首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have demonstrated that a synthetic peptide corresponding to the rat mitochondrial malate dehydrogenase (mMDH) transit peptide (TP-28) inhibits the binding of pre-mMDH to isolated mitochondria. Synthetic peptides derived from chloroplast transit peptide sequences, which have a similar net charge, did not inhibit import. In addition, this peptide (TP-28) inhibits import of ornithine transcarbamylase, another mitochondrial matrix protein, thus suggesting that common import pathways exist for both mMDH and ornithine transcarbamylase. A smaller synthetic peptide corresponding to residues 1-20 of the mMDH transit peptide (TP-20) also inhibits binding. However, several substitutions for leucine-13 in the smaller peptide relieve import inhibition, thus providing evidence that this neutral residue plays a crucial role in transit peptide binding to the mitochondrial surface. Proteolytic processing of pre-mMDH by a mitochondrial matrix fraction to both the mature and intermediate forms of mMDH was also inhibited by TP-28. The ability of synthetic peptides to inhibit distinct steps in the import of mitochondrial precursor proteins corresponds precisely to their ability to interact with the same components used by transit peptides on intact precursors. Furthermore, inhibition at multiple points along the import pathway reflects the functions of several independent structures contained within transit peptides.  相似文献   

2.
Arginine residues in the transit peptides of mitochondrial precursors are proposed to be important for uptake into mitochondria. To study this further, we have used cassette mutagenesis to create site-specific amino acid replacements within the transit peptide of rat mitochondrial malate dehydrogenase. Plasmids containing mutant sequences were expressed in vitro and tested in a mitochondrial uptake system utilizing isolated rat liver mitochondria. Substitution for arginine at position 14 with asparagine, glutamine, or alanine decreased the relative import level by 20-30% compared to the wild-type sequence when assayed in 1-h uptake experiments. Although lysine substitution did not alter import, substitution with glutamic acid decreased import by 40%. Alanine substitution for arginines at both positions 14 and 15 also dramatically decreased import. Uptake was partially restored in this mutant when positive charge was inserted at a new location within the transit peptide. Time course experiments showed that the initial rates of import were decreased in these mutants, as were the relative amounts of incorporated protein. These results were best explained by the loss of positive charge following amino acid substitutions for the arginine residues and suggest that the role of the charge is to enhance the efficiency of membrane translocation.  相似文献   

3.
Previous studies employing circular dichroism and resonance energy transfer techniques have demonstrated that the signal peptide of mitochondrial preornithine carbamyltransferase (pOCT) has the potential to interact with the surface of an anionic phospholipid membrane via a short amphiphilic helical domain. Here we have used predictive secondary structure computations as a guide to localize the putative membrane binding region in the pOCT signal sequence and demonstrate that replacement of leucine residues at positions 5, 8, and 9 with the less hydrophobic residue, alanine, significantly reduces the rate of precursor import (4-5-fold compared to wild type); the amino acid substitutions had little effect, however, on the ability of a mitochondrial matrix extract to process the mutant precursor polypeptide. The mutant precursor bound to anionic liposomes with a lower affinity compared to wild-type pOCT and was inhibited to a lesser extent than pOCT during import into mitochondria in the presence of varying concentrations of liposomes. Taken together, the results suggest that this small region of the pOCT signal sequence, containing a limited number of critical hydrophobic residues, contributes to the optimal rate of precursor import, perhaps by functioning as a membrane surface-seeking entity.  相似文献   

4.
We have determined the complete sequence of the rat mitochondrial malate dehydrogenase (mMDH) precursor derived from nucleotide sequence of the cDNA. A single synthetic oligodeoxynucleotide probe was used to screen a rat atrial cDNA library constructed in lambda gt10. A 1.2 kb full-length cDNA clone provided the first complete amino acid sequence of pre-mMDH. The 1014 nucleotide-long open reading frame encodes the 314 residue long mature mMDH protein and a 24 amino acid NH2-terminal extension which directs mitochondrial import and is cleaved from the precursor after import to generate mature mMDH. The amino acid composition of the transit peptide is polar and basic. The pre-mMDH transit peptide shows marked homology with those of two other enzymes targeted to the rat mitochondrial matrix.  相似文献   

