首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inositol 1,4,5-trisphosphate receptors in the heart   总被引:2,自引:0,他引:2  
Inositol 1,4,5-trisphosphate (InsP3) is an established calcium-mobilizing messenger, which is well-known to activate Ca2+ signaling in many cell types. Contractile cardiomyocytes express hormone receptors that are coupled to the production of InsP3. Such cardioactive hormones, including endothelin, may have profound inotropic and arrhythmogenic actions, but it is unclear whether InsP3 underlies any of these effects. We have examined the expression and localization of InsP3 receptors (InsP3Rs), and the potential role of InsP3 in modulating cardiac excitation-contraction coupling (EC coupling). Stimulation of electrically-paced atrial and ventricular myocytes with a membrane-permeant InsP3 ester was found to evoke an increase in the amplitudes of action potential-evoked Ca2+ transients and to cause pro-arrhythmic diastolic Ca2+ transients. All the effects of the InsP3 ester could be blocked using a membrane-permeant antagonist of InsP3Rs (2-aminoethoxydiphenyl borate; 2-APB). Furthermore, 2-APB blocked arrhythmias evoked by endothelin and delayed the onset of positive inotropic responses. Our data indicate that atrial and ventricular cardiomyocytes express functional InsP3Rs, and these channels have the potential to influence EC coupling.  相似文献   

2.
Inositol 1,4,5-trisphosphate (IP3) affinity columns were made by coupling IP3 analogs to a supporting matrix. Sepharose 4B. IP3 5-phosphatase activity. IP3 3-kinase activity and IP3 binding activity from rat brain were absorbed on the IP3 columns. and were eluted by increasing KC1 concentration. This purification procedure increased the specific activities of these parameters 5-200-fold. Thus Sepharose 4B immobilized IP3 analogs can specifically interact with IP3-binding proteins, demonstrating that IP3 affinity columns are a good method for purifying such proteins. Furthermore, our results suggest that IP3 analogs can be linked to other molecules to make useful derivatives without loss of their biological activities.  相似文献   

3.
Calcium flux is required for the mammalian sperm acrosome reaction, an exocytotic event triggered by egg binding, which results in a dramatic rise in sperm intracellular calcium. Calcium-dependent membrane fusion results in the release of enzymes that facilitate sperm penetration through the zona pellucida during fertilization. We have characterized inositol 1,4,5-trisphosphate (IP3)-gated calcium channels and upstream components of the phosphoinositide signaling system in mammalian sperm. Peptide antibodies colocalized G alpha q/11 and the beta 1 isoform of phospholipase C (PLC beta 1) to the anterior acrosomal region of mouse sperm. Western blotting using a polyclonal antibody directed against purified brain IP3 receptor (IP3R) identified a specific 260 kD band in 1% Triton X-100 extracts of rat, hamster, mouse and dog sperm. In each species, IP3R immunostaining localized to the acrosome cap. Scatchard analysis of [3H]IP3 binding to rat sperm sonicates revealed a curvilinear plot with high affinity (Kd = 26 nM, Bmax = 30 pmol/mg) and low affinity (Kd = 1.6 microM, Bmax = 550 pmol/mg) binding sites, reflecting among the highest receptor densities in mammalian tissue. Immunoelectron microscopy confirmed the acrosomal localization in rat sperm. The IP3R fractionated with acrosomes by discontinuous sucrose gradient centrifugation and was enriched in the medium of acrosome- reacted sperm. ATP-dependent 45Ca2+ loading of digitonin permeabilized rat sperm was decreased by 45% in the presence of 10 microM IP3. The IP3-mediated release of calcium was blocked by heparin. Thapsigargin, a sequiterpene lactone inhibitor of the microsomal Ca(2+)-ATPase, stimulated the acrosome reaction of mouse sperm to the same extent as the Ca2+ ionophore, A23187. The failure of caffeine and ryanodine to affect calcium accumulation suggested that thapsigargin acted through an IP3-sensitive store. The presence of G alpha q/11, PLC beta 1 and a functional IP3R in the anterior acrosomal region of mammalian sperm, as well as thapsigargin''s induction of the acrosome reaction, implicate IP3-gated calcium release in the mammalian acrosome reaction.  相似文献   

