首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Double-stranded RNA injection produces null phenotypes in zebrafish   总被引:20,自引:0,他引:20  
Zebrafish is a simple vertebrate that has many attributes that make it ideal for the study of developmental genetics. One feature that has been lacking in this model system is the ability to disable specifically targeted genes. Recently, double-stranded RNA has been used to silence gene expression in the nematode Caenorhabditis elegans. We have found that expression of the green fluorescent protein (GFP) from a microinjected plasmid vector can be suppressed in zebrafish embryos by the coinjection of a double-stranded RNA that is specifically targeted to GFP. To determine that double-stranded RNA can attenuate endogenous gene expression, single-cell zebrafish embryos were injected with double-stranded RNA specifically targeted to Zf-T and Pax6.1. We found that microinjection of double-stranded Zf-T RNA resulted in a high incidence of a phenotype similar to that of ntl. Furthermore, Zf-T gene expression could not be detected by in situ hybridization and the message was decreased by 75% by semiquantitative RT-PCR in 12-h embryos that had been injected with the double-stranded RNA. Expression of the zebrafish genes sonic hedgehog and floating head was altered in the embryos microinjected with the Zf-T double-stranded RNA in a manner that is remarkably similar to the zebrafish no-tail mutant. Microinjection of double-stranded RNA targeted to Pax6.1 was associated with depressed expression of Pax6. 1 and resulted in absent or greatly reduced eye and forebrain development, similar to the phenotype seen in mouse mutants. Simultaneous injection of Pax6.1 and Zf-T resulted in embryos lacking notochords, eyes, and brain structures.  相似文献   

2.
MEK inhibition enhances paclitaxel-induced tumor apoptosis   总被引:17,自引:0,他引:17  
The anti-cancer drug paclitaxel (Taxol) alters microtubule assembly and activates pro-apoptotic signaling pathways. Previously, we and others found that paclitaxel activates endogenous JNK in tumor cells, and the activation of JNK contributes to tumor cell apoptosis. Here we find that paclitaxel activates the prosurvival MEK/ERK pathway, which conversely may compromise the efficacy of paclitaxel. Hence, a combination treatment of paclitaxel and MEK inhibitors was pursued to determine whether this treatment could lead to enhanced apoptosis. The inhibition of MEK/ERK with a pharmacologic inhibitor, U0126, together with paclitaxel resulted in a dramatic enhancement of apoptosis that is four times more than the additive value of the two drugs alone. Enhanced apoptosis was verified by the terminal transferase-mediated dUTP nick end labeling assay, by an enzyme-linked immunosorbent assay for histone-associated DNA fragments, and by flow cytometric analysis for DNA content. Specificity of the pharmacologic inhibitor was confirmed by the use of (a) a second MEK/ERK inhibitor and (b) a transdominant-negative MEK. Enhanced apoptosis was verified in breast, ovarian, and lung tumor cell lines, suggesting this effect is not cell type-specific. This is the first report of enhanced apoptosis detected in the presence of paclitaxel and MEK inhibition and suggests a new anticancer strategy.  相似文献   

3.
4.
Resveratrol, a polyphenol in red wine, has been reported as a calorie restriction mimetic with potential antiaging and antidiabetogenic properties. It is widely consumed as a nutritional supplement, but its mechanism of action remains a mystery. Here, we report that the metabolic effects of resveratrol result from competitive inhibition of cAMP-degrading phosphodiesterases, leading to elevated cAMP levels. The resulting activation of Epac1, a cAMP effector protein, increases intracellular Ca(2+) levels and activates the CamKKβ-AMPK pathway via phospholipase C and the ryanodine receptor Ca(2+)-release channel. As a consequence, resveratrol increases NAD(+) and the activity of Sirt1. Inhibiting PDE4 with rolipram reproduces all of the metabolic benefits of resveratrol, including prevention of diet-induced obesity and an increase in mitochondrial function, physical stamina, and glucose tolerance in mice. Therefore, administration of PDE4 inhibitors may also protect against and ameliorate the symptoms of metabolic diseases associated with aging.  相似文献   

