首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Different lines of evidence indicate that eukaryotic elongation factor 2 (eEF2) can be ADP-ribosylated endogenously. The physiological significance of this reaction has, however, remained unclarified. In order to address this issue we investigated the in vivo ADP-ribosylation of eEF2 and the effect of oxidative stress thereon. The investigation revealed that the endogenous ADP-ribosylation of eEF2 is complex and can take place in K562 cell lysates either under the action of endogenous transferase from [adenosine-14C]NAD or by direct binding of free [14C]ADP-ribose. These two types of ADP-ribosylation were distinguished by use of different treatments based on the chemical stability of the respective bonds formed. Under standard culture conditions, in vivo labeling of eEF2 in the presence of [14C]adenosine was reversed to about 65% in the presence of diphtheria toxin and nicotinamide. This finding implied that the modification that took place under physiological circumstances was, mainly, of an enzymic nature. On the other hand, H2O2-promoted oxidative stress gave rise to a nearly two-fold increase in the extent of in vivo labeling of eEF2. This was accompanied by a loss of eEF2 activity in polypeptide chain elongation. Oxidative stress specifically inhibited the subsequent binding of free ADP-ribose to eEF2. The results thus provide evidence that endogenous ADP-ribosylation of eEF2 can also take place by the binding of free ADP-ribose. This nonenzymic reaction appears to account primarily for in vivo ADP-ribosylation of eEF2 under oxidative stress.  相似文献   

2.
eEF-2 (100 kDa) isolated from rat liver cells undergo ADP-ribosylation in the presence of diphtheria toxin or endogenous ADP-ribosyltransferase, which was co-purified with the factor. We separated the fraction free of elongation factor and endogenous transferase, which strongly inhibited the ADP-ribosylation of eEF-2. This fraction did not affect the activity of the elongation factor. The lack of endogenous transferase activity (which is potentially lethal for the cell) in the postribosomal supernatant could be the result of its inhibition. eEF-2 (65 kDa) which is probably responsible for the process of translocation (Gajko, A. et al. (1999) Biochem. Biophys. Res. Commun. 255, 535-538) was protected from ADP-ribosylation and its irreversible inactivation in the presence of the rat liver extract fraction.  相似文献   

3.
eEF2 (eukaryotic elongation factor 2) contains a post-translationally modified histidine residue, known as diphthamide, which is the specific ADP-ribosylation target of diphtheria toxin, cholix toxin and Pseudomonas aeruginosa exotoxin A. Site-directed mutagenesis was conducted on residues within the diphthamide-containing loop (Leu693-Gly703) of eEF2 by replacement with alanine. The purified yeast eEF2 mutant proteins were then investigated to determine the role of this loop region in ADP-ribose acceptor activity of elongation factor 2 as catalysed by exotoxin A. A number of single alanine substitutions in the diphthamide-containing loop caused a significant reduction in the eEF2 ADP-ribose acceptor activities, including two strictly conserved residues, His694 and Asp696. Analysis by MS revealed that all of these mutant proteins lacked the 2'-modification on the His699 residue and that eEF2 is acetylated at Lys509. Furthermore, it was revealed that the imidazole ring of Diph699 (diphthamide at position 699) still functions as an ADP-ribose acceptor (albeit poorly), even without the diphthamide modification on the His699. Therefore, this diphthamide-containing loop plays an important role in the ADP-ribosylation of eEF2 catalysed by toxin and also for modification of His699 by the endogenous diphthamide modification machinery.  相似文献   

