首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The findings was confirmed that there is a "rebound" increase of stored acetylcholine (ACh) in cat superior cervical ganglia conditioned by prolonged preganglionic stimulation at a frequency high enough to cause initial depletion of the store. Ganglia removed immediately after 60 min of continuous or interrupted stimulation at 50 Hz, with chloralose as anesthetic, contained about 30% more ACh than their unconditioned controls; the rebound rose to about 60% after 15 min of rest and then subsided with an apparent half-time of about 2 h. Tests with hemicholinium, combined with hexamethonium or tubocurarine, showed that rebound ACh was located presynaptically and could be released by nerve impulses; but conditioned ganglia perfused with an eserine-containing medium did not release more ACh than their unconditioned controls, except in circumstances in which the mobilization of ACh from a reserve store appeared to be the rate-limiting process for release. The appearance of rebound ACh during and after conditioning stimulation was suppressed by hexamethonium and by tubocurarine, neither of which has much effect on ACh turnover in ganglia excited at lower frequencies, but not only by atropine, noradrenaline, or phenoxybenzamine. The formation of rebound ACH is thus contingent on the postsynaptic nicotinic response to released ACh, and may represent an augmentation of the transmitter store in structures remote from the release sites.  相似文献   

2.
Abstract: Prolonged high-frequency orthodromic stimulation of superior cervical ganglia is known to result in increased acetylcholine (ACh) synthesis and ACh content after the period of stimulation. In a previous study, we provided evidence to suggest that adenosine acts as an extracellular signal to activate this increased ACh synthesis and we proposed that the source of that adenosine might be postsynaptic. Thus, the purpose of the present study was to test whether direct stimulation of the postganglionic nerves could affect ganglionic ACh content. Antidromic conditioning of ganglia (15 Hz, 45 min) did not affect significantly their ACh content. However, if ganglia were allowed a 15-min rest period after this antidromic conditioning, their ACh stores were increased by 20%; a similar increase was induced by 4-Hz stimulation before the rest period. During the 15-Hz antidromic stimulation, ACh release was not clearly increased above the basal level, suggesting that preganglionic nerve endings were not stimulated to an extent that could explain the increased ACh content. Orthodromic stimulation (5 Hz) of ganglia 15 min after they had been subjected to antidromic conditioning (15 Hz, 45 min) showed increased ACh release in comparison with that from control unconditioned ganglia. Moreover, the extra ACh released by the conditioned ganglia was quantitatively similar to the increase in the ACh stores, as if most, or all, of the additional ACh was released by preganglionic stimulation. If the antidromic conditioning and the rest period were done during perfusion with Ca2+-free medium, the ganglia did not accumulate extra ACh. The ACh content was also not changed if ganglia were conditioned in the absence of Ca2+ but rested with normal Ca2+. However, ACh content was increased by 23% when the antidromic stimulation was done with normal Ca2+ but the rest period was without Ca2+. To test the role of adenosine in this retrograde effect, the effect of nucleoside transport inhibitors was tested. Dipyridamole blocked the antidromic stimulation-induced increase, but nitrobenzylthioinosine did not. Overall, these results are consistent with the idea that a diffusible retrograde messenger activates ACh synthesis. The sensitivity to blockade by dipyridamole suggests that adenosine might be that signal.  相似文献   

