首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

Psoriasis and psoriatic arthritis (PsA) increase cardiovascular disease (CVD) risk, but surrogate markers for CVD in these disorders are inadequate. Because the presence of sacroiliitis may portend more severe PsA, we hypothesized that sacroiliitis defined by computed tomography (CT) would be associated with increased vascular inflammation defined by 18-fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT), which is an established measure of CVD.

Methods

Participants (n = 65) underwent whole-body FDG-PET/CT. Metabolic activity of the aorta was measured using the maximal standardized uptake value (SUVmax), a measure of atherosclerotic plaque activity. The primary outcome was aortic vascular inflammation. Linear regression (with β-coefficients (β) and P-values reported for PsA and sacroiliitis) was used to adjust for CVD risk factors to determine associations of PsA or sacroiliitis with vascular inflammation. Likelihood ratio testing was performed to evaluate the contribution of sacroiliitis to vascular disease estimation compared to the effects of PsA and traditional CVD risk factors.

Results

Vascular inflammation (measured as SUVmax) was greater (P < 0.001) in patients with sacroiliitis (mean ± SD = 7.33 ± 2.09) defined by CT compared to those without sacroiliitis (6.39 ± 1.49, P = 0.038). There were associations between PsA and aortic inflammation (β = 0.124, P < 0.001) and between sacroiliitis and aortic inflammation (β = 0.270, P < 0.001) after adjusting for CVD risk factors. Sacroiliitis predicted vascular inflammation beyond PsA and CVD risk factors (χ2 = 124.6, P < 0.001).

Conclusions

Sacroiliitis is associated with increased vascular inflammation detected by FDG-PET/CT, suggesting that sacroiliac joint disease may identify patients at greater risk for CVD. Large, ongoing prospective studies are required to confirm these findings.

Electronic supplementary material

The online version of this article (doi:10.1186/ar4676) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.
4.

Background

Vulnerabilities to dependence on addictive substances are substantially heritable complex disorders whose underlying genetic architecture is likely to be polygenic, with modest contributions from variants in many individual genes. “Nontemplate” genome wide association (GWA) approaches can identity groups of chromosomal regions and genes that, taken together, are much more likely to contain allelic variants that alter vulnerability to substance dependence than expected by chance.

Methodology/Principal Findings

We report pooled “nontemplate” genome-wide association studies of two independent samples of substance dependent vs control research volunteers (n = 1620), one European-American and the other African-American using 1 million SNP (single nucleotide polymorphism) Affymetrix genotyping arrays. We assess convergence between results from these two samples using two related methods that seek clustering of nominally-positive results and assess significance levels with Monte Carlo and permutation approaches. Both “converge then cluster” and “cluster then converge” analyses document convergence between the results obtained from these two independent datasets in ways that are virtually never found by chance. The genes identified in this fashion are also identified by individually-genotyped dbGAP data that compare allele frequencies in cocaine dependent vs control individuals.

Conclusions/Significance

These overlapping results identify small chromosomal regions that are also identified by genome wide data from studies of other relevant samples to extents much greater than chance. These chromosomal regions contain more genes related to “cell adhesion” processes than expected by chance. They also contain a number of genes that encode potential targets for anti-addiction pharmacotherapeutics. “Nontemplate” GWA approaches that seek chromosomal regions in which nominally-positive associations are found in multiple independent samples are likely to complement classical, “template” GWA approaches in which “genome wide” levels of significance are sought for SNP data from single case vs control comparisons.  相似文献   

5.

Background

Low-density lipoprotein (LDL) plays a central role in cardiovascular disease (CVD) development. In LDL chromatographically resolved according to charge, the most electronegative subfraction–L5–is the only subfraction that induces atherogenic responses in cultured vascular cells. Furthermore, increasing evidence has shown that plasma L5 levels are elevated in individuals with high cardiovascular risk. We hypothesized that LDL electronegativity is a novel index for predicting CVD.

Methods

In 30 asymptomatic individuals with metabolic syndrome (MetS) and 27 healthy control subjects, we examined correlations between plasma L5 levels and the number of MetS criteria fulfilled, CVD risk factors, and CVD risk according to the Framingham risk score.

