首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A complete understanding of chromosomal disjunction during mitosis and meiosis in complex genomes such as the human genome awaits detailed characterization of both the molecular structure and genetic behavior of the centromeric regions of chromosomes. Such analyses in turn require knowledge of the organization and nature of DNA sequences associated with centromeres. The most prominent class of centromeric DNA sequences in the human genome is the alpha satellite family of tandemly repeated DNA, which is organized as distinct chromosomal subsets. Each subset is characterized by a particular multimeric higher-order repeat unit consisting of tandemly reiterated, diverged alpha satellite monomers of approximately 171 base pairs. The higher-order repeat units are themselves tandemly reiterated and represent the most recently amplified or fixed alphoid sequences. We present evidence that there are at least two independent domains of alpha satellite DNA on chromosome 7, each characterized by their own distinct higher-order repeat structure. We determined the complete nucleotide sequences of a 6-monomer higher-order repeat unit, which is present in approximately 500 copies per chromosome 7, as well as those of a less-abundant (approximately 10 copies) 16-monomer higher-order repeat unit. Sequence analysis indicated that these repeats are evolutionarily distinct. Genomic hybridization experiments established that each is maintained in relatively homogeneous tandem arrays with no detectable interspersion. We propose mechanisms by which multiple unrelated higher-order repeat domains may be formed and maintained within a single chromosomal subset.  相似文献   

2.
Organization and evolution of alpha satellite DNA from human chromosome 11   总被引:9,自引:0,他引:9  
The human alpha satellite repetitive DNA family is organized as distinct chromosomal subsets located at the centromeric regions of each human chromosome. Here, we describe a subset of the alpha satellite which is localized to human chromosome 11. The principal unit of repetition of this alpha satellite subset is an 850 bp XbaI fragment composed of five tandem diverged alphoid monomers, each 171 bp in length. The pentamer repeat units are themselves tandemly reiterated, present in 500 copies per chromosome 11. In filter hybridization experiments, the Alpha 11 probes are specific for the centromeric alpha satellite sequences of human chromosome 11. The complete nucleotide sequences of two independent copies of the XbaI pentamer reveal a pentameric configuration shared with the alphoid repeats of chromosomes 17 and X, consistent with the existence of an ancestral pentameric repeat common to the centromeric arrays of at least these three human chromosomes.  相似文献   

3.
We have investigated the organization and complexity of alpha satellite DNA on chromosomes 10 and 12 by restriction endonuclease mapping, in situ hybridization (ISH), and DNA-sequencing methods. Alpha satellite DNA on both chromosomes displays a basic dimeric organization, revealed as a 6- and an 8-mer higher-order repeat (HOR) unit on chromosome 10 and as an 8-mer HOR on chromosome 12. While these HORs show complete chromosome specificity under high-stringency ISH conditions, they recognize an identical set of chromosomes under lower stringencies. At the nucleotide sequence level, both chromosome 10 HORs are 50% identical to the HOR on chromosome 12 and to all other alpha satellite DNA sequences from the in situ cross-hybridizing chromosomes, with the exception of chromosome 6. An 80% identity between chromosome 6- and chromosome 10-derived alphoid sequences was observed. These data suggest that the alphoid DNA on chromosomes 6 and 10 may represent a distinct subclass of the dimeric subfamily. These sequences are proposed to be present, along with the more typical dimeric alpha satellite sequences, on a number of different human chromosomes.  相似文献   

4.
Most mammalian chromosomes have satellite DNA sequences located at or near the centromeres, organized in arrays of variable size and higher order structure. The implications of these specific repetitive DNA sequences and their organization for centromere function are still quite cloudy. In contrast to most mammalian species, the domestic cat seems to have the major satellite DNA family (FA-SAT) localized primarily at the telomeres and secondarily at the centromeres of the chromosomes. In the present work, we analyzed chromosome preparations from a fibrosarcoma, in comparison with nontumor cells (epithelial tissue) from the same individual, by in situ hybridization of the FA-SAT cat satellite DNA family. This repetitive sequence was found to be amplified in the cat tumor chromosomes analyzed. The amplification of these satellite DNA sequences in the cat chromosomes with variable number and appearance (marker chromosomes) is discussed and might be related to mitotic instability, which could explain the exhibition of complex patterns of chromosome aberrations detected in the fibrosarcoma analyzed.  相似文献   