3.
Superior cervical ganglia of the cat perfused with [14C]diethylhomocholine [( 14C]DEHCh) synthesized acetyldiethylhomocholine (ADEHCh), but rather little of this ester was released by subsequent preganglionic nerve stimulation. Stimulation evoked the release of an appreciable amount of unchanged DEHCh when ganglia had been exposed to the analogue in the absence of choline (Ch), but did not do so when exposed to both Ch and DEHCh. The release of DEHCh was Ca2+ dependent, and was not the result of the release and subsequent hydrolysis of ADEHCh. This is the first clear demonstration of the release of an unacetylated compound from mammalian tissue; therefore, the characteristics of the transmitter release mechanism are further defined. The effect of preganglionic nerve stimulation on the uptake and acetylation of DEHCh was also measured. Stimulated ganglia accumulated approximately 4 times more labeled analogue and synthesized 7.5 times more ADEHCh than did rested ganglia. Stimulated ganglia perfused with 2-(4-phenylpiperidino)cyclohexanol, a compound considered to inhibit acetylcholine (ACh) release by inhibiting its transport into synaptic vesicles, accumulated 3.4 times as much and acetylated 6 times as much DEHCh as did rested ganglia. When the concentration of Mg2+ in the perfusion medium was increased to block ACh release, accumulation of the labelled analogue was enhanced by stimulation, but its acetylation was increased much less than during perfusion with normal medium. It is concluded that the synthesis of ADEHCh is subject to the same regulation as is ACh synthesis and that the activation of ester synthesis during activity can be dissociated from ester release.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
P T Horn  J D Kohli 《Life sciences》1992,51(10):757-764
Inhibitory alpha-adrenoceptors were studied in cardiac ganglia of pentobarbital-anesthetized dogs. Blockade of alpha 1- or alpha 2-adrenoceptors augmented preganglionic nerve stimulation induced tachycardia without altering the response to postganglionic nerve stimulation. The effect produced by blockade of ganglionic alpha 1-adrenoceptors with terazosin had different frequency-response characteristics from, was of smaller magnitude than, and was additive with the effect produced by blockade of ganglionic alpha 2-adrenoceptors with rauwolscine. The response to activation of ganglionic nicotinic cholinergic receptors in the absence of electrical stimulation of the preganglionic nerve was not affected by blockade of either alpha 1- or alpha 2-adrenoceptors. The response to nicotinic cholinergic receptor activation during periods of continuous preganglionic nerve stimulation was augmented following blockade of alpha 2-adrenoceptors but unaffected by alpha 1-adrenoceptor blockade. These results suggest that there are two different inhibitory pathways involving alpha-adrenoceptors in mammalian sympathetic ganglia and provide evidence that these inhibitory pathways are operative under the experimental conditions of ganglionic transmission.  相似文献   

5.
Levels of cyclic nucleotides and ornithine decarboxylase (ODC) activity were examined following the application of various kinds of stimuli to superior cervical sympathetic ganglia (SCG), nodose ganglia, and vagus nerve fibers excised from the rat. The level of cyclic GMP in the SCG rose rapidly to about 4.5- to 7.5-fold the unstimulated control with 10 min of incubation after applications of preganglionic electrical stimulation (10 Hz), acetylcholine (ACh; 1 mM), or high extracellular K+ ( [K+]0, 70 mM). The cyclic GMP level in nodose ganglia was increased less than in the SCG by either ACh or high [K+]0 but was not affected by ACh in vagus fibers. Cyclic AMP in the SCG was also increased about 4- to 5.5-fold over the control within 10 min with the addition of ACh, norepinephrine (NE; 0.05 mM), or high [K+]0. Although NE caused a small increase in cyclic AMP, neither ACh nor high [K+]0 produced any appreciable change in nodose ganglia or vagus fibers. The ODC activity in the SCG was increased by preganglionic stimulation of 3- to 4-hr duration but not by a shorter period. A similar change in ODC activity was caused by the addition of oxotremorine (1 mM), isoproterenol (0.1 mM), NE, cyclic AMP (1 mM), or dibutyryl cyclic GMP (1 mM). The effect was exaggerated by the further addition of 3-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor. The increase in ODC activity caused by ACh was abolished by a muscarinic cholinergic antagonist, atropine (0.01 mM), and following axotomy for a week, but not by a nicotinic antagonist or by denervation in the SCG. A similar increase in ganglionic ODC activity by NE was inhibited by an adrenergic blocker, propranolol (0.01 mM), and following axtotomy for a week, but not by denervation. Cholinergic or adrenergic stimulation did not cause an increase in ODC activity in nodose ganglia or vagus fibers. These results suggest that the stimulation-induced increase in ODC activity occurs in postganglionic neurons rather than in satellite glial cells and is mediated by muscarinic cholinergic or adrenergic receptors. The process appears to involve cyclic nucleotide-mediated protein biosynthesis in the SCG.  相似文献   