Results

L5 levels were significantly higher in MetS subjects than in control subjects (21.9±18.7 mg/dL vs. 11.2±10.7 mg/dL, P:0.01). The Jonckheere trend test revealed that the percent L5 of total LDL (L5%) and L5 concentration increased with the number of MetS criteria (P<0.001). L5% correlated with classic CVD risk factors, including waist circumference, body mass index, waist-to-height ratio, smoking status, blood pressure, and levels of fasting plasma glucose, triglyceride, and high-density lipoprotein. Stepwise regression analysis revealed that fasting plasma glucose level and body mass index contributed to 28% of L5% variance. The L5 concentration was associated with CVD risk and contributed to 11% of 30-year general CVD risk variance when controlling the variance of waist circumference.

Conclusion

Our findings show that LDL electronegativity was associated with multiple CVD risk factors and CVD risk, suggesting that the LDL electronegativity index may have the potential to be a novel index for predicting CVD. Large-scale clinical trials are warranted to test the reliability of this hypothesis and the clinical importance of the LDL electronegativity index.  相似文献   

6.

Background

It is demonstrated that elevated serum levels of alkaline phosphatase (ALP) and phosphate indicate a higher risks of cardiovascular disease (CVD) and total mortality in population with chronic kidney disease (CKD), but it remains unclear whether this association exists in people with normal or preserved renal function.

Method

Clinical trials were searched from Embase and PubMed from inception to 2013 December using the keywords “ALP”, “phosphate”, “CVD”, “mortality” and so on, and finally 24 trials with a total of 147634 patients were included in this study. Dose-response and semi-parametric meta-analyses were performed.

Results

A linear association of serum levels of ALP and phosphate with risks of coronary heart disease (CHD) events, CVD events and deaths was identified. The relative risk(RR)of ALP for CVD deaths was 1.02 (95% confidence interval [CI], 1.01–1.04). The RR of phosphate for CVD deaths and events was 1.05 (95% CI, 1.02–1.09) and 1.04 (95% CI: 1.03–1.06), respectively. A non-linear association of ALP and phosphate with total mortality was identified. Compared with the reference category of ALP and phosphate, the pooled RR of ALP for total mortality was 1.57 (95% CI, 1.27–1.95) for the high ALP group, while the RR of phosphate for total mortality was 1.33 (95% CI, 1.21–1.46) for the high phosphate group. It was observed in subgroup analysis that higher levels of serum ALP and phosphate seemed to indicate a higher mortality rate in diabetic patients and those having previous CVD. The higher total mortality rate was more obvious in the men and Asians with high ALP.

Conclusion

A non-linear relationship exists between serum levels of ALP and phosphate and risk of total mortality. There appears to be a positive association of serum levels of ALP/phosphate with total mortality in people with normal or preserved renal function, while the relationship between ALP and CVD is still ambiguous.  相似文献   

7.

Background

There is increasing evidence that variation in the promoter region of the serotonin transporter gene SLC6A4 (i.e., the 5-HTTLPR polymorphism) moderates the impact of environmental stressors on child psychopathology. Emotional reactivity −the intensity of an individual’s response to other’s emotions− has been put forward as a possible mechanism underlying these gene-by-environment interactions (i.e., G×E). Compared to children homozygous for the L-allele (LL-genotypes), children carrying an S-allele (SS/SL-genotypes), specifically when they have been frequently exposed to negative emotions in the family environment, might be more emotionally reactive and therefore more susceptible to affective environmental stressors. However, the association between 5-HTTLPR and emotional reactivity in children has not yet been empirically tested. Therefore, the goal of this study was to test this association in a large-scale experiment.

Methods

Children (N = 521, 52.5% boys, Mage = 9.72 years) were genotyped and randomly assigned to happy, angry or neutral dynamic facial expressions and vocalizations. Motor and affective emotional reactivity were assessed through children’s self-reported negative and positive affect (n = 460) and facial electromyography activity (i.e., fEMG: the zygomaticus or “smile” muscle and the corrugator or “frown” muscle, n = 403). Parents reported on their negative and positive parenting behaviors.

