首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strain BM108 of Escherichia coli has a chromosomal mutation in the rpmB , G operon that prevents synthesis of ribosomal proteins L28 and L33. The mutation was lethal unless synthesis of protein L28 was induced from a plasmid. Without protein L28, RNA and protein synthesis were linear rather than exponential. No 70S ribosomes were made. Instead, RNA accumulated in '30S material' and '47S particles'; the latter were distinct from 50S ribosomal subunits, lacked proteins L28 and L33 and had substoicheometric amounts of three other proteins. When L28 synthesis was induced (but protein L33 was still absent), the strain grew as well as, and assembled 70S ribosomes with similar kinetics to, a wild-type control. Thus, protein L28 is required for ribosome assembly in strain BM108 while protein L33 has no significant effect on ribosome synthesis or function.  相似文献   

2.
3.
A mutant of Escherichia coli dependent on erythromycin for growth spontaneously gives erythromycin-independent strains with altered or missing ribosomal proteins. strains with defects in ribosome assembly were sought and obtained from among these revertants. Two organisms in which ribosomal protein L19 is altered and absent respectively have 70S ribosomes whose dissociation into sub-units is particularly sensitive to pressures generated during centrifuging. The mutant that lacks protein L19 also accumulates ribosome precursor particles during exponential growth as do others including mutants that lack proteins S20 or L1. These strains also show unbalanced synthesis of RNA and so will be useful in investigating both the pathways and the regulation of ribosome assembly.  相似文献   

4.
Ribosomal protein synthesis by a mutant of Escherichia coli   总被引:1,自引:0,他引:1  
The mutant strain of Escherichia coli, TP28, synthesises ribosomes by an abnormal pathway and accumulates large quantities of 47S ribonucleoprotein particles. The protein complement of mutant 70S ribosomes is normal but 47S particles contain only traces of proteins L28 and L33 and have a significantly reduced content of four other proteins. The mutation reduces the rates of synthesis of L28 and L33 by about half but other widespread alterations ensue. In particular, ribosomal protein synthesis in the mutant strain becomes less well balanced than in its parent: some proteins, particularly those from promoter-proximal genes, are oversynthesized and their excess then degraded.  相似文献   

5.
Escherichia coli strain 15--28 is a mutant which during exponential growth contains large amounts of a '47S' ribonucleoprotein precursor to 50S ribosomes. The '47S particles' are more sensitive to ribonuclease than are 50S ribosomes. The 23 S RNA of 47S particles may be slightly undermethylated, but cannot be distinguished from the 23S RNA of 50S ribosomes by sedimentation or electrophoresis. Isolated particles have 10--15% less protein than do 50S ribosomes; proteins L16, L28 and L33 are absent. Comparison with precursor particles studied by other workers in wild-type strains of E. coli suggests that the assembly of 50S ribosomes in strain 15--28 is atypical.  相似文献   

6.
The RimM protein in Escherichia coli is associated with free 30S ribosomal subunits but not with 70S ribosomes and is important for efficient maturation of the 30S subunits. A mutant lacking RimM shows a sevenfold-reduced growth rate and a reduced translational efficiency. Here we show that a double alanine-for-tyrosine substitution in RimM prevents it from associating with the 30S subunits and reduces the growth rate of E. coli approximately threefold. Several faster-growing derivatives of the rimM amino acid substitution mutant were found that contain suppressor mutations which increased the amount of the RimM protein by two different mechanisms. Most of the suppressor mutations destabilized a secondary structure in the rimM mRNA, which previously was shown to decrease the synthesis of RimM by preventing the access of the ribosomes to the translation initiation region on the rimM mRNA. Three other independently isolated suppressor mutations created a fusion between rpsP, encoding the ribosomal protein S16, and rimM on the chromosome as a result of mutations in the rpsP stop codon preceding rimM. A severalfold-higher amount of the produced hybrid S16-RimM protein in the suppressor strains than of the native-sized RimM in the original substitution mutant seems to explain the suppression. The S16-RimM protein but not any native-size ribosomal protein S16 was found both in free 30S ribosomal subunits and in translationally active 70S ribosomes of the suppressor strains. This suggests that the hybrid protein can substitute for S16, which is an essential protein probably because of its role in ribosome assembly. Thus, the S16-RimM hybrid protein seems capable of carrying out the important functions that native S16 and RimM have in ribosome biogenesis.  相似文献   