6.
These experiments measured the release and the synthesis of acetylcholine (ACh) by cat sympathetic ganglia in the presence of 2-(4-phenylpiperidino) cyclohexanol (AH5183), an agent that blocks the uptake of ACh into synaptic vesicles. Evoked transmitter release during short periods of preganglionic nerve stimulation was not affected by AH5183, but release during prolonged stimulation was not maintained in the drug's presence, whereas it was in the drug's absence. The amount of ACh releasable by nerve impulses in the presence of AH5183 was 194 +/- 10 pmol, which represented 14 +/- 1% of the tissue ACh store. The effect of AH5183 on ACh release was not well antagonized by 4-aminopyridine (4-AP), and not associated with inhibition of stimulation-induced calcium accumulation by nerve terminals. It is concluded that AH5183 blocks ACh release indirectly, and that the proportion of stored ACh releasable in the compound's presence represents transmitter in synaptic vesicles available to the release mechanism. The synthesis of ACh during 30 min preganglionic stimulation in the presence of AH5183 was 2,448 +/- 51 pmol and in its absence it was 2,547 +/- 273 pmol. Thus, as the drug decreased ACh release it increased tissue content. The increase in tissue content of ACh in the presence of AH5183 was not evident in resting ganglia; it was evident in stimulated ganglia whether or not tissue cholinesterase was inhibited; it was increased by 4-AP and reduced by divalent cation changes expected to decrease calcium influx during nerve terminal depolarization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Abstract: The acetylcholine (ACh) content of sympathetic ganglia increases above its normal level following a period of preganglionic nerve stimulation. In the present experiments, this extra ACh that accumulates following activity was labeled radioactively from [3H]choline and its specific activity was compared with that of ACh subsequently released during preganglionic nerve stimulation. The specific activity of the released ACh was similar to that of the total tissue ACh, suggesting that the extra ACh mixes fully with endogenous stores. The present experiments also show that transmitter release during neuronal stimulation is necessary for the poststimulation increase in transmitter store. However, the increase was not evident when transmitter release was induced by K+. It is concluded that both transmitter release and impulse invasion of the nerve terminals are necessary for the adaptive phenomenon to manifest itself. The role of choline delivery and choline acetyltransferase activity in generating the poststimulation increase in transmitter store was tested. When choline transport activity measured as choline analogue (homocholine) accumulation increased, ACh synthesis was increased and when transport activity was not increased, neither was ACh synthesis. There was no poststimulation increase in measured choline acetyltransferase activity.  相似文献   

8.
Abstract— The accumulation of radioactively labelled acetylcholine (ACh) by perfused superior cervical ganglia of cats and by incubated brain slices from rats was studied in the presence of diisopropylphosphorofluoridate. Ganglia accumulated more labelled ACh than an extracellular marker (inulin), but the amount of ACh accumulated did not increase when ACh turnover was increased by preganglionic nerve stimulation. The ACh that accumulated in ganglia was not released when the preganglionic nerve was subsequently stimulated. Sliced cerebral cortex also accumulated labelled ACh but this was not released when the tissue was subsequently exposed to a high K+ medium. Thus accumulated ACh does not appear to mix with releasable transmitter stores. Chronically (7 days) decentralized ganglia lost most of their transmitter store but retained their ability to accumulate labelled ACh. Uptake of ACh by sliced cerebellum was not less than uptake of ACh by sliced cerebral cortex and the amount of ACh accumulated by synaptosomes isolated from cerebellum was similar to the amount of ACh accumulated by synaptosomes isolated from cerebral cortex. It is concluded that ACh uptake is not specifically into cholinergic nerve endings. Hexamethonium reduced ACh uptake by cerebral cortex slices but did not increase the amount of ACh collected from slices stimulated by raised K+.  相似文献   