5.
Gietl C 《Plant physiology》1992,100(2):557-559
Malate dehydrogenase isoenzymes catalyzing the oxidation of malate to oxaloacetate are highly active enzymes in mitochondria, in peroxisomes, in chloroplasts, and in the cytosol. Determination of the primary structure of the isoenzymes has disclosed that they are encoded in different nuclear genes. All three organelle-targeted malate dehydrogenases are synthesized with an amino terminal extension that is cleaved off in connection with the import of the enzyme precursor into the organelle. The sequence of the 27 amino acids of the mitochondrial transit peptide is unrelated to the 37-residue glyoxysomal transit peptide, which in turn is entirely different in sequence from the 57-residue chloroplastic transit peptide. With the exception of malate dehydrogenase and 3-ketoacyl thiolase, peroxisomal enzymes are synthesized without transit peptides and are frequently translocated into the organelle with a peroxisomal targeting signal consisting of a conserved tripeptide at the carboxy terminus of the protein. Based on the observation that this tripeptide (Ala-His-Leu) occurs in the transit peptides of glyoxysomal malate dehydrogenase and peroxisomal 3-ketoacyl thiolase, the possible significance of amino terminal transit peptides for peroxisome import is discussed.  相似文献   

6.
The complete amino acid sequence of mitochondrial malate dehydrogenase from rat heart has been determined by chemical methods. Peptides used in this study were purified after digestions with cyanogen bromide, trypsin, endoproteinase Lys C, and staphylococcal protease V-8. The amino acid sequence of this mature enzyme is compared with that of the precursor form, which includes the primary structure of the transit peptide. The transit peptide is required for incorporation into mitochondria and appears to be homologous to the NH2-terminal arm of a related cytoplasmic enzyme, pig heart lactate dehydrogenase. The amino acid differences between the rat heart and pig heart mitochondrial malate dehydrogenases are analyzed in terms of the three-dimensional structure of the latter. Only 12/314 differences are found; most are conservative changes, and all are on or near the surface of the enzyme. We propose that the transit peptide is located on the surface of the mitochondrial malate dehydrogenase precursor.  相似文献   

7.
Organellar nuclear-encoded proteins can be mitochondrial, chloroplastic or localized in both mitochondria and chloroplasts. Most of the determinants for organellar targeting are localized in the N-terminal part of the proteins, which were therefore analyzed in Arabidopsis thaliana. The mitochondrial, chloroplastic and dual N-terminal sequences have an overall similar composition. However, Arg is rare in the first 20 residues of chloroplastic and dual sequences, and Ala is more frequent at position 2 of these two types of sequence as compared to mitochondrial sequences. According to these observations, mutations were performed in three dual targeted proteins and analyzed by in vitro import into isolated mitochondria and chloroplasts. First, experiments performed with wild-type proteins suggest that the binding of precursor proteins to mitochondria is highly efficient, whereas the import and processing steps are more efficient in chloroplasts. Moreover, different processing sites are recognized by the mitochondrial and chloroplastic processing peptidases. Second, the mutagenesis approach shows the positive role of Arg residues for enhancing mitochondrial import or processing, as expected by the in silico analysis. By contrast, mutations at position 2 have dramatic and unpredicted effects, either enhancing or completely abolishing import. This suggests that the nature of the second amino acid residue of the N-terminal sequence is essential for the import of dual targeted sequences.  相似文献   

8.
We have previously reported that the precursor of rat liver mitochondrial malate dehydrogenase, synthesized in vitro, is about 1,500 to 2,000 Mr larger than the mature enzyme and can be processed to the mature size by isolated mitochondria from Chinese hamster ovary cells (Chien, S.-M. and Freeman, K. B. (1984) J. Biol. Chem. 259, 3337-3342). Furthermore, binding, but not processing, was observed in the presence of an uncoupler. Binding was insensitive to temperature and was completed within 2.5 min at 0 degrees C. The role of binding in the overall process of import of the precursor is now further characterized. The precursor form, bound either in the presence of an uncoupler or at 0 degrees C, was sensitive to trypsin suggesting that binding occurs on the mitochondrial outer membrane. Saturation of binding was observed with a limited amount of mitochondria and an excess of in vitro translated rat liver proteins indicating that there is a finite number of binding sites. Furthermore, when the precursor was prebound to mitochondria at 0 degrees C for 5 min, the precursor was processed to the mature size and the rate of processing was independent of the volume of reaction mixture. In contrast, the rate of processing of unbound precursor was dependent on reaction volume. These results strongly suggest that binding of the precursor of malate dehydrogenase to the mitochondrial outer membrane is an intermediate step in its import.  相似文献   