Results

Children mimicked and experienced the emotion they were exposed to. However, neither motor reactivity nor affective reactivity to these emotions depended on children’s 5-HTTLPR genotype: SS/SL-genotypes did not manifest any stronger response to emotional stimuli than LL-genotypes. This finding remained the same when taking the broader family environment into account, controlling for kinship, age, gender and genetic ancestry, and when including a tri-allelic factor.

Conclusions

We found no evidence for an association between the 5-HTTLPR polymorphism and children’s emotional reactivity. This finding is important, in discounting one potential underlying endophenotype of G×E between the 5-HTTLPR and affective environmental stressors.  相似文献   

8.

Background

Cardiovascular disease (CVD) incidence, complications and burden differ markedly between women and men. Although there is variation in the distribution of lifestyle factors between the genders, they do not fully explain the differences in CVD incidence and suggest the existence of gender-specific genetic risk factors. We aimed to estimate whether the genetic risk profiles of coronary heart disease (CHD), ischemic stroke and the composite end-point of CVD differ between the genders.

Methodology/Principal Findings

We studied in two Finnish population cohorts, using the case-cohort design the association between common variation in 46 candidate genes and CHD, ischemic stroke, CVD, and CVD-related quantitative risk factors. We analyzed men and women jointly and also conducted genotype-gender interaction analysis. Several allelic variants conferred disease risk for men and women jointly, including rs1801020 in coagulation factor XII (HR = 1.31 (1.08–1.60) for CVD, uncorrected p = 0.006 multiplicative model). Variant rs11673407 in the fucosyltransferase 3 gene was strongly associated with waist/hip ratio (uncorrected p = 0.00005) in joint analysis. In interaction analysis we found statistical evidence of variant-gender interaction conferring risk of CHD and CVD: rs3742264 in the carboxypeptidase B2 gene, p(interaction) = 0.009 for CHD, and rs2774279 in the upstream stimulatory factor 1 gene, p(interaction) = 0.007 for CHD and CVD, showed strong association in women but not in men, while rs2069840 in interleukin 6 gene, p(interaction) = 0.004 for CVD, showed strong association in men but not in women (uncorrected p-values). Also, two variants in the selenoprotein S gene conferred risk for ischemic stroke in women, p(interaction) = 0.003 and 0.007. Importantly, we identified a larger number of gender-specific effects for women than for men.

Conclusions/Significance

A false discovery rate analysis suggests that we may expect half of the reported findings for combined gender analysis to be true positives, while at least third of the reported genotype-gender interaction results are true positives. The asymmetry in positive findings between the genders could imply that genetic risk loci for CVD are more readily detectable in women, while for men they are more confounded by environmental/lifestyle risk factors. The possible differences in genetic risk profiles between the genders should be addressed in more detail in genetic studies of CVD, and more focus on female CVD risk is also warranted in genome-wide association studies.  相似文献   

9.

Background

Erectile dysfunction is an emerging risk marker for future cardiovascular disease (CVD) events; however, evidence on dose response and specific CVD outcomes is limited. This study investigates the relationship between severity of erectile dysfunction and specific CVD outcomes.

Methods and Findings

We conducted a prospective population-based Australian study (the 45 and Up Study) linking questionnaire data from 2006–2009 with hospitalisation and death data to 30 June and 31 Dec 2010 respectively for 95,038 men aged ≥45 y. Cox proportional hazards models were used to examine the relationship of reported severity of erectile dysfunction to all-cause mortality and first CVD-related hospitalisation since baseline in men with and without previous CVD, adjusting for age, smoking, alcohol consumption, marital status, income, education, physical activity, body mass index, diabetes, and hypertension and/or hypercholesterolaemia treatment. There were 7,855 incident admissions for CVD and 2,304 deaths during follow-up (mean time from recruitment, 2.2 y for CVD admission and 2.8 y for mortality). Risks of CVD and death increased steadily with severity of erectile dysfunction. Among men without previous CVD, those with severe versus no erectile dysfunction had significantly increased risks of ischaemic heart disease (adjusted relative risk [RR] = 1.60, 95% CI 1.31–1.95), heart failure (8.00, 2.64–24.2), peripheral vascular disease (1.92, 1.12–3.29), “other” CVD (1.26, 1.05–1.51), all CVD combined (1.35, 1.19–1.53), and all-cause mortality (1.93, 1.52–2.44). For men with previous CVD, corresponding RRs (95% CI) were 1.70 (1.46–1.98), 4.40 (2.64–7.33), 2.46 (1.63–3.70), 1.40 (1.21–1.63), 1.64 (1.48–1.81), and 2.37 (1.87–3.01), respectively. Among men without previous CVD, RRs of more specific CVDs increased significantly with severe versus no erectile dysfunction, including acute myocardial infarction (1.66, 1.22–2.26), atrioventricular and left bundle branch block (6.62, 1.86–23.56), and (peripheral) atherosclerosis (2.47, 1.18–5.15), with no significant difference in risk for conditions such as primary hypertension (0.61, 0.16–2.35) and intracerebral haemorrhage (0.78, 0.20–2.97).

