首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dystroglycan adhesion complex consists of two noncovalently interacting proteins: alpha-dystroglycan, a peripheral extracellular subunit that is extensively glycosylated, and the transmembrane beta-dystroglycan, whose cytosolic tail interacts with dystrophin, thus linking the F-actin cytoskeleton to the extracellular matrix. Dystroglycan is thought to play a crucial role in the stability of the plasmalemma, and forms strong contacts between the extracellular matrix and the cytoskeleton in a wide variety of tissues. Abnormal membrane targeting of dystroglycan subunits and/or their aberrant post-translational modification are often associated with several pathologic conditions, ranging from neuromuscular disorders to carcinomas. A putative functional hotspot of dystroglycan is represented by its intersubunit surface, which is contributed by two amino acid stretches: approximately 30 amino acids of beta-dystroglycan (691-719), and approximately 15 amino acids of alpha-dystroglycan (550-565). Exploiting alanine scanning, we have produced a panel of site-directed mutants of our two consolidated recombinant peptides beta-dystroglycan (654-750), corresponding to the ectodomain of beta-dystroglycan, and alpha-dystroglycan (485-630), spanning the C-terminal domain of alpha-dystroglycan. By solid-phase binding assays and surface plasmon resonance, we have determined the binding affinities of mutated peptides in comparison to those of wild-type alpha-dystroglycan and beta-dystroglycan, and shown the crucial role of two beta-dystroglycan phenylalanines, namely Phe692 and Phe718, for the alpha-beta interaction. Substitution of the alpha-dystroglycan residues Trp551, Phe554 and Asn555 by Ala does not affect the interaction between dystroglycan subunits in vitro. As a preliminary analysis of the possible effects of the aforementioned mutations in vivo, detection through immunofluorescence and western blot of the two dystroglycan subunits was pursued in dystroglycan-transfected 293-Ebna cells.  相似文献   

2.
The activation of extracellular signal-regulated kinase (ERK) in lung tissues of mice, as determined by the appearance of phosphorylated form, was observed on day 30 after urethane injection, and the activation also occurred in urethane-induced lung tumors. Immunohistochemical analysis using anti-phosphorylated ERK antibody indicated that the active form of ERK localized in alveolar epithelial cells. Furthermore, we confirmed by immunoprecipitation and immunoblot analysis that other essential components of the ERK cascade, that is, Ras, Raf and MEK (known as ERK kinase) were activated. These results indicate that the activation of the ERK signal in alveolar epithelial cells at the early stage of urethane-induced lung carcinogenesis is an important factor to develop lung tumors.  相似文献   

3.
Dystroglycan is a receptor for extracellular matrix proteins that plays a crucial role during embryogenesis in addition to adult tissue stabilization. A precursor product of a single gene is post-translationally cleaved to form two different subunits, alpha and beta. The extracellular alpha-dystroglycan is a membrane-associated, highly glycosylated protein that binds to various extracellular matrix molecules, whereas the transmembrane beta-dystroglycan binds, via its cytosolic domain, to dystrophin and many other proteins. alpha- and beta-Dystroglycan interact tightly but noncovalently. We have previously shown that the N-terminal region of beta-dystroglycan, beta-DG(654-750), binds to the C-terminal region of murine alpha-dystroglycan independently from glycosylation. Preparing a series of deleted recombinant fragments and using solid-phase binding assays, the C-terminal sequence of alpha-dystroglycan containing the binding epitope for beta-dystroglycan has been defined more precisely. We found that a region of 36 amino acids, from position 550-585, is required for binding the extracellular region, amino acids 654-750 of beta-dystroglycan. Recently, a dystroglycan-like gene was identified in Drosophila that showed a moderate degree of conservation with vertebrate dystroglycan (31% identity, 48% similarity). Surprisingly, the Drosophila sequence contains a region showing a higher degree of identity and conservation (45% and 66%) that coincides with the 550-585 sequence of vertebrate alpha-dystroglycan. We have expressed this Drosophila dystroglycan fragment and measured its binding to the extracellular region of vertebrate (murine) beta-dystroglycan (Kd = 6 +/- 1 microM). These data confirm the proper identification of the beta-dystroglycan binding epitope and stress the importance of this region during evolution. This finding might help the rational design of dystroglycan-specific binding drugs, that could have important biomedical applications.  相似文献   