9.
The structure of the tricarboxylic acid cycle enzyme malate dehydrogenase is highly conserved in various organisms. To test the extent of functional conservation, the rat mitochondrial enzyme and the enzyme from Escherichia coli were expressed in a strain of Saccharomyces cerevisiae containing a disruption of the chromosomal MDH1 gene encoding yeast mitochondrial malate dehydrogenase. The authentic precursor form of the rat enzyme, expressed using a yeast promoter and a multicopy plasmid, was found to be efficiently targeted to yeast mitochondria and processed to a mature active form in vivo. Mitochondrial levels of the polypeptide and malate dehydrogenase activity were found to be similar to those for MDH1 in wild-type yeast cells. Efficient expression of the E. coli mdh gene was obtained with multicopy plasmids carrying gene fusions encoding either a mature form of the procaryotic enzyme or a precursor form with the amino terminal mitochondrial targeting sequence from yeast MDH1. Very low levels of mitochondrial import and processing of the precursor form were obtained in vivo and activity could be demonstrated for only the expressed precursor fusion protein. Results of in vitro import experiments suggest that the percursor form of the E. coli protein associates with yeast mitochondria but is not efficiently internalized. Respiratory rates measured for isolated yeast mitochondria containing the mammalian or procaryotic enzyme were, respectively, 83 and 62% of normal, suggesting efficient delivery of NADH to the respiratory chain. However, expression of the heterologous enzymes did not result in full complementation of growth phenotypes associated with disruption of the yeast MDH1 gene.  相似文献   

10.
In vitro synthesized precursors of several mitochondrial proteins, including P-450(SCC), adrenodoxin, and malate dehydrogenase, bound to liposomes prepared from mitochondrial phospholipids, but not to those from microsomal phospholipids. When liposomes were prepared from various pure phospholipids, adrenodoxin precursor was bound only to the liposomes that contained cardiolipin. The liposomes containing other phospholipids did not show the binding affinity for the precursor. The binding was observed only with the precursor peptides of adrenodoxin and malate dehydrogenase, and their mature forms were not bound to the liposomes. The binding of the precursors was dependent on the concentration of cardiolipin in the liposomes. Liposomes containing various cardiolipin derivatives with modified polar head groups showed very different binding affinity for adrenodoxin precursor, suggesting the importance of the structure of the polar head of the cardiolipin molecule. Two or three positively charged amino acid residues in the extension peptide of P-450(SCC) precursor were replaced by neutral amino acid residues by site-directed mutagenesis. The mutated P-450(SCC) precursors did not bind to the liposomes containing cardiolipin. The results indicated that mitochondrial protein precursors have specific affinity for cardiolipin, and the affinity was due to the interaction between the extension peptides of the precursors and the polar head of the cardiolipin molecule.  相似文献   

11.
An apparent conservative mutation, Leu to Val, at the second residue of the rat liver mitochondrial aldehyde dehydrogenase (ALDH) presequence resulted in a precursor protein that was not imported into mitochondria. Additional mutants were made to substitute various amino acids with nonpolar side chains for Leu2. The Ile, Phe, and Trp mutants were imported to an extent similar to that of the native precursor, but the Ala mutant was imported only about one-fourth as well. It was shown that the N-terminal methionine was removed from the L2V mutant in a reaction catalyzed by methionine aminopeptidase. The N-terminal methionine of native pALDH and the other mutant presequences was blocked, presumably by acetylation. Because of the difference in co-translational modification, the L2V mutant sustained a significant loss in the available hydrophobic surface of the presequence. Import competence was restored to the L2V mutant when it was translated using a system that did not remove Met1. The removal of an Arg-Gly-Pro helix linker segment (residues 11-14) from the L2V mutant, which shifted three leucine residues toward the N-terminus, also restored import competence. These results lead to the conclusion that a minimum amount of hydrophobic surface area near the N-termini of mitochondrial presequences is an essential property to determine their ability to be imported. As a result, both electrostatic and hydrophobic components must be considered when trying to understand the interactions between precursor proteins and proteins of the mitochondrial import apparatus.  相似文献   

