首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The infection of newly hatched chickens with reticuloendotheliosis virus strain T (REV-T) and a nonimmunosuppressive helper virus, chicken syncytial virus, induces rapidly metastatic B-cell lymphomas. In vivo analysis of these tumors with monoclonal antibodies detected the expression of the B-cell surface markers immunoglobulin M (IgM), CIa, Bu2, and CLA-1, but not IgG, Bu1, or a T-cell surface marker, CT-1. Cell lines derived from tumors exhibited the same pattern of staining, suggesting that expression of cell surface markers does not change during in vitro cell line development. All cell lines examined synthesized IgM in varying amounts. Northern (RNA blot) analysis confirmed abundant expression of v-rel mRNA, and Southern analysis revealed rearrangement of both heavy- and light-chain immunoglobulin loci. Analysis of the light-chain locus demonstrated that 20 of 22 lines contained a single rearranged allele. With respect to specific restriction enzyme sites within the V lambda 1 gene, the active allele in any given clone was either diversified or nondiversified. In contrast, examination of the heavy-chain loci within these lines demonstrated that 16 of the 22 had both alleles rearranged. Further diversification of the V lambda 1 locus did not occur after prolonged in vitro passage of the cell lines. We propose that v-rel expression arrests diversification of the light-chain locus in these lymphoid cells, allowing the production of stable, clonal B-cell populations. The development of these and similar cell lines will make it possible to identify specific stages of avian lymphoid ontogeny and to study the mechanism of rearrangement and diversification in the avian B lymphocyte.  相似文献   

2.
3.
4.
T D Gilmore  H M Temin 《Cell》1986,44(5):791-800
Reticuloendotheliosis virus strain T (REV-T) is a highly oncogenic avian retrovirus that transforms early lymphoid cells in vivo and in vitro, but REV-T does not transform chicken embryo fibroblasts (CEF). Using antisera to p59v-rel, the v-rel oncogene product of REV-T, we show that p59v-rel is expressed at equal levels and is a phosphoprotein in REV-T infected spleen cells and CEF. Biochemical fractionation and immunofluorescence of REV-T infected nontransformed CEF show that p59v-rel is loosely associated with the nucleus. However, in REV-T transformed spleen cells p59v-rel is primarily a cytoplasmic protein. MSB-1 cells, a Marek's disease virus transformed T cell leukemic line, and E26 virus transformed myeloid cells show nuclear staining of p59v-rel when they are infected by REV-T. Our results indicate that there is a correlation between a cytoplasmic localization of p59v-rel and transformation by REV-T, and they suggest that p59v-rel cannot transform cells in which it assumes solely a nuclear location.  相似文献   

5.
N Davis  W Bargmann  M Y Lim    H Bose  Jr 《Journal of virology》1990,64(2):584-591
The v-rel oncogene of avian reticuloendotheliosis virus type T (REV-T) encodes a 59-kilodalton (kDa) phosphoprotein located principally in the cytosol of transformed lymphoid cells. All of the detectable pp59v-rel was present in high-molecular-weight complexes containing at least five cellular proteins (p124, p115, p75c-rel, p70hsc, and pp40). Antiserum was developed against the 40-kDa protein, the most abundant cellular protein associated with the complex. The 40-kDa phosphoprotein was complexed with pp59v-rel in REV-T-transformed lymphoid cell lines arrested at different stages of B-cell development as well as in lymphoid tumor cells and in fibrosarcomas. The half-life (8 h) of pp40 in REV-T-transformed lymphoid cells was the same as that of pp59v-rel. Antiserum against pp40 permitted the identification of two pp59v-rel complexes. The most abundant cytoplasmic complex contained approximately 75% of the pp59v-rel and all of the detectable pp40 in REV-T-transformed lymphoid cells. Twenty-five percent of the pp59v-rel was present in a minor complex that contained the majority of p75c-rel along with p115 and p124. In nuclear extracts of REV-T-transformed lymphoid cells, pp59v-rel was complexed with pp40. The two high-molecular-weight proteins (p115 and p124) and p75c-rel were not detected in the nuclear complex. In the cytosolic complexes, pp40 was heavily phosphorylated, whereas the nuclear form was much less extensively phosphorylated.  相似文献   