4.
We have identified a novel, highly conserved protein of 14 kD copurifying with late endosomes/lysosomes on density gradients. The protein, now termed p14, is peripherally associated with the cytoplasmic face of late endosomes/lysosomes in a variety of different cell types.In a two-hybrid screen with p14 as a bait, we identified the mitogen-activated protein kinase (MAPK) scaffolding protein MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK) partner 1 (MP1) as an interacting protein. We confirmed the specificity of this interaction in vitro by glutathione S-transferase pull-down assays and by coimmunoprecipitation, cosedimentation on glycerol gradients, and colocalization. Moreover, expression of a plasma membrane-targeted p14 causes mislocalization of coexpressed MP1. In addition, we could reconstitute protein complexes containing the p14-MP1 complex associated with ERK and MEK in vitro.The interaction between p14 and MP1 suggests a MAPK scaffolding activity localized to the cytoplasmic surface of late endosomes/lysosomes, thereby combining catalytic scaffolding and subcellular compartmentalization as means to modulate MAPK signaling within a cell.  相似文献   

5.
Extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2) are essential components of pathways through which signals received at membrane receptors are converted into specific changes in protein function and gene expression. As with other members of the mitogen-activated protein (MAP) kinase family, ERK1 and ERK2 are activated by phosphorylations catalyzed by dual-specificity protein kinases known as MAP/ERK kinases (MEKs). MEKs exhibit stringent specificity for individual MAP kinases. Indeed, MEK1 and MEK2 are the only known activators of ERK1 and ERK2. ERK2 small middle dotMEK1/2 complexes can be detected in vitro and in vivo. The biochemical nature of such complexes and their role in MAP kinase signaling are under investigation. This report describes the use of a yeast two-hybrid screen to identify point mutations in ERK2 that impair its interaction with MEK1/2, yet do not alter its interactions with other proteins. ERK2 residues identified in this screen are on the surface of the C-terminal domain of the kinase, either within or immediately preceding alpha-helix G, or within the MAP kinase insert. Some mutations identified in this manner impaired the two-hybrid interaction of ERK2 with both MEK1 and MEK2, whereas others had a predominant effect on the interaction with either MEK1 or MEK2. Mutant ERK2 proteins displayed reduced activation in HEK293 cells following epidermal growth factor treatment, consistent with their impaired interaction with MEK1/2. However, ERK2 proteins containing MEK-specific mutations retained kinase activity, and were similar to wild type ERK2 in their activation following overexpression of constitutively active MEK1. Unlike wild type ERK2, proteins containing MEK-specific point mutations were constitutively localized in the nucleus, even in the presence of overexpressed MEK1. These data suggest an essential role for the MAP kinase insert and residues within or just preceding alpha-helix G in the interaction of ERK2 with MEK1/2.  相似文献   

6.
Integrin-mediated adhesion to the extracellular matrix permits efficient growth factor-mediated activation of extracellular signal-regulated kinases (ERKs). Points of regulation have been localized to the level of receptor phosphorylation or to activation of the downstream components, Raf and MEK (mitogen-activated protein kinase/ERK kinase). However, it is also well established that ERK translocation from the cytoplasm to the nucleus is required for G1 phase cell cycle progression. Here we show that phosphorylation of the nuclear ERK substrate, Elk-1 at serine 383, is anchorage dependent in response to growth factor treatment of NIH 3T3 fibroblasts. Furthermore, when we activated ERK in nonadherent cells by expression of active components of the ERK cascade, subsequent phosphorylation of Elk-1 at serine 383 and Elk-1-mediated transactivation were still impaired compared with adherent cells. Elk-1 phosphorylation was dependent on an intact actin cytoskeleton, as discerned by treatment with cytochalasin D (CCD). Finally, expression of active MEK failed to predominantly localize ERK to the nucleus in suspended cells or adherent cells treated with CCD. These data show that integrin-mediated organization of the actin cytoskeleton regulates localization of activated ERK, and in turn the ability of ERK to efficiently phosphorylate nuclear substrates.  相似文献   