12.
13.
A cytosolic protein factor(s) is involved in the import of precursor proteins into mitochondria. PBF (presequence binding factor) is a protein factor which binds to the precursor form (pOTC) of rat ornithine carbamoyltransferase (OTC) but not to the mature OTC, and is required for the mitochondrial import of pOTC. The precursors for aspartate aminotransferase and malate dehydrogenase as well as pOTC synthesized in a reticulocyte lysate were efficiently imported into the mitochondria. However, the precursors synthesized in the lysate depleted for PBF by treatment with pOTC-Sepharose were not imported. Readdition of the purified PBF to the depleted lysate fully restored the import. pOTC synthesized in the untreated lysate sedimented as a complex with a broad peak of around 9 S, whereas pOTC synthesized in the PBF-depleted lysate sedimented at an expected position of monomer (2.5 S). When the purified PBF was readded to the depleted lysate, pOTC sedimented as a complex of about 7 S. In contrast to most mitochondrial proteins, rat 3-oxoacyl-CoA thiolase is synthesized with no cleavable presequence and an NH2-terminal portion of the mature protein functions as a mitochondrial import signal. The thiolase synthesized in the PBF-depleted lysate could be efficiently imported into the mitochondria, and readdition of PBF had little effect on the import. The thiolase synthesized in the untreated, the PBF-depleted, or the PBF-readded lysate sedimented at an expected position of monomer (2.5 S). These observations provide support for the existence of PBF-dependent and -independent pathways of mitochondrial protein import.  相似文献   

14.
We recently demonstrated, using synthetic peptides modeled on the extension peptide of malate dehydrogenase, that amino acid residues present at the proximal and distal positions relative to the cleavage site are critical determinants for the recognition of substrates by mitochondrial processing peptidase [Niidome et al. (1994) J. Biol. Chem. 269, 24719-24722). While the proximal arginine is unexceptionally located at the -2 position, the position of the distal residue varies among mitochondrial precursor proteins. Between the proximal and distal residues, proline and/or glycine are present in most mitochondrial precursor proteins, and they are considered to play a role in the specific recognition of a substrate by the peptidase. To elucidate the role of the intervening portion, we introduced a non-natural amino acid [2-(2-aminoethoxy)acetic acid] between the distal and proximal residues. We also analyzed the functional elements in the proximal arginine by replacing the residue with various arginine or lysine analogs. The results of kinetic studies indicated that the intervening portion should be flexible for efficient processing, and that the guanidino group of the proximal arginine is recognized by the peptidase through hydrogen and ionic bonds.  相似文献   

15.
Mitochondrial and glyoxysomal malate dehydrogenase (mMDH; gMDH; L-malate: NAD+ oxidoreductase; EC 1.1.1.37) of watermelon (Citrullus vulgaris) cotyledons are synthesized with N-terminal cleavable presequences which are shown to specify sorting of the two proteins. The two presequences differ in length (27 or 37 amino acids) and primary structure. Precursor proteins of the two isoenzymes with site-directed mutations in their presequences and hybrid precursor proteins with reciprocally exchanged presequences were analyzed for proper import using two approaches, namely in vitro using isolated watermelon organelles or in vivo after synthesis in the heterologous host, Hansenula polymorpha. The mitochondrial presequence is essential and sufficient to target the mature glyoxysomal isoenzyme into mitochondria (Gietl et al., 1994). As to the function of the mitochondrial presequence a substitution of ?3R (considered important for one step precursor cleavage in yeast and mammals) with ?3L permitted import into mitochondria but cleavage of the transit peptide and conversion into active mature enzyme was impeded. Substitution of ?13R?12S (in a sequence reminiscent of the octapeptide motif serving as a substrate for the mammalian and yeast intermediate peptidase) into ?13L12F permitted mitochondrial import and processing like the wild type transit peptide. Purified rat mitochondrial processing protease, which can effect single step cleavage of mitochondrial protein precursors, cleaves in vitro translated watermelon mMDH precursor into its mature form. The glyoxysomal presequence is essential and sufficient to target the mature mitochondrial isoenzyme into peroxisomes of Hansenula polymorpha, but these peroxisomes lack a processing enzyme to cleave the presequence (Gietl et al., 1994). We here show that isolated watermelon organelles also import the hybrid proteins in vitro and process the glyoxysomal presequence. Site directed mutations within the conserved RI-X5-HL-motif impede efficiency of import and cleavage by watermelon organelles.  相似文献   

16.
S Furuya  K Mihara  S Aimoto    T Omura 《The EMBO journal》1991,10(7):1759-1766
We chemically synthesized a peptide, 11 beta-45, which was composed of 45 amino acid residues including the whole extension peptide and some of the mature portion of bovine cytochrome P-450(11 beta) precursor. 11 beta-45 was imported into mitochondria in vitro depending on the mitochondrial membrane potential, but its import did not require extramitochondrial ATP. Although cytosolic protein factors in the high speed supernatant of reticulocyte lysate are known to stimulate the import of various precursor proteins into mitochondria, the import of 11 beta-45 was not stimulated by cytosolic factors in reticulocyte lysate. The import of the peptide did not require mitochondrial surface protein components because its import was not affected by trypsin treatment of mitochondria. On the other hand, trypsin treatment of mitoplasts resulted in a great reduction in the import of the peptide, indicating that 11 beta-45 interacts during the import process with some protein components located inside mitochondria. These observations indicated that the peptide 11 beta-45 was imported via the potential-dependent pathway as in the case of precursor proteins, but skipped the interactions with cytosolic factors and mitochondrial surface components normally required for the import of precursor proteins.  相似文献   

