchange was measured to determine photosynthetic limitation(s) for spring and winter wheat (Triticum aestivum L.) grown at cold-hardening temperatures (5°C/5°C, day/night). Plants of comparable physiological stage, but grown at nonhardening temperatures (20°C/16°C, day/night) were used in comparison. Winter wheat cultivars grown at 5°C had light-saturated rates of CO2 exchange and apparent photon yields for CO2 exchange and O2 evolution that were equal to or greater than those of winter cultivars grown at 20°C. In contrast, spring wheat cultivars grown at 5°C showed 35% lower apparent photon yields for CO2 exchange and 25% lower light-saturated rates of CO2 exchange compared to 20°C grown controls. The lower CO2 exchange capacity is not associated with a lower efficiency of photosystem II activity measured as either the apparent photon yield for O2 evolution, the ratio of variable to maximal fluorescence, or the level of reduced primary quinone electron acceptor maintained at steady-state photosynthesis, and is most likely associated with carbon metabolism. The lower CO2 exchange capacity of the spring cultivars developed following long-term exposure to low temperature and did not occur following over-night exposure of nonhardened plants to 5°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号