Conclusions

These findings give support for CVD risk assessment in men with erectile dysfunction who have not already undergone assessment. The utility of erectile dysfunction as a clinical risk prediction tool requires specific testing. Please see later in the article for the Editors'' Summary  相似文献   

10.
While there has been much recent focus on the ecological causes of adaptive diversification, we know less about the genetic nature of the trade-offs in resource use that create and maintain stable, diversified ecotypes. Here we show how a regulatory genetic change can contribute to sympatric diversification caused by differential resource use and maintained by negative frequency-dependent selection in Escherichia coli. During adaptation to sequential use of glucose and acetate, these bacteria differentiate into two ecotypes that differ in their growth profiles. The “slow-switcher” exhibits a long lag when switching to growth on acetate after depletion of glucose, whereas the “fast-switcher” exhibits a short switching lag. We show that the short switching time in the fast-switcher is associated with a failure to down-regulate potentially costly acetate metabolism during growth on glucose. While growing on glucose, the fast-switcher expresses malate synthase A (aceB), a critical gene for acetate metabolism that fails to be properly down-regulated because of a transposon insertion in one of its regulators. Swapping the mutant regulatory allele with the ancestral allele indicated that the transposon is in part responsible for the observed differentiation between ecological types. Our results provide a rare example of a mechanistic integration of diversifying processes at the genetic, physiological, and ecological levels.  相似文献   

11.
Given the importance of cardiovascular disease (CVD) to public health and the demonstrated heritability of both disease status and its related risk factors, identifying the genetic variation underlying these susceptibilities is a critical step in understanding the pathogenesis of CVD and informing prevention and treatment strategies. Although one can look for genetic variation underlying susceptibility to CVD per se, it can be difficult to define the disease phenotype for such a qualitative analysis and CVD itself represents a convergence of diverse etiologic pathways. Alternatively, one can study the genetics of intermediate traits that are known risk factors for CVD, which can be measured quantitatively. Using the latter strategy, we have measured 21 cardiovascular-related biomarkers in an extended multigenerational pedigree, the CARRIAGE family (Carolinas Region Interaction of Aging, Genes, and Environment). These biomarkers belong to inflammatory and immune, connective tissue, lipid, and hemostasis pathways. Of these, 18 met our quality control standards. Using the pedigree and biomarker data, we have estimated the broad sense heritability (H2) of each biomarker (ranging from 0.09–0.56). A genome-wide panel of 6,015 SNPs was used subsequently to map these biomarkers as quantitative traits. Four showed noteworthy evidence for linkage in multipoint analysis (LOD score ≥ 2.6): paraoxonase (chromosome 8p11, 21), the chemokine RANTES (22q13.33), matrix metalloproteinase 3 (MMP3, 17p13.3), and granulocyte colony stimulating factor (GCSF, 8q22.1). Identifying the causal variation underlying each linkage score will help to unravel the genetic architecture of these quantitative traits and, by extension, the genetic architecture of cardiovascular risk.  相似文献   

12.
13.

Aim

To assess the individual and combined effect of 46 type 2 diabetes related risk alleles on incidence of a composite CVD endpoint.

Methods

Data from the first Danish MONICA study (N = 3523) and the Inter99 study (N = 6049) was used. Using Cox proportional hazard regression the individual effect of each risk allele on incident CVD was analyzed. Risk was presented as hazard ratios (HR) per risk allele.