5.
The DNA polymerase gamma (Polg) is a nuclear-encoded enzyme involved in DNA replication in animal mitochondria. In humans, mutations in the POLG gene underlie a set of mitochondrial diseases characterized by mitochondrial DNA (mtDNA) depletion or deletion and multiorgan defects, named POLG disorders, for which an effective therapy is still needed. By applying antisense strategies, ENU- and CRISPR/Cas9-based mutagenesis, we have generated embryonic, larval-lethal and adult-viable zebrafish Polg models. Morphological and functional characterizations detected a set of phenotypes remarkably associated to POLG disorders, including cardiac, skeletal muscle, hepatic and gonadal defects, as well as mitochondrial dysfunctions and, notably, a perturbed mitochondria-to-nucleus retrograde signaling (CREB and Hypoxia pathways). Next, taking advantage of preliminary evidence on the candidate molecule Clofilium tosylate (CLO), we tested CLO toxicity and then its efficacy in our zebrafish lines. Interestingly, at well tolerated doses, the CLO drug could successfully rescue mtDNA and Complex I respiratory activity to normal levels, even in mutant phenotypes worsened by treatment with Ethidium Bromide. In addition, the CLO drug could efficiently restore cardio-skeletal parameters and mitochondrial mass back to normal values. Altogether, these evidences point to zebrafish as a valuable vertebrate organism to faithfully phenocopy multiple defects detected in POLG patients. Moreover, this model represents an excellent platform to screen, at the whole-animal level, candidate molecules with therapeutic effects in POLG disorders.Subject terms: Energy metabolism, Disease model, Experimental models of disease  相似文献   

6.
The limitations of revolutionary new mutation-specific inhibitors of BRAFV600E include the universal recurrence seen in melanoma patients treated with this novel class of drugs. Recently, our lab showed that simultaneous activation of the Wnt/β-catenin signaling pathway and targeted inhibition of BRAFV600E by PLX4720 synergistically induces apoptosis across a spectrum of BRAFV600E melanoma cell lines. As a follow-up to that study, treatment of BRAF-mutant and NRAS-mutant melanoma lines with WNT3A and the MEK inhibitor AZD6244 also induces apoptosis. The susceptibility of BRAF-mutant lines and NRAS-mutant lines to apoptosis correlates with negative regulation of Wnt/β-catenin signaling by ERK/MAPK signaling and dynamic decreases in abundance of the downstream scaffolding protein, AXIN1. Apoptosis-resistant NRAS-mutant lines can sensitize to AZD6244 by pretreatment with AXIN1 siRNA, similar to what we previously reported in BRAF-mutant cell lines. Taken together, these findings indicate that NRAS-mutant melanoma share with BRAF-mutant melanoma the potential to regulate apoptosis upon MEK inhibition through WNT3A and dynamic regulation of cellular AXIN1. Understanding the cellular context that makes melanoma cells susceptible to this combination treatment will contribute to the study and development of novel therapeutic combinations that may lead to more durable responses.  相似文献   

7.
MEK inhibitors (MEKi) demonstrate anti‐proliferative activity in patients with metastatic uveal melanoma, but responses are short‐lived. In the present study, we evaluated the MEKi trametinib alone and in combination with drugs targeting epigenetic regulators, including DOT1L, EZH2, LSD1, DNA methyltransferases, and histone acetyltransferases. The DNA methyltransferase inhibitor (DNMTi) decitabine effectively enhanced the anti‐proliferative activity of trametinib in cell viability, colony formation, and 3D organoid assays. RNA‐Seq analysis showed the MEKi‐DNMTi combination primarily affected the expression of genes involved in G1 and G2/2M checkpoints, cell survival, chromosome segregation and mitotic spindle. The DNMTi‐MEKi combination did not appear to induce a DNA damage response (as measured by γH2AX foci) or senescence (as measured by β‐galactosidase staining) compared to either MEKi or DNMTi alone. Instead, the combination increased expression of the CDK inhibitor p21 and the pro‐apoptotic protein BIM. In vivo, the DNMTi‐MEKi combination was more effective at suppressing growth of MP41 uveal melanoma xenografts than either drug alone. Our studies indicate that DNMTi may enhance the activity of MEKi in uveal melanoma.  相似文献   