7.
8.
9.
Escherichia coli strain 15-28 is a mutant with a defect in ribosome synthesis that caused the accumulation of ribonucleoprotein ('47S') particles during exponential growth. These particles are precursors to 50S ribosomes that lack three ribosomal proteins. Peptidyltransferase activity and binding at the peptidyl site of the peptidyltransferase centre are greatly decreased in 47S particles. Both these activities are lower in the 50S and 70S ribosomes of strain 15-28 than in its parent. Unusual assembly of the larger ribosomal subunit in strain 15-28 may produce completed ribosomes with diminished biological activity.  相似文献   

10.
11.
The genes for ribosomal proteins L4 and L22 from two erythromycin-resistant mutants of Escherichia coli have been isolated and sequenced. In the L4 mutant, an A-to-G transition in codon 63 predicted a Lys-to-Glu change in the protein. In the L22 strain, a 9-bp deletion removed codons 82 to 84, eliminating the sequence Met-Lys-Arg from the protein. Consistent with these DNA changes, in comparison with wild-type proteins, both mutant proteins had reduced first-dimension mobilities in two-dimensional polyacrylamide gels. Complementation of each mutation by a wild-type gene on a plasmid vector resulted in increased erythromycin sensitivity in the partial-diploid strains. The fraction of ribosomes containing the mutant form of the protein was increased by growth in the presence of erythromycin. Erythromycin binding was increased by the fraction of wild-type protein present in the ribosome population. The strain with the L4 mutation was found to be cold sensitive for growth at 20 degrees C, and 50S-subunit assembly was impaired at this temperature. The mutated sequences are highly conserved in the corresponding proteins from a number of species. The results indicate the participation of these proteins in the interaction of erythromycin with the ribosome.  相似文献   

12.
RNA synthesis was followed during amino acid starvation of strains of Escherichia coli that contained both the relaxed (relA) mutation and a mutation affecting ribosome assembly that results in oversynthesis of RNA. The ribosome mutation did not by itself lead to relaxedness. The relaxed mutation could be expressed in organisms that contained the ribosome mutation.  相似文献   

13.
Escherichia coli strain 15-28 is a mutant with a defect in ribosome synthesis that leads to the accumulation of large amounts of ribonucleoprotein ("47S") particles during exponential growth. These particles are precursors to 50S ribosomes, but are distinct from precursors detected by pulse-labelling of the parent strain and also from ribosome precursors that accumulate during inhibition of growth by CoC12. Either ribosome assembly in the mutant differs from that in the wild-type strain, or 47S particles represent a hitherto unstudied stage in the synthesis of 50S ribosomes.  相似文献   

14.
The genes for ribosomal proteins S4, S13 or S15 were fused with the gene for staphylococcal protein A, or derivatives thereof (2A'-7A'). The gene fusions were introduced into Escherichia coli strains, mutated in the corresponding ribosomal protein gene, by transformation. These mutated ribosomal proteins cause a phenotype that can be complemented. Thus, the phenotype of the transformants was tested and the ribosomal proteins were analyzed. The S4 N-terminal fusion protein severely disturbed growth of both the mutant and the wild-type strains. The S13 C-terminal fusion protein was proteolyzed close to the fusion point, giving a ribosomal protein moiety that could assemble into the ribosome normally. S15 N-terminal fusion proteins complemented a cold-sensitive strain lacking protein S15 in its ribosomes. These fused proteins were assembled into active ribosomes. The position of S15 in the 30S ribosomal subunit is well known. Therefore, in structural studies of the ribosome in vivo, the S15 fusion proteins can be used as a physical reporter for S15.  相似文献   

15.
A ribosomal protein of the L25 family specifically binding to 5S rRNA is an evolutionary feature of bacteria. Structural studies showed that within the ribosome this protein contacts not only 5S rRNA, but also the C-terminal region of protein L16. Earlier we demonstrated that ribosomes from the ΔL25 strain of Escherichia coli have reduced functional activity. In the present work, it is established that the reason for this is a fraction of functionally inactive 50S ribosomal subunits. These subunits have a deficit of protein L16 and associate very weakly with 30S subunits. To study the role of the contact of these two proteins in the formation of the active ribosome, we created a number of E. coli strains containing protein L16 with changes in its C-terminal region. We found that some mutations (K133L or K127L/K133L) in this protein lead to a noticeable slowing of cell growth and decrease in the activity of their translational apparatus. As in the case of the ribosomes from the ΔL25 strain, the fraction of 50S subunits, which are deficient in protein L16, is present in the ribosomes of the mutant strains. All these data indicate that the contact with protein L25 is important for the retention of protein L16 within the E. coli ribosome in vivo. In the light of these findings, the role of the protein of the L25 family in maintaining the active state of the bacterial ribosome is discussed.  相似文献   