4.
Anti-[ADP-ribosylated elongation factor 2 (EF-2)] antiserum has been used to immunoprecipitate the modified form of EF-2 from polyoma-virus-transformed baby hamster kidney (pyBHK) cells [Fendrick, J. L. & Iglewski, W. J. (1989) Proc. Natl Acad. Sci. USA 86, 554-557]. This antiserum also immunoprecipitates a 32P-labelled protein of similar size to EF-2 from a variety of primary and continuous cell lines derived from many species of animals. One of these cell lines, chinese hamster ovary CHO-K1 cells was further characterized. The time course of labelling of ADP-ribosylated EF-2 with [32P]orthophosphate was similar in pyBHK cells and in CHO-K1 cells. The kinetics of labelling were more rapid for cells cultured in 2% serum than 10% serum, with incorporation of 32P reaching a maximum at 6 h and 10 h, respectively. EF-2 mutants of pyBHK and CHO-K1 cells resistant to diphtheria-toxin-catalyzed ADP-ribosylation of EF-2 remain sensitive to cellular ADP-ribosylation of EF-2. The 32P-labelled moiety of ADP-ribosylated EF-2 was digested by snake venom phosphodiesterase and the product was identified as AMP. The same 32P-labelled tryptic peptide was modified by toxin in wild-type EF-2 and by the cellular transferase in mutant EF-2. When purified EF-2 from pyBHK cells was incubated with [carbonyl-14C]nicotinamide and diphtheria toxin fragment A, under conditions for reversal of the ADP-ribosylation reaction, [14C]NAD was generated. The results suggest that cellular ADP-ribosylated EF-2 exists in a variety of cell types, and the ribosylated product is identical to that produced by toxin ADP-ribosylation of EF-2, except in diphthamide mutant cells. Studies with the mutant cell lines indicate that the toxin and the cellular transferase, however, recognize different determinants at the ADP-ribose acceptor site in EF-2. The cellular transferase does not require the diphthamide modification of the histidine ring in the amino acid sequence of EF-2 for the transfer of ADP-ribose to the ring. Therefore, we would expect the cellular transferase active site to be similar to, but not identical to, the critical amino acids demonstrated in the active site of diphtheria toxin and Pseudomonas exotoxin A.  相似文献   

5.
ADP-ribosylation of rabbit reticulocyte elongation factor 2 (EF-2) catalyzed by the A fragment of diphtheria toxin leads to a loss of its non-specific affinity for RNA. The removal of the ADP-ribose residue from EF-2 in the reverse reaction with nicotinamide restores its affinity for RNA. ADP-ribosylation of EF-2 is accompanied by its dissociation from the complexes with mono- and polyribosomes detected in the rabbit reticulocyte lysate at low ionic strength. The loss of the non-specific affinity of EF-2 for RNA as a result of ADP-ribosylation and, as a consequence, its decompartmentation from polyribosomes is assumed to be a reason for the diphtheria toxin-induced inactivation of the factor in eukaryotic cells.  相似文献   

6.
An inhibitor of diphtheria toxin- and endogenous transferase-dependent ADP-ribosylation of eukaryotic elongation factor 2 (eEF2) has been found in the cytoplasmic fraction from rat liver. We provide evidence that this cytoplasmic inhibitor corresponds to actin, which gives rise also to inhibition of polyphenylalanine (polyPhe) synthesis. Both globular monomeric (G-actin) and filamentous (F-actin) forms of actin appear to be inhibitory on the action of elongation factors 1 and 2 (eEF1 and eEF2) in polyPhe synthesis with the inhibitory effect of G-actin proving to be stronger. Some component(s) in the postribosomal supernatant (S-130) fraction and also DNase I prevent actin-promoted inhibition of polyPhe synthesis.  相似文献   

7.
The crystal structure of ADP-ribosylated yeast elongation factor 2 in the presence of sordarin and GDP has been determined at 2.6 A resolution. The diphthamide at the tip of domain IV, which is the target for diphtheria toxin and Pseudomonas aeruginosa exotoxin A, contains a covalently attached ADP-ribose that functions as a very potent inhibitor of the factor. We have obtained an electron density map of ADP-ribosylated translation factor 2 revealing both the ADP-ribosylation and the diphthamide. This is the first structure showing the conformation of an ADP-ribosylated residue and confirms the inversion of configuration at the glycosidic linkage. Binding experiments show that the ADP-ribosylation has limited effect on nucleotide binding affinity, on ribosome binding, and on association with exotoxin A. These results provide insight to the inhibitory mechanism and suggest that inhibition may be caused by erroneous interaction of the translation factor with the codon-anticodon area in the P-site of the ribosome.  相似文献   