6.
Avian reticuloendotheliosis virus (REV-T) is the most virulent of all retroviruses, inducing an invariably fatal leukemia in chickens with a latent period of 7-10 days. Unlike avian cells transformed by other acutely transforming viruses, lymphoid cells transformed by REV-T are immortalized. Furthermore, in vitro derived, REV-T transformed cells which do not produce virus are tumorigenic and induce lethal reticuloendotheliosis when injected into histocompatible birds. Thus REV-T transforms its target cell both in vitro and in vivo. In addition this transformation is independent of any helper virus functions. Like other acute leukemia viruses, REV-T is replication-defective and must co-replicate with a reticuloendotheliosis associated virus (REV-A). During evolution, a substantial portion of its genome has been deleted and replaced with a host-derived genetic sequence, designated v-rel. Presumably, the v-rel oncogene was transduced from a normal turkey DNA locus, c-rel. There are 9 regions of homology between c-rel and v-rel, however, several differences exist between these genes, suggesting that transformation by REV-T results from the production of an altered v-rel protein. The v-rel sequence is distinct from other known oncogenes and encodes a 57-kDa phosphoprotein. In REV-T transformed cells, this pp57v-rel protein is localized in the cytoplasm. The product of the v-rel oncogene is present at a low level, representing only about 0.003% of total methionine-labelled protein. In addition, pp57v-rel is relatively stable, having an estimated half-life of 4-10 h. The v-rel protein when purified close to homogeneity is complexed with a 40-kDa cellular phosphoprotein in transformed lymphoid cells and possesses serine kinase activity. This review discusses the molecular aspects of transformation by REV-T in the context of other oncogene-encoded proteins.  相似文献   

7.
Non-virus-producing hematopoietic cells transformed in vitro by reticuloendotheliosis virus (REV-T) induce lethal "reticuloendotheliosis" when inoculated into histocompatible chickens. This is the first direct demonstration that an in vivo target cell of an avian acute leukemia virus can be transformed in vitro. The tumorigenic, REV-T-transformed non-virus-producing cells fail to express helper-virus-coded proteins. REV-T transformed tumorigenic cells therefore do not require helper-virus functions. Cells transformed in vivo or in vitro by REV-T have lymphoblastoid morphology and express low levels of terminal-deoxynucleotidyl-transferase activity and bursal-cell determinants. One clone synthesized Ig mu. The preferred target cells for REV-T transformation are therefore immature lymphoid cells that express B-cell determinants. We propose that the unique transforming sequence of REV-T be designated rel (lymphoid).  相似文献   

8.
The chicken immunoglobulin light-chain gene (IgL) encodes only a single variable gene segment capable of recombination. To generate an immune repertoire, chickens diversify this unique rearranged VL gene segment during B-cell development in the bursa of Fabricius. Sequence analysis of IgL cDNAs suggests that both gene conversion events derived from VL segment pseudogene templates (psi VL) and non-template-derived single-base-pair substitutions contribute to this diversity. To facilitate the study of postrecombinational mechanisms of immunoglobulin gene diversification, avian B-cell lines were examined for the ability to diversify their rearranged IgL gene during in vitro passage. One line that retains this ability, the avian leukosis virus-induced bursal lymphoma cell line DT40, has been identified. After passage for 1 year in culture, 39 of 51 randomly sequenced rearranged V-J segments from a DT40 population defined novel subclones of the parental tumor. All cloned V-J segments displayed the same V-J joint, confirming that the observed diversity arose after V-J rearrangement. Most sequence variations that we observed (203 of 220 base pairs) appeared to result from psi VL-derived gene conversion events; 16 of the 17 novel single nucleotide substitutions were transitions. Based on these data, it appears that immunoglobulin diversification during in vitro passage of DT40 cells is representative of the diversification that occurs during normal B-cell development in the bursa of Fabricius.  相似文献   

9.
Serine phosphorylation of the v-rel oncogene product/pp40 complex   总被引:1,自引:0,他引:1  
The transforming protein encoded by the v-rel oncogene of reticuloendotheliosis virus has been purified from REV-T transformed lymphoid cells by sequential DEAE-Sepharose and immunoaffinity chromatography. The purified preparation consisted of pp59v-rel and the 40 kDa cellular protein which is complexed with the v-rel oncogene product in transformed cells as well as some minor proteins. Incubation of this purified preparation in the presence of Mg2+ and (gamma-32P)ATP resulted in phosphorylation of both pp59v-rel and the 40 kDa protein. This preparation was also able to phosphorylate casein on serine residues. Immunoprecipitates obtained from extracts of REV-T transformed lymphoid cells labeled with 32P-orthophosphate contained 59 and 40 kDa phosphoproteins. Both pp59v-rel and the 40 kDa protein were phosphorylated on serine residues in transformed cells.  相似文献   