8.
Metabolites in the kynurenine pathway, generated by tryptophan degradation, are thought to play an important role in neurodegenerative disorders, including Alzheimer's and Huntington's diseases. In these disorders, glutamate receptor-mediated excitotoxicity and free radical formation have been correlated with decreased levels of the neuroprotective metabolite kynurenic acid. Here, we describe the synthesis and characterization of JM6, a small-molecule prodrug inhibitor of kynurenine 3-monooxygenase (KMO). Chronic oral administration of JM6 inhibits KMO in the blood, increasing kynurenic acid levels and reducing extracellular glutamate in the brain. In a transgenic mouse model of Alzheimer's disease, JM6 prevents spatial memory deficits, anxiety-related behavior, and synaptic loss. JM6 also extends life span, prevents synaptic loss, and decreases microglial activation in a mouse model of Huntington's disease. These findings support a critical link between tryptophan metabolism in the blood and neurodegeneration, and they provide a foundation for treatment of neurodegenerative diseases.  相似文献   

9.
Most bona fide centrosome proteins including centrins, small calcium-binding proteins, participate in spindle function during mitosis and play a role in cilia assembly in non-cycling cells. Although the basic cellular functions of centrins have been studied in lower eukaryotes and vertebrate cells in culture, phenotypes associated with centrin depletion in vertebrates in vivo has not been directly addressed. To test this, we depleted centrin2 in zebrafish and found that it leads to ciliopathy phenotypes including enlarged pronephric tubules and pronephric cysts. Consistent with the ciliopathy phenotypes, cilia defects were observed in differentiated epithelial cells of ciliated organs such as the olfactory bulb and pronephric duct. The organ phenotypes were also accompanied by cell cycle deregulation namely mitotic delay resulting from mitotic defects. Overall, this work demonstrates that centrin2 depletion causes cilia-related disorders in zebrafish. Moreover, given the presence of both cilia and mitotic defects in the affected organs, it suggests that cilia disorders may arise from a combination of these defects.  相似文献   

10.
Most bona fide centrosome proteins, including centrins, small calcium-binding proteins, participate in spindle function during mitosis and play a role in cilia assembly in non-cycling cells. Although the basic cellular functions of centrins have been studied in lower eukaryotes and vertebrate cells in culture, phenotypes associated with centrin depletion in vertebrates in vivo has not been directly addressed. To test this, we depleted centrin2 in zebrafish and found that it leads to ciliopathy phenotypes, including enlarged pronephric tubules and pronephric cysts. Consistent with the ciliopathy phenotypes, cilia defects were observed in differentiated epithelial cells of ciliated organs, such as the olfactory bulb and pronephric duct. The organ phenotypes were also accompanied by cell cycle deregulation, namely, mitotic delay resulting from mitotic defects. Overall, this work demonstrates that centrin2 depletion causes cilia-related disorders in zebrafish. Moreover, given the presence of both cilia and mitotic defects in the affected organs, it suggests that cilia disorders may arise from a combination of these defects.Key words: centrosome, cilia, centrin, mitosis, cystogenesis, ciliopathies, zebrafish  相似文献   

11.
Huntington's disease (HD), a dominantly inherited neurodegenerative disorder characterized by relatively selective degeneration of striatal neurons, is caused by an expanded polyglutamine tract of the huntingtin (htt) protein. The htt mutation reduces levels of brain-derived neurotrophic factor (BDNF) in the striatum, likely by inhibiting cortical BDNF gene expression and anterograde transport of BDNF from cortex to striatum. However, roles of the BDNF reduction in HD pathogenesis have not been established conclusively. We reasoned that increasing striatal BDNF through over-expression would slow progression of the disease if BDNF reduction plays a pivotal role in HD pathogenesis. We employed a Bdnf transgene driven by the promoter for the alpha subunit of Ca2+/calmodulin-dependent kinase II to over-express BDNF in the forebrain of R6/1 mice which express a fragment of mutant htt with a 116-glutamine tract. The Bdnf transgene increased BDNF levels and TrkB signaling activity in the striatum, ameliorated motor dysfunction, and reversed brain weight loss in R6/1 mice. Furthermore, it normalized DARPP-32 expression of the 32 kDa dopamine and cAMP-regulated phosphoprotein, increased the number of enkephalin-containing boutons, and reduced formation of neuronal intranuclear inclusions in the striatum of R6/1 mice. These results demonstrate crucial roles of reduced striatal BDNF in HD pathogenesis and suggest potential therapeutic values of BDNF to HD.  相似文献   