9.
Abstract— The increase in tyrosine hydroxylase activity in mouse superior cervical ganglion during postnatal development was prevented by administration of the protein synthesis inhibitor cycloheximide. Surgical section of the preganglionic nerves in 4-day-old mice prevented the normal increases in tyrosine hydroxylase and monoamine oxidase activity in the ganglion during development. Surgical decentralization also prevented the developmental increases in ganglion size and cell numbers. The preganglionic fibres thus appear to exert a general regulatory effect on the growth and biochemical maturation of postganglionic adrenergic neurons in sympathetic ganglia. Administration of nerve growth factor to young mice failed to eliminate the differences in ganglion size, cell numbers and tyrosine hydroxylase activity between normally innervated and decentralized ganglia. Nerve growth factor, however, caused an increase in all these parameters in both control and decentralized ganglia–the magnitude of these increases being greatest in the control ganglia. Administration of carbachol and physostigmine to neonatal mice did not influence the normal development of tyrosine hydroxylase activity in the superior cervical ganglion.  相似文献   

10.
Electrical stimulation of the chick ciliary nerve leads to a frequency-dependent increase in the Na+-dependent high affinity uptake of [3H]choline (SDHACU) and its conversion to acetylcholine (ACh) in the nerve terminals innervating the iris muscle. The forces that drive this choline (Ch) uptake across the presynaptic membrane were evaluated. Depolarization with increased [K+] out or veratridine decreases Ch accumulation. In addition to the electrical driving force, energy is provided by the Na+ gradient. Inhibition of the Na,K-ATPase decreased the Ch taken up. Thus, changes in the rate of Ch transport are dependent on the electrochemical gradients for both Ch and Na+. Ch uptake and ACh synthesis were increased after a conditioning preincubation with high [K+] out or veratridine. As is the case for electrical stimulation, this acceleration of Ch uptake and ACh synthesis was strongly dependent on the presence of Ca++ in the incubation medium. Na+ influx through a TTX-sensitive channel also contributed to this acceleration. Inasmuch as membrane depolarization reduces the initial velocity of Ch uptake and ACh synthesis, their increases during electrical stimulation therefore cannot be the direct effect of the depolarization phase of the action potential. Instead they are the result of the ionic fluxes accompanying the presynaptic spike. It is concluded that stimulation of Ch uptake and ACh synthesis by nerve activity depends first, on the ACh release elicited by Ca++ influx after depolarization and second, on the activation of the Na,K-ATPase due to Na+ entry. Furthermore, it is suggested that the release of ACh after stimulation drives translocation of cytoplasmic ACh into a protected compartment (probably vesicular). This recompartmentation of intraterminal ACh stimulates ACh synthesis by mass action, allowing further accumulation of Ch.  相似文献   

11.
The present experiments measured the release and the synthesis of acetylcholine (ACh) by cat sympathetic ganglia in the presence of 2-(4-phenylpiperidino)cyclohexanol (AH5183 or vesamicol) and/or picrylsulfonic acid (TNBS), two compounds known to have the ability to block the uptake of ACh by cholinergic synaptic vesicles in vitro. We confirmed that, in stimulated (5 Hz) perfused (30 min) ganglia, AH5183 depressed ACh release and ACh tissue content increased by 86 +/- 6% compared to contralateral ganglia used as controls. Preganglionic activity increased ACh release by a similar amount in the presence (19.9 +/- 1.0 pmol/min) or absence (20.5 +/- 2.4 pmol/min) of TNBS. The final tissue ACh content was also similar in the presence (1,668 +/- 166 pmol) or absence (1,680 +/- 56 pmol) of TNBS. However, the AH5183-induced increase of tissue ACh content (86 +/- 6%) was abolished completely when AH5183 was perfused with 1.5 mM TNBS (-3.0 +/- 1.0%). This inhibition of ACh synthesis, observed in TNBS-AH5183-perfused ganglia, was not dependent upon further inhibition of ACh release beyond that caused by AH5183 alone, because 14.0 +/- 1.9% of the transmitter store was released by preganglionic nerve stimulation in the presence of TNBS plus AH5183 and this was similar in the presence of AH5183 without TNBS (14.0 +/- 0.6%). Moreover, when ganglia were first treated with TNBS and then stimulated in the presence of AH5183, an increase of 64 +/- 6% of the ganglionic ACh content occurred, and this increase was not statistically different from the increase measured with AH5183 alone (86 +/- 6%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Schäufele N  Diener M 《Life sciences》2005,77(20):2489-2499
Voltage-dependent Ca2+ channels of fura-2-loaded ganglionic cells from the myenteric plexus of newborn rats were pharmacologically characterised. In contrast to completely dissociated myenteric cells, intact ganglia showed a stronger loading with the Ca2+-sensitive dye and a reproducible stimulation of the fura-2 signal by the cholinergic agonist, carbachol. A depolarisation-induced increase in the intracellular Ca2+ concentration ([Ca2+]i) was induced by superfusion with 35 mmol l(-1) KCl. This increase in [Ca2+]i was sensitive to Ni2+ and Co2+ as well as omega-conotoxin MVIIA, omega-agatoxin IVA, and SNX-482. The strongest inhibition was achieved by nifedipine (5 x 10(-7) mol l(-1)) and omega-conotoxin GVIA (4.3 x 10(-7) mol l(-1)). These two blockers also inhibited the [Ca2+]i increase evoked by nicotinic receptor stimulation. Consequently, isolated myenteric ganglia in culture express different types of voltage-dependent Ca2+ channels, from which the L- and the N-type seem to be the most important. When exposed to mediators of inflammation such as tumor necrosis factor-alpha (TNF-alpha) or different prostaglandins, no pronounced alterations in the fura-2 ratio were observed suggesting that changes in the Ca2+-signalling are not centrally involved in the response of enteric ganglionic cells to these paracrine substances.  相似文献   