10.
11.
The protein (p59rel) encoded by the transforming gene of reticuloendotheliosis virus strain T (REV-T) has been identified in REV-T-transformed avian lymphoid cells by using antisera raised against synthetic peptides whose sequences were derived from three nonoverlapping regions of v-rel (N. R. Rice, T. D. Copeland, S. Simek, S. Oroszlan, and R. V. Gilden, Virology 149:217-229, 1986). To obtain polyclonal antibodies directed against a larger number of p59rel epitopes, a 262-amino acid segment was expressed in bacteria. Antisera raised against this fusion protein (v-delta-rel) precipitated p59rel from lysates of [35S]methionine-labeled REV-T-transformed cells, thus confirming previous results obtained with the peptide antisera. We used this new antiserum to localize p59rel in REV-T-transformed cells by subcellular fractionation using differential centrifugation and by indirect immune fluorescent staining. After fractionation and immune precipitation, the majority of p59rel was found in the cytosolic fraction. Indirect immunofluorescence experiments also gave results consistent with the cytoplasmic localization of the v-rel protein in transformed lymphoid cells. In previous studies (Rice et al., Virology 149:217-229, 1986) it was shown that immune precipitates formed with one of the three p59rel peptide antisera possessed in vitro protein kinase activity. Immune precipitates formed with the fusion protein antiserum also showed kinase activity in the in vitro assay. Most of this activity was found in the soluble cytoplasmic fraction, indicating that the kinase may be p59rel or a protein closely associated with it.  相似文献   

12.
13.
To probe the factors controlling immunoglobulin heavy-chain gene rearrangement, we analyzed Abelson virus-transformed pre-B-cell lines that fail to undergo VH-to-DJH joining at an appreciable frequency. Despite this feature, some of these cell lines (rechi) rearrange an extrachromosomal recombination substrate at levels normal for transformed pre-B cells. Others (reclo) rearrange these substrates at levels characteristic of nonlymphoid hematopoietic cells. The DJH rearrangements from a representative rechi cell line were aberrant, suggesting that these cells probably fail to complete heavy-chain gene assembly because some of the necessary cis-acting signals are missing. In contrast, both DJH rearrangements from a reclo cell line appeared normal in structure, indicating that trans-acting factors necessary for recombination might be missing. Introduction of the RAG-1 and RAG-2 genes, genes encoding two such factors, failed to confer a rechi phenotype to these cells. However, fusion of the reclo cells to a rechi cell line generated a high frequency of rechi hybrids. In addition, most of the hybrids rearranged the endogenous kappa light-chain locus. Neither the rechi phenotype nor kappa-chain rearrangement correlated with levels of RAG-1 and RAG-2 expression in all of the hybrids. Thus, both gene transfer and cell fusion experiments indicate that RAG-1 and RAG-2 are not sufficient to activate immunoglobulin gene recombination in at least some pre-B-cell lines. In addition, the fusion experiments suggest that two gene products in addition to RAG-1 and RAG-2 may be required for kappa-gene rearrangement.  相似文献   

14.
The role of terminal deoxynucleotidyl transferase (TdT) in the insertion of N regions into the junctional sites of immunoglobulin genes was investigated. Pre-B-cell lines capable of continuous rearrangement of immunoglobulin light-chain genes and differing only in the presence or apparent absence of TdT were derived by infecting cells with a TdT retroviral expression vector or a control vector. The cell lines were then superinfected with a retrovirus-based artificial immunoglobulin gene rearrangement substrate. The substrate was allowed to rearrange in the cell lines and the rearranged proviruses were rescued from the cell lines. Nucleotide sequence analysis of the V-J junctions of the proviral rearranged genes showed a fivefold greater frequency of N-region insertion in proviruses rescued from the TdT+ cell lines than in those rescued from the TdT- cell lines, so that at least 50% of the rearrangements that occurred in the presence of TdT had N regions. It is thus evident that TdT can stimulate N-region insertion, and the enzyme is presumably directly responsible for adding nucleotides at V-J and other immunoglobulin and T-cell receptor gene junctions.  相似文献   

15.
Lymphoid cells transformed by Rauscher murine leukemia virus (R-MuLV) belonged to the B cell lineages. One group of cells exhibited Fc receptors but completely lacked immunoglobulin mu heavy and kappa light chains. The majority of the cells resemble pre-B type. They displayed mu chains but kappa chains were completely absent. Very rarely certain cells synthesized both mu and kappa chains. Based on the presence of Fc receptors and IgM synthesis the cells transformed by R-MuLV belonged to three B cell developmental stages. These cells were tested for immunoglobulin gene rearrangements using JH and CK probes. DNA from cell lines without any detectable levels of IgM mu exhibited embryonic as well as rearranged JH genes, whereas cells expressing IgM possess, in addition, productive and non-productive light chain gene rearrangements. The most terminally differentiated cell possesses JH and CK rearrangement associated with the synthesis of mu and kappa chains. Presumably the cells with rearranged JH and CK genes without immunoglobulin synthesis represent a developmental transition. We conclude that cells transformed by R-MuLV belonged to five step-wise compartments of B cell development. Our findings implicate definite sequential events of immunoglobulin gene rearrangement and expression during B cell development.  相似文献   