12.
Cone photoreceptor cell death in inherited retinal diseases, such as Retinitis Pigmentosa (RP), leads to the loss of high acuity and color vision and, ultimately to blindness. In RP, a vast number of mutations perturb the structure and function of rod photoreceptors, while cones remain initially unaffected. Extensive rod loss in advanced stages of the disease triggers cone death by a mechanism that is still largely unknown. Here, we show that secondary cone cell death in animal models for RP is associated with increased activity of histone deacetylates (HDACs). A single intravitreal injection of an HDAC inhibitor at late stages of the disease, when the majority of rods have already degenerated, was sufficient to delay cone death and support long-term cone survival in two mouse models for RP, affected by mutations in the phosphodiesterase 6b gene. Moreover, the surviving cones remained light-sensitive, leading to an improvement in visual function. RNA-seq analysis of protected cones demonstrated that HDAC inhibition initiated multi-level protection via regulation of different pro-survival pathways, including MAPK, PI3K-Akt, and autophagy. This study suggests a unique opportunity for targeted pharmacological protection of secondary dying cones by HDAC inhibition and creates hope to maintain vision in RP patients even in advanced disease stages.Subject terms: Neuroscience, Neurological disorders  相似文献   

13.
CHARGE syndrome is a heterogeneous disorder characterized by a spectrum of defects affecting multiple tissues and behavioral difficulties such as autism, attention-deficit/hyperactivity disorder, obsessive–compulsive disorder, anxiety, and sensory deficits. Most CHARGE cases arise from de novo, loss-of-function mutations in chromodomain-helicase-DNA-binding-protein-7 (CHD7). CHD7 is required for processes such as neuronal differentiation and neural crest cell migration, but how CHD7 affects neural circuit function to regulate behavior is unclear. To investigate the pathophysiology of behavioral symptoms in CHARGE, we established a mutant chd7 zebrafish line that recapitulates multiple CHARGE phenotypes including ear, cardiac, and craniofacial defects. Using a panel of behavioral assays, we found that chd7 mutants have specific auditory and visual behavior deficits that are independent of defects in sensory structures. Mauthner cell-dependent short-latency acoustic startle responses are normal in chd7 mutants, while Mauthner-independent long-latency responses are reduced. Responses to sudden decreases in light are also reduced in mutants, while responses to sudden increases in light are normal, suggesting that the retinal OFF pathway may be affected. Furthermore, by analyzing multiple chd7 alleles we observed that the penetrance of morphological and behavioral phenotypes is influenced by genetic background but that it also depends on the mutation location, with a chromodomain mutation causing the highest penetrance. This pattern is consistent with analysis of a CHARGE patient dataset in which symptom penetrance was highest in subjects with mutations in the CHD7 chromodomains. These results provide new insight into the heterogeneity of CHARGE and will inform future work to define CHD7-dependent neurobehavioral mechanisms.  相似文献   

14.
15.
Increasing evidence suggests that proteasome inhibition plays a causal role in promoting the neurodegeneration and neuron death observed in multiple disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD). The ability of severe and acute inhibition of proteasome function to induce neuron death and neuropathology similar to that observed in AD and PD is well documented. However, at present the effects of chronic low-level proteasome inhibition on neural homeostasis has not been elucidated. In order to determine the effects of chronic low-level proteasome inhibition on neural homeostasis, we conducted studies in individual colonies of neural SH-SY5Y cells that were isolated following continual exposure to low concentrations (100 nm) of the proteasome inhibitor MG115. Clonal cell lines appeared morphologically similar to control cultures but exhibited significantly different rates of both proliferation and differentiation. Elevated levels of protein oxidation and protein insolubility were observed in clonal cell lines, with all clonal cell lines being more resistant to neural death induced by serum withdrawal and oxidative stress. Interestingly, clonal cell lines demonstrated evidence for increased macroautophagy, suggesting that chronic low-level proteasome inhibition may cause an excessive activation of the lysosomal system. Taken together, these data indicate that chronic low-level proteasome inhibition has multiple effects on neural homeostasis, and suggests that studying the effects of chronic low-level proteasome inhibition may be useful in understanding the relationship between protein oxidation, protein insolubility, proteasome function, macroautophagy and neural viability in AD and PD.  相似文献   