4.
《The Journal of cell biology》1993,120(5):1137-1146
Calcium release from intracellular stores is the signal generated by numerous regulatory pathways including those mediated by hormones, neurotransmitters and electrical activation of muscle. Recently two forms of intracellular calcium release channels (CRCs) have been identified. One, the inositol 1,4,5-trisphosphate receptors (IP3Rs) mediate IP3-induced Ca2+ release and are believed to be present on the ER of most cell types. A second form, the ryanodine receptors (RYRs) of the sarcoplasmic reticulum, have evolved specialized functions relevant to muscle contraction and are the major CRCs found in striated muscles. Though structurally related, IP3Rs and RYRs have distinct physiologic and pharmacologic profiles. In the heart, where the dominant mechanism of intracellular calcium release during excitation-contraction coupling is Ca(2+)-induced Ca2+ release via the RYR, a role for IP3-mediated Ca2+ release has also been proposed. It has been assumed that IP3Rs are expressed in the heart as in most other tissues, however, it has not been possible to state whether cardiac IP3Rs were present in cardiac myocytes (which already express abundant amounts of RYR) or only in non- muscle cells within the heart. This lack of information regarding the expression and structure of an IP3R within cardiac myocytes has hampered the elucidation of the significance of IP3 signaling in the heart. In the present study we have used combined in situ hybridization to IP3R mRNA and immunocytochemistry to demonstrate that, in addition to the RYR, an IP3R is also expressed in rat cardiac myocytes. Immunoreactivity and RNAse protection have shown that the IP3R expressed in cardiac myocytes is structurally similar to the IP3R in brain and vascular smooth muscle. Within cardiac myocytes, IP3R mRNA levels were approximately 50-fold lower than that of the cardiac RYR mRNA. Identification of an IP3R in cardiac myocytes provides the basis for future studies designed to elucidate its functional role both as a mediator of pharmacologic and hormonal influences on the heart, and in terms of its possible interaction with the RYR during excitation- contraction coupling in the heart.  相似文献   

5.
The inositol 1,4,5-trisphosphate receptor (IP3R) is an intracellular calcium channel involved in coupling cell membrane receptors to calcium signal transduction pathways within cells including endocrine cells. Several isoforms (I, II, and III) of IP3Rs have been identified, which are encoded by separate genes, and are expressed in many tissues with differing patterns of cellular expression. We have generated specific affinity-purified polyclonal anti-peptide antibodies to each of the three isoforms. Western blot analysis of RINm5F and ATt20 cells shows high levels of endogenously expressed type I and type III IP3R, but undetectable levels of type II. Immunofluorescence studies revealed an endoplasmic reticulum-like pattern similar to BiP, an ER marker. In contrast with previous claims, both type I and type III IP3Rs were absent from the secretory granules of ATt20 cells. Western blots of sucrose gradients and gel filtration probed with antibodies to either type I or type III showed a molecular weight of greater than 1,000 kDa consistent with a tetrameric structure. Co-immunoprecipitation experiments indicated that most of the receptors were present as heterotetramers. Homotetramers were identified for the type III IP3R; however, type I homotetramers were undetectable. These data suggest that molecular association of IP3Rs into heterotetrameric forms can contribute to the complexity of the regulation of Ca2+ release from ER by IP3Rs within cells.  相似文献   

6.
Inositol 1,4,5-trisphosphate (IP3) releases internal stores of calcium by binding to a specific membrane receptor which includes both the IP3 recognition site as well as the associated calcium channel. The IP3 receptor is regulated by ATP, calcium, and phosphorylation by protein kinase A, protein kinase C, and calcium/calmodulin-dependent protein kinase II. Its cDNA sequence predicts at least two consensus sequences where nucleotides might bind, and direct binding of ATP to the IP3 receptor has been demonstrated. In the present study, we demonstrate autophosphorylation of the purified and reconstituted IP3 receptor on serine and find serine protein kinase activity of the IP3 receptor toward a specific peptide substrate. Several independent purification procedures do not separate the IP3 receptor protein from the phosphorylating activity, and many different protein kinase activators and inhibitors do not identify protein kinases as contaminants. Also, renaturation experiments reveal autophosphorylation of the monomeric receptor on polyvinylidene difluoride membranes.  相似文献   