13.
Abstract: The present study was initiated to examine the effects of ATP on acetylcholine (ACh) synthesis. The exposure of superior cervical ganglia to ATP increased ACh stores by 25%, but this effect was also evident with ADP, AMP, and adenosine, but not with βγ-methylene ATP, a nonhydrolyzable analogue of ATP, or with inosine, the deaminated product of adenosine. Thus, we attribute the enhanced ACh content caused by ATP to the presence of adenosine derived from its hydrolysis by 5′-nucleotidase. The adenosine-induced increase of tissue ACh was not the consequence of an adenosine-induced decrease of ACh release. The extra ACh remained in the tissue for more than 15 min after the removal of adenosine, but it was not apparent when ganglia were exposed to adenosine in a Ca2+-free medium. Incorporation of radiolabelled choline into [3H]ACh was also enhanced in the presence of adenosine, suggesting an extracellular source of precursor. Moreover, the synthesis of radiolabelled forms of phosphorylcholine and phospholipid was not reduced in adenosine's presence, suggesting that the extra ACh was not likely derived from choline destined for phospholipid synthesis. Aminophylline did not prevent the adenosine effect to increase ACh content; this effect was blocked by dipyridamole, but not by nitrobenzylthioinosine (NBTI). In addition, two benzodiazepine stereoisomers known to inhibit stereoselectively the NBTI-resistant nucleoside transporter displayed a similar stereoselective ability to block the effect of adenosine. Together, these results argue that adenosine is transported through an NBTI-resistant nucleoside transporter to exert an effect on ACh synthesis. The extra ACh accumulated as a result of adenosine's action was releasable during subsequent preganglionic nerve stimulation, but not in the presence of vesamicol, a vesicular ACh transporter inhibitor. We conclude that the mobilization of ACh is enhanced as a result of adenosine pretreatment.  相似文献   

14.
In the present experiments we interfered with the mechanism of acetylcholine (ACh) synthesis in the rat superior cervical ganglion by impairing the supply of either the choline group (hemicholinium no. 3 [HC-3]treatment) or the acetyl group (thiamine deprivation). Under both conditions stimulation causes in the ganglion a progressive decline in ACh output associated with a depletion of transmitter tissue content. ACh release from the terminals of a single preganglionic fiber was estimated from the quantum content value of the evoked excitatory postsynaptic potentials (EPSP's) recorded intracellularly in the ganglion neuron under test. The present observations indicate that Poisson statistics describe transmitter release at either low or high release levels. Furthermore, the progressive decline in the rate of ACh output occurring during repetitive stimulation is shown to correspond to a progressive decrease in the number of transmitter quanta released per impulse and not to any modification in the size of individual quanta. Some 8,000 transmitter quanta proved to represent the presynaptic transmitter store initially present in those terminals on a neuron that are activated by stimulation of a single preganglionic fiber. Speculations are considered about synaptic efficacy and nerve connections in rat autonomic ganglia. It is suggested that six preganglionic fibers represent the mean input to a ganglion neuron.  相似文献   