Results

During 80,859 person years 1441 incident cases of CVD (fatal and non-fatal) occurred in the MONICA study. In Inter99 942 incident cases were observed during 61,239 person years.In the Danish MONICA study four gene variants were significantly associated with incident CVD independently of known diabetes status at baseline; SLC2A2 rs11920090 (HR 1.147, 95% CI 1.027–1.283 , P = 0.0154), C2CD4A rs7172432 (1.112, 1.027–1.205 , P = 0.0089), GCKR rs780094 (1.094, 1.007–1.188 , P = 0.0335) and C2CD4B rs11071657 (1.092, 1.007–1.183 , P = 0.0323). The genetic score was significantly associated with increased risk of CVD (1.025, 1.010–1.041, P = 0.0016). In Inter99 two gene variants were associated with risk of CVD independently of diabetes; SLC2A2 (HR 1.180, 95% CI 1.038–1.341 P = 0.0116) and FTO (0.909, 0.827–0.998, P = 0.0463). Analysing the two populations together we found SLC2A2 rs11920090 (HR 1.164, 95% CI 1.070–1.267, P = 0.0004) meeting the Bonferroni corrected threshold for significance. GCKR rs780094 (1.076, 1.010–1.146, P = 0.0229), C2CD4B rs11071657 (1.067, 1.003–1.135, P = 0.0385) and NOTCH2 rs10923931 (1.104 (1.001 ; 1.217 , P = 0.0481) were found associated with CVD without meeting the corrected threshold. The genetic score was significantly associated with increased risk of CVD (1.018, 1.006–1.031, P = 0.0043).

Conclusions

This study showed that out of the 46 genetic variants examined only the minor risk allele of SLC2A2 rs11920090 was significantly (P = 0.0005) associated with a composite endpoint of incident CVD below the threshold for statistical significance corrected for multiple testing. This potential pathway needs further exploration.  相似文献   

14.

Purpose

DNA repair deficiencies have been postulated to play a role in the development and progression of cardiovascular disease (CVD). The hypothesis is that DNA damage accumulating with age may induce cell death, which promotes formation of unstable plaques. Defects in DNA repair mechanisms may therefore increase the risk of CVD events. We examined whether the joints effect of common genetic variants in 5 DNA repair pathways may influence the risk of CVD events.

Methods

The PLINK set-based test was used to examine the association to myocardial infarction (MI) of the DNA repair pathway in GWAS data of 866 subjects of the GENetic DEterminants of Restenosis (GENDER) study and 5,244 subjects of the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER) study. We included the main DNA repair pathways (base excision repair, nucleotide excision repair, mismatch repair, homologous recombination and non-homologous end-joining (NHEJ)) in the analysis.

Results

The NHEJ pathway was associated with the occurrence of MI in both GENDER (P = 0.0083) and PROSPER (P = 0.014). This association was mainly driven by genetic variation in the MRE11A gene (PGENDER = 0.0001 and PPROSPER = 0.002). The homologous recombination pathway was associated with MI in GENDER only (P = 0.011), for the other pathways no associations were observed.

Conclusion

This is the first study analyzing the joint effect of common genetic variation in DNA repair pathways and the risk of CVD events, demonstrating an association between the NHEJ pathway and MI in 2 different cohorts.  相似文献   

15.
Cardiovascular disease (CVD) is the leading cause of death worldwide. Recent genome-wide association (GWA) studies have pinpointed many loci associated with CVD risk factors in adults. It is unclear, however, if these loci predict trait levels at all ages, if they are associated with how a trait develops over time, or if they could be used to screen individuals who are pre-symptomatic to provide the opportunity for preventive measures before disease onset. We completed a genome-wide association study on participants in the longitudinal Bogalusa Heart Study (BHS) and have characterized the association between genetic factors and the development of CVD risk factors from childhood to adulthood. We report 7 genome-wide significant associations involving CVD risk factors, two of which have been previously reported. Top regions were tested for replication in the Young Finns Study (YF) and two associations strongly replicated: rs247616 in CETP with HDL levels (combined P = 9.7×10−24), and rs445925 at APOE with LDL levels (combined P = 8.7×10−19). We show that SNPs previously identified in adult cross-sectional studies tend to show age-independent effects in the BHS with effect sizes consistent with previous reports. Previously identified variants were associated with adult trait levels above and beyond those seen in childhood; however, variants with time-dependent effects were also promising predictors. This is the first GWA study to evaluate the role of common genetic variants in the development of CVD risk factors in children as they advance through adulthood and highlights the utility of using longitudinal studies to identify genetic predictors of adult traits in children.  相似文献   