7.
The inositol trisphosphate liberated on stimulation of guinea-pig hepatocytes, pancreatic acinar cells and dimethyl sulphoxide-differentiated human myelomonocytic HL-60 leukaemia cells is composed of two isomers, the 1,4,5-trisphosphate and the 1,3,4-trisphosphate. Inositol 1,4,5-trisphosphate was released rapidly, with no measurable latency on hormone stimulation, and, consistent with its proposed role as an intracellular messenger for Ca2+ mobilization, there was good temporal correlation between its formation and Ca2+-mediated events in these tissues. There was a definite latency before an increase in the formation of inositol 1,3,4-trisphosphate could be detected. In all of these tissues, however, it formed a substantial proportion of the total inositol trisphosphate by 1 min of stimulation. In guinea-pig hepatocytes, where inositol trisphosphate increases for at least 30 min after hormone application, inositol 1,3,4-trisphosphate made up about 90% of the total inositol trisphosphate by 5-10 min. In pancreatic acinar cells, pretreatment with 20 mM-Li+ caused an increase in hormone-induced inositol trisphosphate accumulation. This increase was accounted for by a rise in inositol 1,3,4-trisphosphate; inositol 1,4,5-trisphosphate was unaffected. This finding is consistent with the observation that Li+ has no effect on Ca2+-mediated responses in these cells. The role, if any, of inositol 1,3,4-trisphosphate in cellular function is unknown.  相似文献   

8.
The inositol 1,4,5-trisphosphate receptors   总被引:8,自引:0,他引:8  
Bezprozvanny I 《Cell calcium》2005,38(3-4):261-272
The inositol (1,4,5)-trisphosphate receptors (InsP3R) are the intracellular calcium (Ca2+) release channels that play a key role in Ca2+ signaling in cells. Three InsP3R isoforms-InsP3R type 1 (InsP3R1), InsP3R type 2 (InsP3R2), and InsP3R type 3 (InsP3R3) are expressed in mammals. A single InsP3R isoform is expressed in Drosophila melanogaster (DmInsP3R) and Caenorhabditis elegans (CeInsP3R). The progress made during last decade towards understanding the function and the properties of the InsP3R is briefly reviewed in this chapter. The main emphasis is on studies that revealed structural determinants responsible for the ligand recognition by the InsP3R, ion permeability of the InsP3R, modulation of the InsP3R by cytosolic Ca2+, ATP and PKA phosphorylation and on the recently identified InsP3R-binding partners. The main focus is on the InsP3R1, but the recent information about properties of other InsP3R isoforms is also discussed.  相似文献   

9.
Inositol 1,4,5-trisphosphate (IP(3)) receptor is a Ca(2+) release channel localized on the endoplasmic reticulum (ER) and plays an important role in neuronal function. IP(3) receptor was discovered as a developmentally regulated protein missing in the cerebellar mutant mice. Recent studies indicate that IP(3)Rs are involved in early development and neuronal plasticity. IP(3) works to release IRBIT from the IP(3) binding core in addition to release Ca(2+). IRBIT binds to and activates Na, Bicarbonate cotransporter. Electron microscopic study show the IP(3) receptor has allosteric property to change its form from square to windmill in the presence of Ca(2+). IP(3)R associates with ERp44, a redox sensor, Homer, other proteins and is transported as vesicular ER on microtubules. All these data suggests IP(3) receptor/CA(2+) channel works as a signaling center inside cells.  相似文献   

10.
Inositol 1,4,5-trisphosphate 3-kinases: functions and regulations   总被引:1,自引:0,他引:1  
Xia HJ  Yang G 《Cell research》2005,15(2):83-91
  相似文献   

11.
Mobilization of intracellular calcium from beta-cell-rich pancreatic islets of ob/ob-mice was studied by measuring unidirectional 45Ca efflux at 37 degrees and 18 degrees C during perifusion with a K+-rich medium deficient in Ca2+ and Na+. Addition of 100 microM carbachol induced a prominent peak of Ca2+ efflux from islets preexposed to glucose. After cell permeabilization with digitonin D-myo-inositol 1,4,5-trisphosphate (IP3) caused glucose-dependent mobilization of calcium. In demonstrating that not only carbachol but also IP3 can mobilize calcium incorporated in response to glucose, the present data suggests that the endoplasmic reticulum participates in glucose-induced lowering of cytoplasmic Ca2+ activity in the pancreatic beta-cells.  相似文献   

12.
Chemotactic signalling in the cellular slime mould Dictyostelium discoideum employs signalling molecules such as folate and cyclic AMP. These bind to specific cell surface receptors and rapidly trigger internal responses that induce chemotactic movement of the amoebae. Previous studies have shown that actin is polymerised within 3-5 sec of cyclic AMP or folate binding and that a peak of cyclic GMP is formed within 9-12 sec. Release of Ca2+ from intracellular stores has been implicated as a secondary messenger. Here we present evidence that D-myo-inositol 1,4,5-trisphosphate, when added to permeabilized amoebae of Dictyostelium, can mimic the action of chemoattractants on normal intact amoebae in inducing cyclic GMP formation. Our data suggest that IP3, which is known to act as an intermediary messenger between cell surface hormone receptors and release of Ca2+ from internal stores in mammalian cells, functions in a similar capacity during chemotaxis of this primitive eukaryote.  相似文献   