16.
17.
Antibody diversification in the bursa of Fabricius occurs by gene conversion: pseudogene-derived sequences replace homologous sequences in rearranged immunoglobulin genes. Bursal cells expressing a truncated immunoglobulin mu heavy chain, introduced by retroviral gene transfer, bypass normal requirements for endogenous surface immunoglobulin expression. Immunoglobulin light chain rearrangements in such cells undergo gene conversion under conditions where the products are not selected based on their ability to encode a functional protein. The efficiency with which gene conversion maintains a productive reading frame exceeds 97% under such non-selective conditions. By analysis of donor pseudogene usage we demonstrate that bursal cell development is not driven by a restricted set of antigenic specificities. We further demonstrate that gene conversion can restore a productive reading frame to out-of-frame VJ(L) junctions, providing a rationale for the elimination of cells containing non-productive VJ(L) rearrangements prior to the onset of gene conversion in normal bursal cell development.  相似文献   

18.
A mutant v-rel with increased ability to transform B lymphocytes.   总被引:1,自引:0,他引:1       下载免费PDF全文
We observed that two strains of REV-T differ in the ability to transform bursal cells in vitro. REV-TW, with v-rel derived from a well-characterized clone and considered the prototype of the wild type, fails to generate colonies in soft agar. In contrast, REV-S2A3, derived from the S2A3 cell line, readily transforms bursal cells. With PCR, a 1,591-bp fragment containing v-rel from the REV-S2A3 provirus was cloned into plasmid pREV-0. Except for the absence of v-rel, pREV-0 is identical to pREV-TW. Five clones of pREV-PCR, each produced by an independent amplification, were obtained. The REV-PCR viruses displayed the strong transforming phenotype of REV-S2A3. Two mutations were identified in the 5' region of v-rel from REV-PCR1 to REV-PCR5: a silent mutation and a G-to-T transversion, changing the alanine at position 40 to serine. To confirm the relevance of this amino acid substitution, a 478-bp fragment containing the mutations was exchanged between REV-TW and REV-PCR1. Only the mutant viruses were able to form large colonies of bursal cells in liquid culture and to generate bursal cell colonies in soft agar. When tested on splenocytes, the wild-type viruses induced predominantly non-B-cell colonies while the mutant viruses gave origin mainly to B-cell colonies. The above results indicate that the substitution of serine for alanine at position 40 of v-Rel enhances the ability of REV-T to transform B lymphocytes in vitro. This mutation is close to the DNA-binding region, and the variant v-Rel oncoprotein shows increased kappa B-binding activity, thus confirming the relevance of this property for transformation.  相似文献   

19.
Functionally rearranged immunoglobulin heavy-chain (gamma 2b) and light-chain (lambda 1 and kappa) genes were introduced into mouse L tk- cells by co-transformation with the Herpes virus tk gene. Cloned cell lines were selected in HAT medium and tested for the presence of transfected immunoglobulin gene sequences by Southern blotting analysis. It was found that the gamma 2b gene was accurately transcribed at a low level in transfected mouse L cells and cytoplasmic gamma 2b, heavy-chain protein was detected by immunoprecipitation of cell extracts. Light-chain genes, on the other hand, were not accurately transcribed. Instead, lambda 1 or kappa RNA species were detected which were approximately 200 to 300 bases longer than the authentic mRNAs. These results suggest that the expression of rearranged heavy-chain and light-chain genes are controlled differently and that these differences can be seen in transfected, non-lymphoid cells.  相似文献   

20.
The transforming protein encoded by the v-rel oncogene of the highly oncogenic avian retrovirus reticuloendotheliosis virus strain T (Rev-T) is a 59,000-dalton protein, p59v-rel. The mechanism by which p59v-rel induces transformation of early lymphoid cells is unknown. As a step towards understanding the mechanism of v-rel-induced transformation, we sought to establish the subcellular site of action of p59v-rel. In this report, we show that p59v-rel contains sequences that are necessary for its efficient localization in the nucleus of infected chicken embryo fibroblasts. These v-rel sequences when added to the normally cytoplasmic protein, beta-galactosidase, directed that protein to the nucleus. A mutation in the v-rel nuclear-localizing sequence did not affect the transforming function, although it did alter the nuclear-localizing function. The addition of a supplemental nuclear-localizing sequence from simian virus 40 large T-antigen to v-rel resulted in the expression of a transforming rel protein which was located exclusively in the nucleus of transformed spleen cells, in contrast to wild-type p59v-rel, which was largely cytoplasmic in transformed spleen cells. Our results support the hypothesis that v-rel encodes a protein which can act either in the nucleus or in the cytoplasm to transform spleen cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号