7.
The role of the extracellular signal-regulated kinase (ERK) 1 and ERK2 in the neutrophil chemotactic response remains to be identified since a previously used specific inhibitor of MEK1 and MEK2, PD98059, that was used to provide evidence for a role of ERK1 and ERK2 in regulating chemotaxis, has recently been reported to also inhibit MEK5. This issue is made more critical by our present finding that human neutrophils express mitogen-activated protein (MAP) kinase/ERK kinase (MEK)5 and ERK5 (Big MAP kinase), and that their activities were stimulated by the bacterial tripeptide, formyl methionyl-leucyl-phenylalanine (fMLP). Dose response studies demonstrated a bell-shaped profile of fMLP-stimulated MEK5 and ERK5 activation, but this was left-shifted when compared with the profile of fMLP-stimulated chemotaxis. Kinetics studies demonstrated increases in kinase activity within 2 min, peaking at 3-5 min, and MEK5 activation was more persistent than that of ERK5. There were some similarities as well as differences in the pattern of activation between fMLP-stimulated ERK1 and ERK2, and MEK5-ERK5 activation. The up-regulation of MEK5-ERK5 activities was dependent on phosphatidylinositol 3-kinase. Studies with the recently described specific MEK inhibitor, PD184352, at concentrations that inhibited ERK1 and ERK2 but not ERK5 activity demonstrate that the ERK1 and ERK2 modules were involved in regulating fMLP-stimulated chemotaxis and chemokinesis. Our data suggest that the MEK5-ERK5 module is likely to regulate neutrophil responses at very low chemoattractant concentrations whereas at higher concentrations, a shift to the ERK1/ERK2 and p38 modules is apparent.  相似文献   

8.
Dystroglycan is a transmembrane heterodimeric complex of alpha and beta subunits that links the extracellular matrix to the cell cytoskeleton. It was originally identified in skeletal muscle, where it anchors dystrophin to the sarcolemma. Dystroglycan is also highly expressed in nonmuscle tissues, including brain. To investigate the molecular interactions of dystroglycan in the CNS, we fractionated a digitonin-soluble extract from bovine brain synaptosomes by laminin-affinity chromatography and characterized the protein components. The 120-kDa alpha-dystroglycan was the major 125I-laminin-labeled protein detected by overlay assay. This complex, in addition to beta-dystroglycan, was also found to contain Grb2 and focal adhesion kinase p125FAK (FAK). Anti-FAK antibodies co-immunoprecipitated Grb2 with FAK. However, no direct interaction between beta-dystroglycan and FAK was detected by co-precipitation assay. Grb2, an adaptor protein involved in signal transduction and cytoskeleton organization, has been shown to bind beta-dystroglycan. We isolated both FAK and Grb2 from synaptosomal extracts by chromatography on immobilized recombinant beta-dystroglycan. In the CNS, FAK phosphorylation has been linked to membrane depolarization and neurotransmitter receptor activation. At the synapses, the adaptor protein Grb2 may mediate FAK-beta-dystroglycan interaction, and it may play a role in transferring information between the dystroglycan complex and other signaling pathways.  相似文献   

9.
Utilizing mutants of extracellular signal-regulated kinase 2 (ERK2) that are defective for intrinsic mitogen-activated protein kinase or ERK kinase (MEK) binding, we have identified a convergent signaling pathway that facilitates regulated MEK-ERK association and ERK activation. ERK2-delta19-25 mutants defective in MEK binding could be phosphorylated in response to mitogens; however, signaling from the Raf-MEK pathway alone was insufficient to stimulate their phosphorylation in COS-1 cells. Phosphorylation of ERK2-delta19-25 but not of wild-type ERK2 in response to Ras V12 was greatly inhibited by dominant-negative Rac. Activated forms of Rac and Cdc42 could enhance the association of wild-type ERK2 with MEK1 but not with MEK2 in serum-starved adherent cells. This effect was p21-activated kinase (PAK) dependent and required the putative PAK phosphorylation sites T292 and S298 of MEK1. In detached cells placed in suspension, ERK2 was complexed with MEK2 but not with MEK1. However, upon replating of cells onto a fibronectin matrix, there was a substantial induction of MEK1-ERK2 association and ERK activation, both of which could be inhibited by dominant-negative PAK1. These data show that Rac facilitates the assembly of a mitogen-activated protein kinase signaling complex required for ERK activation and that this facilitative signaling pathway is active during adhesion to the extracellular matrix. These findings reveal a novel mechanism by which adhesion and growth factor signals are integrated during ERK activation.  相似文献   