13.
Cell-death and -survival decisions are critically controlled by intracellular Ca2 + homeostasis and dynamics at the level of the endoplasmic reticulum (ER). Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) play a pivotal role in these processes by mediating Ca2 + flux from the ER into the cytosol and mitochondria. Hence, it is clear that many pro-survival and pro-death signaling pathways and proteins affect Ca2 + signaling by directly targeting IP3R channels, which can happen in an IP3R-isoform-dependent manner. In this review, we will focus on how the different IP3R isoforms (IP3R1, IP3R2 and IP3R3) control cell death and survival. First, we will present an overview of the isoform-specific regulation of IP3Rs by cellular factors like IP3, Ca2 +, Ca2 +-binding proteins, adenosine triphosphate (ATP), thiol modification, phosphorylation and interacting proteins, and of IP3R-isoform specific expression patterns. Second, we will discuss the role of the ER as a Ca2 + store in cell death and survival and how IP3Rs and pro-survival/pro-death proteins can modulate the basal ER Ca2 + leak. Third, we will review the regulation of the Ca2 +-flux properties of the IP3R isoforms by the ER-resident and by the cytoplasmic proteins involved in cell death and survival as well as by redox regulation. Hence, we aim to highlight the specific roles of the various IP3R isoforms in cell-death and -survival signaling. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

14.
Frog skeletal muscle contains a kinase activity that phosphorylates inositol 1,4,5-trisphosphate to inositol 1,3,4,5-tetrakisphosphate. The inositol 1,4,5-trisphosphate 3-kinase activity was mainly recovered in the soluble fraction, where it presented a marked dependency on free calcium concentration in the physiological range in the presence of endogenous calmodulin. At pCa 5, where the activity was highest, the soluble 3-kinase activity displayed a Km for inositol 1,4,5-trisphosphate of 1.6 μM and a Vmax value of 25.1 pmol mg−1 min−1. The removal rates of inositol 1,4,5-trisphosphate by 3-kinase and 5-phosphatase activities of the total homogenate under physiological ionic conditions were very similar, suggesting that both routes are equally important in metabolizing inositol 1,4,5-trisphosphate in frog skeletal muscle.  相似文献   

15.
Molecular properties of inositol 1,4,5-trisphosphate receptors.   总被引:15,自引:0,他引:15  
The receptors for the second messenger inositol 1,4,5-trisphosphate (IP3) constitute a family of Ca2+ channels responsible for the mobilization of intracellular Ca2+ stores. Three different gene products (types I-III) have been isolated, encoding polypeptides which assemble as large tetrameric structures. Recent molecular studies have advanced our knowledge about the structure, regulation and function of IP3 receptors. For example, several Ca(2+)-binding sites and a Ca(2+)-calmodulin-binding domain have been mapped within the type I IP3 receptor, and studies on purified cerebellar IP3 receptors propose a second Ca(2+)-independent calmodulin-binding domain. In addition, minimal requirements for the binding of immunophilins and the formation of tetramers have been identified. Overexpression of IP3 receptors has provided further clues to the regulation of individual IP3 receptor isoforms present within cells, and the role that they play in the generation of IP3-dependent Ca2+ signals. Inhibition of IP3 receptor function and expression, and analysis of mutant IP3 receptors, suggests that IP3 receptors are involved in such diverse cellular processes as proliferation and apoptosis and are thus, necessary for normal development. Our understanding of the complex spatial and temporal nature of cytosolic Ca2+ increases and the role that these Ca2+ signals play in cell function depend upon our knowledge of the structure and the regulation of IP3 receptors. This review focuses on the molecular properties of these ubiquitous intracellular Ca2+ channels.  相似文献   

16.
The linkage between inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) and cytoskeletal proteins is considered to be important in cell function. In the present study, the association of IP(3)R subtypes with cytoskeletal proteins was examined using monoclonal antibodies specific to each IP(3)R subtype. We found that IP(3)R type 2 colocalized with talin, a focal contact cytoskeletal protein. IP(3)R type 2 exhibited a patchy distribution in the peripheral cytoplasm differently from type 1 and type 3 IP(3)R. Furthermore, IP(3)R subtypes co-immunoprecipitated with talin, vinculin and alpha-actin, but not alpha-actinin or paxillin.  相似文献   