8.
B Eide  P Gierschik  A Spiegel 《Biochemistry》1986,25(21):6711-6715
Rabbits immunized with ADP-ribose chemically conjugated to carrier proteins developed antibodies reactive against guanine nucleotide binding proteins (G proteins) that had been mono-ADP-ribosylated by bacterial toxins. Antibody reactivity on immunoblots was strictly dependent on incubation of substrate proteins with both toxin and NAD and was quantitatively related to the extent of ADP-ribosylation. Gi, Go, and transducin (ADP-ribosylated by pertussis toxin) and elongation factor II (EF-II) (ADP-ribosylated by pseudomonas exotoxin) all reacted with ADP-ribose antibodies. ADP-ribose antibodies detected the ADP-ribosylation of an approximately 40-kilodalton (kDa) membrane protein related to Gi in intact human neutrophils incubated with pertussis toxin and the ADP-ribosylation of an approximately 90-kDa cytosolic protein, presumably EF-II, in intact HUT-102 cells incubated with pseudomonas exotoxin. ADP-ribose antibodies represent a novel tool for the identification and study of G proteins and other substrates for bacterial toxin ADP-ribosylation.  相似文献   

9.
We investigated two phenotypically distinct types of diphtheria toxin-resistant mutants of Chinese hamster cells and compared their resistance with that of naturally resistant mouse cells. All are resistant due to a defect in the process of internalization and delivery of toxin to its target in the cytosol, elongation factor 2. By cell hybridization studies, analysis of cross-resistance, and determination of specific binding sites for 125I-labeled diphtheria toxin, we showed that these cell strains fall into two distinct complementation groups. The Dipr group encompasses Chinese hamster strains that are resistant only to diphtheria toxin, as well as mouse LM cells. These strains possess a normal complement of high-affinity binding sites for diphtheria toxin, but these receptors are unable to deliver active toxin fragment A to the cytosol. Cells of the DPVr group have a broader spectrum of resistance, including Pseudomonas exotoxin A and several enveloped viruses as well as diphtheria toxin. In these studies, which investigate the resistance of these cells to diphtheria toxin, we demonstrate that they possess a reduced number of specific binding sites for this toxin and behave, phenotypically, like cells treated with the proton ionophore monensin. Their resistance is related to a defect in a mechanism required for release of active toxin from the endocytic vesicle.  相似文献   

10.
Photoaffinity labeling experiments with diphtheria toxin fragment A have implicated glutamic acid 148 as a constituent of the NAD binding site. To evaluate the role of this residue in ADP-ribosylation of elongation factor 2, we replaced it with aspartic acid by in vitro mutagenesis of a toxin gene fragment cloned in Escherichia coli. Fragment A containing aspartic acid at position 148 had less than 0.6% the ADP-ribosylation activity of wild-type fragment A. The mutation produced no change in sensitivity of fragment A to trypsin and little, if any, reduction in affinity of fragment A for NAD. These results indicate that glutamic acid 148 is essential for the ADP-ribosylation of elongation factor 2 and are consistent with other data suggesting that this residue may be at or near the catalytic center of the toxin.  相似文献   

11.
A hybrid protein of ricin and the enzymatically active fragment A of diphtheria toxin (toxin A) has been synthesized and purified. The diphtheria toxin A fragment of the hybrid protein is shown to enter the cytosol compartment of HeLa cells, its presence assayed by the fall of intracellular elongation factor II (EF-2) and the rise of ADP-ribosylated EF-2. Hybrid entrance to HeLa cells is blocked by lactose which blocks receptor-mediated entry of ricin but not by NH4Cl which blocks the transport of diphtheria toxin. It is concluded that the diphtheria toxin fragment A moiety of the hybrid enters the cell cytosol via the ricin receptor-mediated transport system. The kinetics of intracellular ADP-ribosylation of EF-2 by diphtheria toxin have also been studied. Ribosylation is preceded by a toxin dose-dependent lag period. The data suggest that the time constant responsible for the lag period is in the transport step. Models consistent with these data are discussed.  相似文献   