16.
Advanced gene and cellular therapies risk a second “valley of death” due to their high costs and low patient population. As these are life‐saving therapies, measures are urgently needed to prevent their withdrawal from the market. Subject Categories: Economics, Law & Politics, Genetics, Gene Therapy & Genetic Disease, Pharmacology & Drug Discovery

During the past years, several advanced gene and cell therapies to target rare genetic diseases have demonstrated long‐lasting efficacy: essentially “curing” severe and previously incurable diseases and returning patients to a normal life. These therapies are classified as advanced therapy medicinal products (ATMPs); a few of these have received marketing authorization in Europe and the USA, and more will conceivably follow in the near future (De Luca et al2019). Their success represents a milestone in medicine that 1 day might be compared with the discovery of antibiotics or the development of vaccines.
… once a therapy is successfully out of this first, biomedical “valley of death” and approved for use, it frequently encounters a second, economic “valley of death” that prevents its use in patients.
As “advanced” implies, the development of these therapies from the research laboratory to clinical trials is a long and very expensive ordeal. Bringing an ATMP to the market takes years, often decades, and still has a high failure rate (Cossu et al2018). However, once a therapy is successfully out of this first, biomedical “valley of death” and approved for use, it frequently encounters a second, economic “valley of death” that prevents its use in patients. This problem needs a solution for medical, ethical and economic reasons; readers are also refereed to recent articles dealing with the same problem for haematopoietic diseases (Aiuti et al2022; Halley et al2022) or genodermatoses (Palamenghi et al2022).  相似文献   

17.

Background

Chronic kidney disease (CKD) independently increases the risk of death and cardiovascular disease (CVD) in the general population. However, the relationship between estimated glomerular filtration rate (eGFR) and CVD/death risk in a general population at low risk of CVD has not been explored so far.

Design

Baseline and longitudinal data of 1465 men and 1459 women aged 35-74 years participating to the MATISS study, an Italian general population cohort, were used to evaluate the role of eGFR in the prediction of all-cause mortality and incident CVD.

Methods

Bio-bank stored sera were used to evaluate eGFR at baseline. Serum creatinine was measured on thawed samples by means of an IDMS-calibrated enzymatic method. eGFR was calculated by the CKD-EPI formula.

Results

At baseline, less than 2% of enrolled persons had eGFR < 60 mL/min/1.73m2 and more than 70% had a 10-year cardiovascular risk score < 10%. In people 60 or more years old, the first and the last eGFR quintiles (<90 and ≥109 mL/min/1.73m2, respectively) were associated to an increased risk for both all-cause mortality (hazard ratio 1.6, 95% confidence interval 1.2-2.1 and 4.3, 1.6-11.7, respectively) and incident CVD (1.6, 1.0-2.4 and 7.0, 2.2-22.9, respectively), even if adjusted for classical risk factors.

Conclusions

These findings strongly suggest that in an elderly, general population at low risk of CVD and low prevalence of reduced renal filtration, even a modest eGFR reduction is related to all-cause mortality and CVD incidence, underlying the potential benefit to this population of considering eGFR for their risk prediction.  相似文献   