15.
The augmentation of ventricular inotropism induced by electrical stimulation of acutely decentralized efferent sympathetic preganglionic axons was reduced, but still present, following administration of hexamethonium (10 mg/kg i.v.). While hexamethonium continued to be administered, the cardiac augmentations so induced were enhanced significantly following administration of the alpha-adrenergic receptor blocking agent, phentolamine myselate (1 mg/kg i.v.). Stimulation of the sympathetic efferent postganglionic axons in cardiopulmonary nerves induced cardiac augmentations that were unchanged following administration of these agents singly or together. The cardiac augmentations induced by stimulation of efferent preganglionic sympathetic axons were unchanged when phentolamine was administered alone. The augmentations of cardiac inotropism induced by efferent postganglionic sympathetic axonal stimulation were decreased following local administration of the beta-adrenergic antagonist timolol into the ipsilateral stellate and middle cervical ganglia. Thereafter, these augmentations were unchanged following the subsequent intravenous administration of phentolamine. It is concluded that the activation of cardiac neurons in the stellate and middle cervical ganglia by stimulation of efferent preganglionic sympathetic axons can be modified by alpha-adrenergic receptors and that these effects are dependent upon beta-adrenergic receptors, not nicotinic ones, in intrathoracic ganglia.  相似文献   

16.
Atropine is known to increase the release of acetylcholine (ACh) from cerebral cortex, and the present experiments tested the effect of this drug upon ACh release in the superior cervical ganglion of the cat. The release of ACh was measured by a radio-enzymic method, which was shown to provide an estimate of the ACh content of samples collected from perfused ganglia that was similar (102%) to that obtained by the method of bioassay more usually used . Atropine (3 X 10(-6) M) increased (3.5 to 4-fold) the amount of ACh released by rat's sliced cerebral cortex incubated in a high (23 mM) potassium medium. However atropine (3 X 10(-6)-3 X 10(-5) M) did not change the amount of ACh released by ganglia during preganglionic nerve stimulation (5-10 Hz). It is concluded that cholinergic nerve terminals in different tissues appear to have different pharmacological properties.  相似文献   

17.
It has previously been reported that in the isolated cat superior cervical ganglion (SCG) labeled with tritiated norepinephrine (3H-NE), the stimulation of the preganglionic trunk at 10 Hz as well as the exposure to 100 microM exogenous acetylcholine (ACh), produced a Ca++-dependent release of 3H-NE. The present results show that a Ca++-dependent release of 3H-NE was produced also by exposure to either 50 microM veratridine or 60 mM KCl. Tetrodotoxin (0.5 microM) abolished the release of 3H-NE induced by preganglionic stimulation, ACh and veratridine but did not modify the release evoked by KCl. The metabolic distribution of the radioactivity released by the different depolarizing stimuli showed that the 3H-NE was collected mainly unmetabolized. In the cat SCG neither the release of 3H-NE evoked by KCl nor the endogenous content of NE was modified by pretreatment with 6-OH-dopamine (6-OH-DA). On the other hand, this chemical sympathectomy depleted the endogenous content of NE in the cat nictitating membrane, whose nerve terminals arise from the SCG. The data presented suggest that the depolarization-coupled release of NE from the cat SCG involves structures that are different to nerve terminals and that contain Na+ channels as well as Ca++ channels.  相似文献   