10.
Alpha-dystroglycan is a highly glycosylated peripheral protein forming a complex with the membrane-spanning beta-dystroglycan and establishing a connection between the extracellular matrix and the cytoskeleton. In skeletal muscle, as part of the larger dystrophin-glycoprotein complex, dystroglycan is believed to be essential for maintaining the structural and functional stability of muscle fibers. Recent work highlights the role of abnormal dystroglycan glycosylation at the basis of glycosyltransferase-deficient congenital muscular dystrophies. Notably, modulation of glycosyltransferase activity can restore alpha-dystroglycan receptor function in these disorders. Moreover, transgenic approaches favoring the interaction between dystroglycan and the extracellular matrix molecules also represent an innovative way to restore skeletal muscle structure. These pioneering approaches might comprise an important first step towards the design of gene-transfer-based strategies for the rescue of congenital muscular dystrophies involving dystroglycan.  相似文献   

11.
Human alveolar macrophages respond to endotoxin (LPS) by activation of a number of mitogen-activated protein kinase pathways, including the p42/44 (extracellular signal-related kinase (ERK)) kinase pathway. In this study, we evaluated the role of the atypical protein kinase C (PKC) isoform, PKC zeta, in LPS-induced activation of the ERK kinase pathway. Kinase activity assays showed that LPS activates PKC zeta, mitogen-activated protein/ERK kinase (MEK, the upstream activator of ERK), and ERK. LPS did not activate Raf-1, the classic activator of MEK. Pseudosubstrate-specific peptides with attached myristic acid are cell permeable and can be used to block the activity of specific PKC isoforms in vivo. We found that a peptide specific for PKC zeta partially blocked activation of both MEK and ERK by LPS. We also found that this peptide blocked in vivo phosphorylation of MEK after LPS treatment. In addition, we found that LPS caused PKC zeta to bind to MEK in vivo. These observations suggest that MEK is an LPS-directed target of PKC zeta. PKC zeta has been shown in other systems to be phosphorylated by phosphatidylinositol (PI) 3-kinase-dependent kinase. We found that LPS activates PI 3-kinase and causes the formation of a PKC zeta/PI 3-kinase-dependent kinase complex. These data implicate the PI 3-kinase pathway as an integral part of the LPS-induced PKC zeta activation. Taken as a whole, these studies suggest that LPS activates ERK kinase, in part, through activation of an atypical PKC isoform, PKC zeta.  相似文献   

12.
The dystroglycan gene produces two products from a single mRNA, the extracellular alpha-dystroglycan and the transmembrane beta-dystroglycan. The Duchenne muscular dystrophy protein, dystrophin, associates with the muscle membrane via beta-dystroglycan, the WW domain of dystrophin interacting with a PPxY motif in beta-dystroglycan. A panel of four monoclonal antibodies (MANDAG1-4) was produced using the last 16 amino acids of beta-dystroglycan as immunogen. The mAbs recognized a 43 kDa band on Western blots of all cells and tissues tested and stained the sarcolemma in immunohistochemistry of skeletal muscle over a wide range of animal species. A monoclonal antibody (mAb) against the WW domain of dystrophin, MANHINGE4A, produced using a 16-mer synthetic peptide, recognized dystrophin on Western blots and also stained the sarcolemma. We have identified the precise sequences recognized by the mAbs using a phage-displayed random 15-mer peptide library. A 7-amino-acid consensus sequence SPPPYVP involved in binding all four beta-dystroglycan mAbs was identified by sequencing 17 different peptides selected from the library. PPY were the most important residues for three mAbs, but PxxVP were essential residues for a fourth mAb, MANDAG2. By sequencing five different random peptides from the library, the epitope on dystrophin recognized by mAb MANHINGE4A was identified as PWxRA in the first beta-strand of the WW domain, with the W and R residues invariably present. A recent three-dimensional structure confirms that the two epitopes are adjacent in the dystrophin-dystroglycan complex, highlighting the question of how the two interacting motifs can also be accessible to antibodies during immunolocalization in situ.  相似文献   