17.
Complex behavior requires the coordinated action of the nervous system and nonneuronal targets. Male mating in Caenorhabditis elegans consists of a series of defined behavioral steps that lead to the physiological outcomes required for successful impregnation. We demonstrate that signaling mediated by inositol 1,4,5-trisphosphate (IP(3)) is required at several points during mating. Disruption of IP(3) receptor (itr-1) function results in dramatic loss of male fertility, due to defects in turning behavior (during vulva location), spicule insertion and sperm transfer. To elucidate the signaling pathways responsible, we knocked down the six C. elegans genes encoding phospholipase C (PLC) family members. egl-8, which encodes PLC-beta, functions in spicule insertion and sperm transfer. itr-1 and egl-8 are widely expressed in the male reproductive system. An itr-1 gain-of-function mutation rescues infertility caused by egl-8 RNA interference, indicating that egl-8 and itr-1 function together as central components of the signaling events controlling sperm transfer.  相似文献   

18.
The effect of inositol 1,4,5-trisphosphate (IP3) on Ca2+ release from microsomes of corn coleoptiles was investigated. Addition of micromolar concentrations of IP3 to Ca2+ loaded microsomes resulted in rapid release of 20-30% of sequestered Ca2+. Maximal and half maximal Ca2+ release occurred at 20 and 8 microM of IP3 respectively. Part of the Ca2+ released by IP3 was reaccumulated into microsomes within 4 min. The amount of Ca2+ released by IP3 was found to be dependent on free Ca2+ concentration in the incubation medium at the time of release. Maximum Ca2+ release was observed around 0.1 microM free Ca2+ concentration in the assay medium. These data suggest that IP3 might act as a second messenger in plants in a manner similar to animal systems by altering cytosolic levels of calcium.  相似文献   

19.
The cellular slime mold Dictyostelium discoideum is a microorganism in which growth and development are strictly separated. Starvation initiates a developmental program in which extracellular cAMP plays a major role as a signal molecule. In response to cAMP several second messengers are produced, including cAMP, cGMP and inositol 1,4,5-trisphosphate, (Ins(1,4,5)P3). Ins(1,4,5)P3 levels are controlled by the activation of phosphoinositidase C and the activity of the Ins(1,4,5)P3-degrading phosphatases. In Dictyostelium discoideum two major routes for the dephosphorylation of Ins(1,4,5)P3 are present: a 5-phosphatase, which hydrolyses Ins(1,4,5)P3 at the 5-position producing Ins(1,4)P2 as in vertebrate cells, and a 1-phosphatase which removes the 1-phosphate, giving Ins(4,5)P2, as in plants. In this paper we show that at the onset of development both the 1-phosphatase and the 5-phosphatase are present in equal amounts. During development the 5-phosphatase disappears leaving the 1-phosphatase as the single enzyme to remove Ins(1,4,5)P3. We conclude that during development Dictyostelium discoideum switches from a mixed type of Ins(1,4,5)P3 degradation to a more plant-like degradation pathway.  相似文献   

20.
A possible role in secretory processes is proposed for inositol 1,4,5-triphosphate (IP3), based upon investigations of the Ca2+ steady state maintained by "leaky', insulin-secreting RINm5F cells. These cells had been treated with digitonin to permeabilize their plasma membranes and thereby ensure that only intracellular Ca2+ buffering mechanisms were active. When placed in a medium with a cation composition resembling that of the cytosol, cells rapidly took up Ca2+ as measured by a Ca2+-specific minielectrode. Two Ca2+ steady states were observed. A lower level of around 120nM required ATP-dependent Ca2+ uptake and was probably determined by the endoplasmic reticulum. The higher steady state (approx. 800 nM), seen only in the absence of ATP, was shown to be due to mitochondrial activity. IP3 specifically released Ca2+ accumulated in the ATP-dependent pool, but not from mitochondria, since Ca2+ release was demonstrated in the presence of the respiratory poison antimycin. The IP3-induced Ca2+ release was rapid, with 50% of the response being seen within 15s. The apparent Km was 0.5 microM and maximal concentrations of IP3 (2.5 microM) produced a peak Ca2+ release of 10 nmol/mg of cell protein, which was followed by re-uptake. A full Ca2+ response was seen if sequential pulses of 2.5 microM-IP3 were added at 20 min intervals, although there was a slight (less than 20%) attenuation if the intervening period was decreased to 10 min. These observations could be related to the rate of IP3 degradation which, in this system, corresponded to a 25% loss of added 32P label within 2 min, and a 75% loss within 20 min. The results suggest that IP3 might act as a link between metabolic, cationic and secretory events during the stimulation of insulin release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号