17.
In order to study the role of protein unfolding during post-translational protein import into mitochondria, we destabilized the structure of a mitochondrial precursor protein by site-directed mutagenesis. The precursor consisted of the first 16 residues of the yeast cytochrome oxidase subunit IV precursor fused to mouse dihydrofolate reductase. Labilization of the folded precursor structure was monitored by increased susceptibility to protease and diminished ability of methotrexate to block import of the precursor into isolated yeast mitochondria. On comparing the original precursor with two mutant forms that were destabilized to different degrees, increased labilization correlated with an increased rate and efficiency of import into mitochondria. This supports the view that the precursor must unfold in order to enter the mitochondria.  相似文献   

18.
Proteins destined for the mitochondrial matrix space have leader sequences that are typically present at the most N-terminal end of the nuclear-encoded precursor protein. The leaders are rich in positive charges and usually deficient of negative charges. This observation led to the acid-chain hypothesis to explain how the leader sequences interact with negatively charged receptor proteins. Here we show using both chimeric leaders and one from isopropyl malate synthase that possesses a negative charge that the leader need not be at the very N terminus of the precursor. Experiments were performed with modified non-functioning leader sequences fused to either the native or a non-functioning leader of aldehyde dehydrogenase so that an internal leader sequence could exist. The internal leader is sufficient for the import of the modified precursor protein. It appears that this leader still needs to form an amphipathic helix just like the normal N-terminal leaders do. This internal leader could function even if the most N-terminal portion contained negative charges in the first 7-11 residues. If the first 11 residues were deleted from isopropyl malate synthase, the resulting protein was imported more successfully than the native protein. It appears that precursors that carry negatively charged leaders use an internal signal sequence to compensate for the non-functional segment at the most N-terminal portion of the protein.  相似文献   

19.
Import of nuclear-encoded proteins into mitochondria and chloroplasts is generally organelle specific and its specificity depends on the N-terminal signal peptide. Yet, a group of proteins known as dual-targeted proteins have a targeting peptide capable of leading the mature protein to both organelles. We have investigated the domain structure of the dual-targeted pea glutathione reductase (GR) signal peptide by using N-terminal truncations. A mutant of the GR precursor (pGR) starting with the second methionine residue of the targeting peptide, pGRdelta2-4, directed import into both organelles, negating the possibility that dual import was controlled by the nature of the N terminus. The deletion of the 30 N-terminal residues (pGRdelta2-30) inhibited import efficiency into chloroplasts substantially and almost completely into mitochondria, whereas the removal of only 16 N-terminal amino acid residues (pGRdelta2-16) resulted in the strongly stimulated mitochondrial import without significantly affecting chloroplast import. Furthermore, N-terminal truncations of the signal peptide (pGRdelta2-16 and pGRdelta2-30) greatly stimulated the mitochondrial processing activity measured with the isolated processing peptidase. These results suggest a domain structure for the dual-targeting peptide of pGR and the existence of domains controlling organellar import efficiency therein.  相似文献   

20.
The positive charges and structural properties of the mitochondrial leader sequence of aldehyde dehydrogenase have been extensively studied in vitro. The results of these studies showed that increasing the helicity of this leader would compensate for reduced import from positive charge substitutions of arginine with glutamine or the insertion of negative charged residues made in the native leader. In this in vivo study, utilizing the green fluorescent protein (GFP) as a passenger protein, import results showed the opposite effect with respect to helicity, but the results from mutations made within the native leader sequence were consistent between the in vitro and in vivo experiments. Leader mutations that reduced the efficiency of import resulted in a cytosolic accumulation of a truncated GFP chimera that was fluorescent but devoid of a mitochondrial leader. The native leader efficiently imported before GFP could achieve a stable, import-incompetent structure, suggesting that import was coupled with translation. As a test for a co-translational mechanism, a chimera of GFP that contained the native leader of aldehyde dehydrogenase attached at the N terminus and a C-terminal endoplasmic reticulum targeting signal attached to the C terminus of GFP was constructed. This chimera was localized exclusively to mitochondria. The import result with the dual signal chimera provides support for a co-translational mitochondrial import pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号