13.
Cyclin-dependent protein kinase 5 (cdk5), a member of the cdk family, is active mainly in postmitotic cells and plays important roles in neuronal development and migration, neurite outgrowth, and synaptic transmission. In this study we investigated the relationship between cdk5 activity and regulation of the mitogen-activated protein (MAP) kinase pathway. We report that cdk5 phosphorylates the MAP kinase kinase-1 (MEK1) in vivo as well as the Ras-activated MEK1 in vitro. The phosphorylation of MEK1 by cdk5 resulted in inhibition of MEK1 catalytic activity and the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. In p35 (cdk5 activator) -/- mice, which lack appreciable cdk5 activity, we observed an increase in the phosphorylation of NF-M subunit of neurofilament proteins that correlated with an up-regulation of MEK1 and ERK1/2 activity. The activity of a constitutively active MEK1 with threonine 286 mutated to alanine (within a TPXK cdk5 phosphorylation motif in the proline-rich domain) was not affected by cdk5 phosphorylation, suggesting that Thr286 might be the cdk5/p35 phosphorylation-dependent regulatory site. These findings support the hypothesis that cdk5 and the MAP kinase pathway cross-talk in the regulation of neuronal functions. Moreover, these data and the recent studies of Harada et al. (Harada, T., Morooka, T., Ogawa, S., and Nishida, E. (2001) Nat. Cell Biol. 3, 453-459) have prompted us to propose a model for feedback down-regulation of the MAP kinase signal cascade by cdk5 inactivation of MEK1.  相似文献   

14.
15.
We have previously shown that thrombin-induced endothelial cell barrier dysfunction involves cytoskeletal rearrangement and contraction, and we have elucidated the important role of endothelial cell myosin light chain kinase and the actin- and myosin-binding protein caldesmon. We evaluated the contribution of calmodulin (CaM) kinase II and extracellular signal-regulated kinase (ERK) activation in thrombin-mediated bovine pulmonary artery endothelial cell contraction and barrier dysfunction. Similar to thrombin, infection with a constitutively active adenoviral alpha-CaM kinase II construct induced significant ERK activation, indicating that CaM kinase II activation lies upstream of ERK. Thrombin-induced ERK-dependent caldesmon phosphorylation (Ser789) was inhibited by either KN-93, a specific CaM kinase II inhibitor, or U0126, an inhibitor of MEK activation. Immunofluorescence microscopy studies revealed phosphocaldesmon colocalization within thrombin-induced actin stress fibers. Pretreatment with either U0126 or KN-93 attenuated thrombin-mediated cytoskeletal rearrangement and evoked declines in transendothelial electrical resistance while reversing thrombin-induced dissociation of myosin from nondenaturing caldesmon immunoprecipitates. These results strongly suggest the involvement of CaM kinase II and ERK activities in thrombin-mediated caldesmon phosphorylation and both contractile and barrier regulation.  相似文献   

16.
How the extracellular signal-regulated kinase (ERK) cascade regulates diverse cellular functions, including cell proliferation, survival, and motility, in a context-dependent manner remains poorly understood. Compelling evidence indicates that scaffolding molecules function in yeast to channel specific signals through common components to appropriate targets. Although a number of putative ERK scaffolding proteins have been identified in mammalian systems, none has been linked to a specific biological response. Here we show that the putative scaffold protein MEK partner 1 (MP1) and its partner p14 regulate PAK1-dependent ERK activation during adhesion and cell spreading but are not required for ERK activation by platelet-derived growth factor. MP1 associates with active but not inactive PAK1 and controls PAK1 phosphorylation of MEK1. Our data further show that MP1, p14, and MEK1 serve to inhibit Rho/Rho kinase functions necessary for the turnover of adhesion structures and cell spreading and reveal a signal-channeling function for a MEK1/ERK scaffold in orchestrating cytoskeletal rearrangements important for cell motility.  相似文献   

17.
Dystroglycan is a cytoskeleton-linked extracellular matrix receptor expressed in many cell types. Dystroglycan is composed of alpha- and beta-subunits which are encoded by a single mRNA. Using a heterologous mammalian expression system, we provide the first biochemical evidence of the alpha/beta-dystroglycan precursor propeptide prior to enzymatic cleavage. This 160 kDa dystroglycan propeptide is processed into alpha- and beta-dystroglycan (120 kDa and 43 kDa, respectively). We also demonstrate that the precursor propeptide is glycosylated and that blockade of asparagine-linked (N-linked) glycosylation did not prevent the cleavage of the dystroglycan precursor peptide. However, inhibition of N-linked glycosylation results in aberrant trafficking of the alpha- and beta-dystroglycan subunits to the plasma membrane. Thus, dystroglycan is synthesized as a precursor propeptide that is post-translationally cleaved and differentially glycosylated to yield alpha- and beta-dystroglycan.  相似文献   