18.
Meat intake is associated with the risk of colorectal cancer. The objective of this systematic review was to evaluate interactions between meat intake and genetic variation in order to identify biological pathways involved in meat carcinogenesis. We performed a literature search of PubMed and Embase using “interaction”, “meat”, “polymorphisms”, and “colorectal cancer”, and data on meat–gene interactions were extracted. The studies were divided according to whether information on meat intake was collected prospectively or retrospectively. In prospective studies, interactions between meat intake and polymorphisms in PTGS2 (encoding COX-2), ABCB1, IL10, NFKB1, MSH3, XPC (Pint = 0.006, 0.01, 0.04, 0.03, 0.002, 0.01, respectively), but not IL1B, HMOX1, ABCC2, ABCG2, NR1I2 (encoding PXR), NR1H2 (encoding LXR), NAT1, NAT2, MSH6, or MLH1 in relation to CRC were found. Interaction between a polymorphism in XPC and meat was found in one prospective and one case–control study; however, the directions of the risk estimates were opposite. Thus, none of the findings were replicated. The results from this systematic review suggest that genetic variation in the inflammatory response and DNA repair pathway is involved in meat-related colorectal carcinogenesis, whereas no support for the involvement of heme and iron from meat or cooking mutagens was found. Further studies assessing interactions between meat intake and genetic variation in relation to CRC in large well-characterised prospective cohorts with relevant meat exposure are warranted.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0448-9) contains supplementary material, which is available to authorized users.  相似文献   

19.

Background

Many commentators on “direct-to-consumer” genetic risk information have raised concerns that giving results to individuals with insufficient knowledge and training in genomics may harm consumers, the health care system, and society. In response, several commercial laboratories offering genomic risk profiling have shifted to more traditional “direct-to-provider” (DTP) marketing strategies, repositioning clinicians as the intended recipients of advertising of laboratory services and as gatekeepers to personal genomic information. Increasing popularity of next generation sequencing puts a premium on ensuring that those who are charged with interpreting, translating, communicating and managing commercial genomic risk information are appropriately equipped for the job. To shed light on their gatekeeping role, we conducted a study to assess how and why early clinical users of genomic risk assessment incorporate these tools in their clinical practices and how they interpret genomic information for their patients.

Methods and Findings

We conducted qualitative in-depth interviews with 18 clinicians providing genomic risk assessment services to their patients in partnership with DNA Direct and Navigenics. Our findings suggest that clinicians learned most of what they knew about genomics directly from the commercial laboratories. Clinicians rely on the expertise of the commercial laboratories without the ability to critically evaluate the knowledge or assess risks.

Conclusions

DTP service delivery model cannot guarantee that providers will have adequate expertise or sound clinical judgment. Even if clinicians want greater genomic knowledge, the current market structure is unlikely to build the independent substantive expertise of clinicians, but rather promote its continued outsourcing. Because commercial laboratories have the most “skin in the game” financially, genetics professionals and policymakers should scrutinize the scientific validity and clinical soundness of the process by which these laboratories interpret their findings to assess whether self-interested commercial sources are the most appropriate entities for gate-keeping genomic interpretation.  相似文献   

20.

Background

Chronic kidney disease (CKD) is generally considered an independent risk factor for cardiovascular disease (CVD) development, but rates in individuals with estimated glomerular filtration rate (eGFR) >60 ml/min/1.73 m2 are uncertain. The Framingham global CVD risk score (FRS) equation is a widely accepted tool used to predict CVD risk in the general population. The purpose of the present study was to examine whether an association exists between eGFR and FRS in a Chinese population with no CKD or CVD.

Methods

A total of 333 participants were divided into three groups based on FRS. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation and CKD-EPI equation for Asians (CKD-EPI-ASIA) were used to measure eGFR.

Results

A significant inverse association between eGFR and FRS was confirmed with Pearson correlation coefficients of –0.669, –0.698 (eGFRCKD-EPI, P<0.01) and –0.658, –0.690 (eGFRCKD-EPI-ASIA, P<0.01). This association gradually diminished with progression from the low- to high-risk groups (eGFRCKD-EPI, r = –0.615, –0.282, –0.197, P<0.01, P<0.01, P>0.05; similar results according to the CKD-EPI-ASIA equation). In the low- or moderate-risk new-groups, this association became stronger with increased FRS (eGFRCKD-EPI-ASIA, r = –0557, –0.622 or –0.326, –0.329, P<0.01). In contrast to the results from 2008, eGFR was independently associated with FRS following adjustment for traditional cardiovascular risk factors (P<0.05).

Conclusion

Renal function has multiple influences on predicting CVD risk in various populations. With increasing FRS and decreasing eGFR, it is also independently associated with CVD, even in individuals with eGFR >60 ml/min/1.73 m2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号