16.
Serotonin (or 5-hydroxytryptamine; 5-HT) and monoamine oxidase (MAO) are involved in several physiological functions and pathological conditions. We show that the serotonergic system and its development in zebrafish are similar to those of other vertebrates rendering zebrafish a good model to study them. Development of MAO expression followed a similar time course as the 5-HT system. MAO expression and activity were located in or adjacent to serotonergic nuclei and their targets, especially in the ventral hypothalamus. MAO mRNA was detected in the brain from 24 h post-fertilization and histochemical enzyme activity from 42 h post-fertilization. Deprenyl (100 μM) decreased MAO activity 34–74% depending on the age. Inhibition of MAO by deprenyl strongly increased 5-HT but not dopamine and noradrenaline levels. Deprenyl decreased 5-HT-immunoreactivity in serotonergic neurons and induced novel ectopic 5-HT-immunoreactivity neurons in the diencephalon in a manner dependent on 5-HT uptake. Deprenyl administration decreased locomotion, altered vertical positioning and increased heart rate. Treatment with p -chlorophenylalanine normalized 5-HT levels and rescued the behavioral alteration, indicating that the symptoms were 5-HT dependent. These findings suggest that zebrafish MAO resembles mammalian MAO A more than MAO B, metabolizing mainly 5-HT. Applications of this model of hyperserotonergism include pharmacological and genetic screenings.  相似文献   

17.
We report phenotypic and genetic analyses of a recessive, larval lethal zebrafish mutant, bal(a69), characterized by severe eye defects and shortened body axis. The bal(a69) mutation was mapped to chromosome 24 near the laminin alpha 1 (lama1) gene. We analyzed the lama1 gene sequence within bal(a69) embryos and two allelic mutants, bal(arl) and bal(uw1). Missense (bal(a69)), nonsense (bal(arl)), and frameshift (bal(uw1)) alterations in lama1 were found to underlie the phenotypes. Extended analysis of bal(a69) ocular features revealed disrupted lens development with subsequent lens degeneration, focal cornea dysplasia, and hyaloid vasculature defects. Within the neural retina, the ganglion cells showed axonal projection defects and ectopic photoreceptor cells were noted at inner retinal locations. To address whether ocular anomalies were secondary to defects in lens differentiation, bal(a69) mutants were compared to embryos in which the lens vesicle was surgically removed. Our analysis suggests that many of the anterior and posterior ocular defects in bal(a69) are independent of the lens degeneration. Analysis of components of focal adhesion signaling complexes suggests that reduced focal adhesion kinase activation underlies the anterior segment dysgenesis in lama1 mutants. To assess adult ocular phenotypes associated with lama1 mutations, genetic mosaics were generated by transplanting labeled bal cells into ocular-fated regions of wild-type blastulas. Adult chimeric eyes displayed a range of defects including anterior segment dysgenesis and cataracts. Our analysis provides mechanistic insights into the developmental defects and ocular pathogenesis caused by mutations in laminin subunits.  相似文献   

18.
19.

Background  

Oocyte maturation in lower vertebrates is triggered by maturation-inducing hormone (MIH), which acts on unidentified receptors on the oocyte surface and induces the activation of maturation-promoting factor (MPF) in the oocyte cytoplasm. We previously described the induction of oocyte maturation in fish by an endocrine-disrupting chemical (EDC), diethylstilbestrol (DES), a nonsteroidal estrogen.  相似文献   

20.

Background  

Vertebrate neural development requires precise coordination of cell proliferation and cell specification to guide orderly transition of mitotically active precursor cells into different types of post-mitotic neurons and glia. Lateral inhibition, mediated by the Delta-Notch signaling pathway, may provide a mechanism to regulate proliferation and specification in the vertebrate nervous system. We examined delta and notch gene expression in zebrafish embryos and tested the role of lateral inhibition in spinal cord patterning by ablating cells and genetically disrupting Delta-Notch signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号