12.
Diphtheria toxin inactivates protein synthesis elongation factor 2 by catalyzing the ADP-ribosylation of a novel derivative of histidine, diphthamide, in the protein (Van Ness, B. G., Howard, J. B., and Bodley, J. W. (1980) J. Biol. Chem. 255, 10710-10716). In this report, we describe experiments involving nuclear Overhauser enhancement NMR spectroscopy which were undertaken to elucidate the site of ADP-ribosylation of diphthamide and the configuration of the glycosidic bond formed by the toxin. The essential result of these experiments is that, in ribosyl-diphthamide obtained by enzymatic digestion of ADP-ribosyl-elongation factor-2, the H-5 imidazole proton is near the R-4 proton of ribose. This result and others are consistent with the interpretation that diphtheria toxin covalently attaches ADP-ribose to the imidazole N-1 of diphthamide via an alpha-glycosidic linkage.  相似文献   

13.
Toxin-resistant polypeptide chain elongation factor 2 cDNA has been cloned from a mutant hamster cell line with only non-ADP-ribosylatable elongation factor 2. The mutation conferring resistance to diphtheria toxin and Pseudomonas aeruginosa exotoxin A is a G-to-A transition in the first nucleotide of codon 717. Codon 715 encodes a histidine residue that is modified post-translationally to diphthamide, which is the target amino acid for ADP-ribosylation by both toxins. Transfection of mouse L cells with a recombinant elongation factor 2 cDNA differing from the wild-type only by this G-to-A transition confers resistance to P. aeruginosa exotoxin A. The degrees of toxin-resistant protein synthesis of stable transfectants are dependent on the ratio of non-ADP-ribosylated elongation factor 2 to wild-type elongation factor 2, not the amount of non-ADP-ribosylated elongation factor 2. The mutation creates a new Mbo II restriction site in the elongation factor 2 gene. Several independently isolated diphtheria toxin-resistant Chinese hamster ovary cell lines show the same alteration in the Mbo II restriction pattern.  相似文献   

14.
Eukaryotic elongation factor-2 (eEF-2) catalyses the motion of the growing peptide chain relative to the mRNA at the ribosomes during protein synthesis. This highly conserved G-protein is the specific target of two lethal bacterial toxins, Pseudomonas aeruginosa exotoxin A and diphtheria toxin. These toxins exert their detrimental action by ADP-ribosylating a biologically unique posttranslationally modified histidine residue (diphthamide(715)) within eEF-2, thus inactivating the enzyme. Diphthamide(715) is also the target of endogenous (mono) ADP-ribosyl transferase activity. In this article, we report the first known activator of endogenous ADP-ribosylation of eEF-2, interleukin-1β (IL-1β). Thereby, systemic inflammatory processes may link to protein synthesis regulation.  相似文献   

15.
Site in Cell-free Protein Synthesis Sensitive to Diphtheria Toxin   总被引:7,自引:1,他引:6  
The effects of diphtheria toxin on cell-free protein synthesis in a bacterial system, and preparations obtained from animals that were sensitive and resistant to toxin were examined. In the presence of nicotinamide adenine dinucleotide (NAD), toxin inhibited the incorporation of amino acids by endogenous and synthetic polynucleotides in both rat liver and guinea pig liver cell-free systems that were exposed to 6 Lf units per ml of toxin. A cell-free system derived from Streptococcus faecalis was resistant to high concentrations of toxin. Dialyzed toxin-antitoxin floccules that are formed in the presence of NAD and the 105,000 x g supernatant fluid from rat liver contain NAD. Such floccules are also active in protein synthesis in the absence of added transferase I or II. An operational model presents the view that the intoxication complex is formed at the ribosomal level and occurs in two steps. First, the toxin molecule binds to transferase II and alters its stereospecific relationship to transferase I, but it does not result in an inactive complex. Second, the stereospecific alteration in transferase I, but it does not result in an inactive complex. Second, the stereospecific alteration in transferase II caused by the binding of diphtheria toxin allows NAD to bridge between transferase I and II, which then results in an inactivated complex. The sensitivity of the cell-free system derived from the normally resistant rat implies that in some cells the cell membrane serves as a permeability barrier to the toxin molecule. The resistance of bacterial cell-free protein synthesizing systems to diphtheria toxin may reflect basic differences between transferase enzymes from bacterial and mammalian sources.  相似文献   