18.
Superior cervical ganglia isolated from immature cats accumulated 0.9 ng atoms of 45Ca per mg wet weight during 10-min incubations at 37°C; when expressed as an equivalent volume of medium the accumulation was four times the uptake of 3H-inulin. Orthodromic stimulation of the ganglia doubled 45Ca accumulation, whereas excitation with 50 mM KCl, 5 mM glutamate, or antidromic stimulation increased accumulation by one-half. Hexamethonium reduced the increment in 45Ca accumulation due to orthodromic stimulation only, but another ganglionic blocking agent, tetraethylammonium, did not reduce accumulation in any case. Both agents blocked ganglionic transmission monitored electrophysiologically. To resolve this discrepancy, and to approach the localization of 45Ca within the ganglia, the efflux of previously accumulated 45Ca was examined. The data could be fitted by an equation incorporating the sum of three exponentials, representing a rapidly exchanging compartment plus two more slowly exchanging ones. The latter two appeared to reflect the pre- and postganglionic elements in the ganglia: 45Ca content of the “preganglionic” compartment was increased by orthodromic but not by antidromic stimulation, and was not decreased by either blocking agent; conversely, 45Ca content of the “postganglionic” compartment was increased by both orthodromic and antidromic stimulation, and was decreased by both blocking agents after orthodromic stimulation. The lack of effect of tetraethylammonium on the whole ganglion resulted from an increase in “preganglionic” accumulation that offset the “postganglionic” decrease. After preganglionic denervation, the 45Ca content of the “preganglionic” compartment was reduced by two-thirds, while the 45Ca content of the “postganglionic” compartment was unchanged. Chemical stimulation increased 45Ca accumulation in both compartments. Diphenylhydantoin, 0.1 mM, decreased the increment in 45Ca accumulation due to electrical stimulation and to 50 mM KCl; this inhibition occurred in the “preganglionic” compartment (and perhaps also in the “postganglionic”), and was accompanied by an increased efflux of 45Ca.  相似文献   

19.
1. The effect of acetylcholine (ACh) on the ion transport of frog (Rana esculenta) sartorius muscles was studied. ACh was applied in bathing solution, Na influx and K efflux were measured using 24Na and 42K isotopes. 2. Na influx of sartorius muscles was increased by 1 mmol/1 ACh 2-10 fold depending on the experimental arrangement. The increase was greater if Na influx was measured at the beginning of ACh depolarization. During ACh treatment the Na influx took about the same time course as the depolarization recorded extracellularly. This type of recording approximately reflects the depolarization proceeding on the sartorius muscle fibres. 3. The presence of 31 nmol/l tetrodotoxin (TTX) did not modify the degree of increase of Na influx. 4. Rate coefficients for K efflux were increased 2-5 fold by ACh. The maximum rate coefficients were obtained in the first minute of ACh treatment. 5. Increase in K loss evolves also in the presence of 31 nmol/l TTX. The increase in rate coefficients was found to be about 30% less than without TTX in the first minute of ACh action. 6. The results indicate that in the presence of ACh the observed increase in Na influx and K efflux is brought about mainly by changes in Na and K conductance induced by ACh at the end-plates rather than by the action potentials accompanying ACh depolarization.  相似文献   

20.
The effect of nerve stimulation on inositol phospholipid hydrolysis in autonomic tissue was assessed by direct measurement of [3H]inositol phosphate production in ganglia that had been preincubated with [3H]inositol. Within minutes, stimulation of the preganglionic nerve increased the [3H]inositol phosphate content of the superior cervical sympathetic ganglion indicating increased hydrolysis of inositol phospholipids. This effect was blocked in a low Ca2+, high Mg2+ medium. It was also greatly reduced when nicotinic and muscarinic antagonists were present together in normal medium. However, neither the nicotinic antagonist nor the muscarinic antagonist alone appeared to be as effective as both in combination. In other experiments, stimulation of the vagus nerve caused dramatic increases in [3H]inositol phosphate in the nodose ganglion but did not increase [3H]inositol phosphate in the nerve itself. This effect was insensitive to the cholinergic antagonists. Thus, neuronal activity increased inositol phospholipid hydrolysis in a sympathetic ganglion rich in synapses, as well as in a sensory ganglion that contains few synapses. In the sympathetic ganglion, synaptic stimulation activated inositol phospholipid hydrolysis and this was primarily due to cholinergic transmission; both nicotinic and muscarinic pathways appeared to be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号