16.
The nucleotide at position 791(G791) of E. coli 16S rRNA was previously identified as an invariant residue for ribosomal function. In order to characterize the functional role of G791, base substitutions were introduced at this position, and mutant ribosomes were analyzed with regard to their protein synthesis ability, via the use of a specialized ribosome system. These ribosomal RNA mutations attenuated the ability of ribosomes to conduct protein synthesis by more than 65%. A transition mutation (G to A) exerted a moderate effect on ribosomal function, whereas a transversion mutation (G to C or U) resulted in a loss of protein synthesis ability of more than 90%. The sucrose gradient profiles of ribosomes and primer extension analysis showed that the loss of protein-synthesis ability of mutant ribosomes harboring a base substitution from G to U at position 791 stems partially from its inability to form 70S ribosomes. These findings show the involvement of the nucleotide at position 791 in the association of ribosomal subunits and protein synthesis steps after 70S formation, as well as the possibility of using 16S rRNA mutated at position 791 for the selection of second-site revertants in order to identify ligands that interact with G791 in protein synthesis.  相似文献   

17.
Ribosomal protein methylation has been well documented but its function remains unclear. We have examined this phenomenon using an Escherichia coli mutant (prmB2), which fails to methylate glutamine residue number 150 of ribosomal protein L3. This mutant exhibits a cold-sensitive phenotype: its growth rate at 22 degrees C is abnormally low in complete medium. In addition, strains with this mutation accumulate abnormal and unstable ribosomal particles; 50-S and 30-S subunits are formed, but at a lower rate. Once assembled, ribosomes with unmethylated L3 are fully active by several criteria. (a) Protein synthesis in vitro with purified 70-S prmB2 ribosomes is as active as wild-type using either a natural (R17) or an artificial [poly(U)] messenger. (b) The induction of beta-galactosidase in vivo exhibits normal kinetics and the enzyme has a normal rate of thermal denaturation. (c) These ribosomes are standard when exposed in vitro to a low magnesium concentration or increasing molarities of LiCl. Efficient methylation of L3 in vitro requires either unfolded ribosomes or a mixture of ribosomal protein and RNA. We suggest that the L3-specific methyltransferase may qualify as one of the postulated 'assembly factors' of the E. coli ribosome.  相似文献   

18.
Two single-base mutations in 16S rRNA conferring high-level resistance to spectinomycin were isolated on a plasmid-borne copy of the rrnD operon from Salmonella enterica serovar Typhimurium. Neither of the mutations (C1066U and C1192U) had appreciable effects on cell growth, but each had differential effects on resistance to spectinomycin and fusidic acid. Both mutations also conferred resistance to spectinomycin in Escherichia coli strains containing deletions of all seven chromosomal rrn operons and expressing plasmid-encoded Salmonella rRNA exclusively. In contrast, when expressed in E. coli strains containing intact chromosomal rrn operons, the strains were sensitive to spectinomycin. However, chromosomal mutations arose that allowed expression of the rRNA-dependent spectinomycin resistance phenotype. It is proposed that in heterogeneous rRNA populations, the native E. coli rRNA out-competes the heterologous Salmonella rRNA for binding to ribosomal proteins, translation factors, or ribosome assembly, thus limiting entry of the antibiotic-resistant 30S subunits into the functioning ribosome pool.  相似文献   

19.
The large and small subunits of the ribosome are joined by a series of bridges that are conserved among mitochondrial, bacterial, and eukaryal ribosomes. In addition to joining the subunits together at the initiation of protein synthesis, a variety of other roles have been proposed for these bridges. These roles include transmission of signals between the functional centers of the two subunits, modulation of tRNA-ribosome and factor-ribosome interactions, and mediation of the relative movement of large and small ribosomal subunits during translocation. The majority of the bridges involve RNA-RNA interactions, and to gain insight into their function, we constructed mutations in the 23 S rRNA regions involved in forming 7 of the 12 intersubunit bridges in the Escherichia coli ribosome. The majority of the mutants were viable in strains expressing mutant rRNA exclusively but had distinct growth phenotypes, particularly at 30 degrees C, and the mutant ribosomes promoted a variety of miscoding errors. Analysis of subunit association activities both in vitro and in vivo indicated that, with the exception of the bridge B5 mutants, at least one mutation at each bridge site affected 70 S ribosome formation. These results confirm the structural data linking bridges with subunit-subunit interactions and, together with the effects on decoding fidelity, indicate that intersubunit bridges function at multiple stages of protein synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号