16.
A cellular ADP-ribosyltransferase, specific for elongation factor 2 (EF-2), is found in extracts from rat liver. Co-migrating with EF-2 throughout purification, this activity is, moreover, located in the protein bands corresponding to EF-2 after native or sodium dodecyl sulfate polyacrylamide gel electrophoresis. The observed activity is thus implicated to be an inherent property of EF-2. Preincubation of EF-2 with GuoPPCH2Pox inhibits endogenous, but not diphtheria toxin catalyzed ADP-ribosylation.  相似文献   

17.
Endogenous ADP-ribosylation of two proteins with molecular weights of 30,000 (30K) and 80,000 (80K) was detected in cell extracts of Mycobacterium smegmatis. Modification of these proteins was enzymatic. The ADP-ribose bound to 30K was removed by HgCl2 but not by NH2OH, suggesting the modification of a cysteine residue. The ADP-ribose bound to 80K was not removed by either HgCl2 or NH2OH, which is consistent with the modification of an asparagine residue. ADP-ribosylation of 80K appeared to be reversible.  相似文献   

18.
Diphtheria toxin has been well characterized in terms of its receptor binding and receptor mediated endocytosis. However, the precise mechanism of the cytosolic release of diphtheria toxin fragment A from early endosomes is still unclear. Various reports differ regarding the requirement for cytosolic factors in this process. Here, we present data indicating that the distribution of actin filaments due to cytochalasin D action enhances the retention of diphtheria toxin in early endosomes. Treating cells with cytochalasin D reduces the cytosolic fragment A activity and leads to changes in the intracellular distribution and size of early endosomes with toxin cargo. F-actin and eukaryotic elongation factor 2 can promote fragment A release from toxin-loaded early endosomes in an in vitro translocation system. Moreover, these proteins bind to toxin-loaded early endosomes in vitro and promote each other's binding. They are thus thought to be involved in the cytosolic release of fragment A. Finally, ADP-ribosylation of eukaryotic elongation factor 2 is shown to inhibit fragment A release and, via a feed-back mechanism, to account for the minute amounts of fragment A normally found in the cytosol.  相似文献   

19.
The ADP-ribosyltransferases are a class of enzymes that display activity in a variety of bacterial pathogens responsible for causing diseases in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report the characterization of a novel toxin from Vibrio cholerae, which we call cholix toxin. The toxin is active against mammalian cells (IC(50) = 4.6 +/- 0.4 ng/ml) and crustaceans (Artemia nauplii LD(50) = 10 +/- 2 mug/ml). Here we show that this toxin is the third member of the diphthamide-specific class of ADP-ribose transferases and that it possesses specific ADP-ribose transferase activity against ribosomal eukaryotic elongation factor 2. We also describe the high resolution crystal structures of the multidomain toxin and its catalytic domain at 2.1- and 1.25-A resolution, respectively. The new structural data show that cholix toxin possesses the necessary molecular features required for infection of eukaryotes by receptor-mediated endocytosis, translocation to the host cytoplasm, and inhibition of protein synthesis by specific modification of elongation factor 2. The crystal structures also provide important insight into the structural basis for activation of toxin ADP-ribosyltransferase activity. These results indicate that cholix toxin may be an important virulence factor of Vibrio cholerae that likely plays a significant role in the survival of the organism in an aquatic environment.  相似文献   

20.
The toxB gene of Corynebacterium diphtheriae bacteriophage β encoding the B fragment of diphtheria toxin was cloned into an inducible expression vector. When expressed In Escherichia coli, fragment B was not proteolysed and was indistinguishable, by immunological criteria, from wild-type C. diphthsriae derived fragment B. Soluble fragment B was partially purified from the cytoplasm by saline precipitation steps and was shown to compete with the wild-type diphtheria toxin for binding to receptors of sensitive eukaryotic cells. A complete diphtheria toxin was reconstituted by formation of the disulphide bridge between purified fragment A and recombinant fragment B, which migrates at the expected Mr on Western blots and which was able to block protein synthesis by ADP-ribosylation of elongation factor–2, thereby indicating that the recombinant fragment B had retained its biological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号