18.
Imidazolium trans-imidazoledimethyl sulfoxide-tetrachlororuthenate (NAMI-A) is a novel ruthenium-containing experimental antimetastatic agent. Compelling evidence ascribes a pivotal role to endothelial cells in the orchestration of tumor angiogenesis and metastatic growth, suggesting antiangiogenic therapy as an attractive approach for anticancer treatment. In this context, activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathway has been found fundamental in transducing extracellular stimuli that modulate a number of cellular process including cell proliferation, migration and invasion. Here we show that exposure of the transformed endothelial cell line ECV304 to NAMI-A significantly inhibited DNA synthesis, as well as the expression of the proliferating cell nuclear antigene (PCNA). These responses were associated with a marked down-regulation of ERK phosphorylation in serum-cultured cells. In addition, NAMI-A markedly reduced serum stimulated- and completely suppressed phorbol 12-myristate 13-acetate (PMA)-triggered MAPK/ERK kinase activity. NAMI-A was also able to inhibit the phosphorylation of MEK, the upstream activator of ERK, and, similar to both the protein kinase C (PKC) inhibitor GF109203X and the MAPK/ERK (MEK) inhibitor PD98059, it completely counteracted PMA-induced ERK phosphorylation. Finally, NAMI-A and PD98059 down regulated c-myc gene expression to the same extent in serum-cultured cells and dose-dependently counteracted, and ultimately abolished, the increase in c-myc gene expression elicited by PMA in serum-free cells. These results suggest that inhibition of MEK/ERK signaling by NAMI-A may have an important role in modulating c-myc gene expression and ECV304 proliferation.  相似文献   

19.
Docosahexaenoic acid (22: 6n-3; DHA) is a long chain polyunsaturated fatty acid that exists highly enriched in fish oil, and it is one of the low molecular weight food chemicals which can pass a blood brain barrier. A preliminary survey of several fatty acids for expression of growth-associated protein-43 (GAP-43), a marker of axonal growth, identified DHA as one of the most potent inducers. The human neuroblastoma SH-SY5Y cells exposed to DHA showed significant and dose-dependent increases in the percentage of cells with longer neurites. To elucidate signaling mechanisms involved in DHA-enhanced basal neuritogenesis, we examined the role of extracellular signal-regulated kinase (ERK)1/2 and intracellular reactive oxygen species (ROS) production using SH-SY5Y cells. From immunoblotting experiments, we observed that DHA induced the ROS production, protein tyrosine phosphatase inhibition, mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) phosphorylation, and sequentially ERK1/2 phosphorylation, the last of which was significantly reduced by MEK inhibitor U0126. Both antioxidants and MEK inhibitor affected DHA-induced GAP-43 expression, whereas the specific PI3K inhibitor LY294002 did not. We found that total protein tyrosine phosphatase activity was also downregulated by DHA treatment, which was counteracted by antioxidant pretreatment. These results suggest that the ROS-dependent ERK pathway, rather than PI3K, plays an important role during DHA-enhanced neurite outgrowth.  相似文献   

20.
Imidazolium trans-imidazoledimethylsulfoxide-tetrachlororuthenate (NAMI-A) is a new ruthenium compound active against lung metastasis in vivo and tumor cell invasion in vitro. Since angiogenesis was recognized as a key event in the metastasizing process, the manipulation of neo-vessel formation has been developed as a new therapeutic approach. Within this context, a pivotal role for apoptosis in regulating cellular growth has been proposed. In the present study, we exposed to NAMI-A the spontaneously transformed human endothelial cell line ECV304 and assessed a number of apoptosis-related features, including the DNA degradation rate, the activation of caspase-3 protease, the expression of Hsp27, and the release of cytochrome c. Cell treatment with NAMI-A elicited a significant increment in the apoptotic response, as indicated by DNA fragmentation and caspase-3 activation, two classical hallmarks of cellular suicide. Furthermore, NAMI-A was able to down-regulate Hsp27 protein expression and provoke the release of mitochondrial cytochrome c in the cytosol. Here, we analyze the involvement of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signal transduction pathway in the induction of apoptosis elicited by NAMI-A. Such a response was associated with a marked inhibition of MAPK/ERK kinase (MEK) and ERK phosphorylation with a time course and dose dependency overlapping those observed throughout NAMI-A-induced apoptosis. In addition, we report that PD98059, a selective MEK inhibitor, is able to induce apoptosis by itself in the ECV304 cell line. These results suggest that inhibition of MEK/ERK signaling by NAMI-A may have an important role in modulating an apoptotic event in ECV304.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号