5.
Six DNA fragments of interphase chromosomes isolated from nuclear envelopes of murine hepatocytes were cloned and sequenced. Analysis of their structural-functional organization suggests that these fragments are highly specified protein-nonencoding fractions of a eukaryotic genome. In the evolutionary process, they appear already in archaebacteria and may be "ancestral" for DNA sequences involved in structuring chromosomal domains (rosette-like structures) of tissue-specific genes. In their composition, these fragments have nucleotide sequences homologous to the repeats of the SINE and LINE families and to the satellite DNA of murine centromeres.  相似文献   

6.
Alphoid and satellite III sequences are arranged as large tandem arrays in the centromeric regions of human chromosomes. Several recent studies using in situ hybridisation to investigate the relative positions of these sequences have shown that they occupy adjacent but non-overlapping domains in metaphase chromosomes. We have analysed the DNA sequence at the junction between alphoid and satellite III sequences in a cosmid previously mapped to chromosome 10. The alphoid sequence consists of tandemly arranged dimers which are distinct from the known chromosome 10-specific alphoid family. Polymerase chain reaction experiments confirm the integrity of the sequence data. These results, together with pulsed field gel electrophoresis data place the boundary between alphoid and satellite III sequences in the mapping interval 10 centromere-10q11.2. The sequence data shows that these repetitive sequences are separated by a partial L1 interspersed repeat sequence less than 500bp in length. The arrangement of the junction suggests that a recombination event has brought these sequences into close proximity.  相似文献   

7.
Radioactive RNA with sequences complementary to human DNA satellite III was hybridised in situ to metaphase chromosomes of the chimpanzee (Pan troglodytes), the gorilla (Gorilla gorilla) and the orangutan (Pongo pygmaeus). A quantitative analysis of the radioactivity, and hence of the chromosomal distribution of human DNA satellite III equivalent sequences in the great apes, was undertaken, and the results compared with interspecies chromosome homologies based upon Giemsa banding patterns. In some instances DNA with sequence homology to human satellite III is present on the equivalent (homologous) chromosomes in identical positions in two or more species although quantitative differences are observed. In other cases there appears to be no correspondence between satellite DNA location and chromosome homology determined by banding patterns. These results differ from those found for most transcribed DNA sequences where the same sequence is located on homologous chromosomes in each species.  相似文献   

8.
In cloning adenovirus homologous sequences, from a human cosmid library, we identified a moderately repetitive DNA sequence family consisting of tandem arrays of 2.5 kb members. A member was sequenced and several non-adjacent, 15-20 bp G-C rich segments with homology to the left side of adenovirus were discovered. The copy number of 400 members is highly conserved among humans. Southern blots of partial digests of human DNA have verified the tandem array of the sequence family. The chromosomal location was defined by somatic cell genetics and in situ hybridization. Tandem arrays are found only on chromosomes 4 (4q31) and 19 (q13.1-q13.5). Homologous repetitive sequences are found in DNA of other primates but not in cat or mouse. Thus we have identified a new family of moderately repetitive DNA sequences, unique because of its organization in clustered tandem arrays, its length, its chromosomal location, and its lack of homology to other moderately repetitive sequence families.  相似文献   

9.
As an adjunct to attempts to define functionally important sequences at human centromeres, we have undertaken a long-range physical analysis of these regions in the mouse. Mouse centromeres are usually situated very close to the chromosome ends and are closely associated with minor satellite sequences on the basis of cytological observations. Using pulsed-field gel electrophoresis we find that this satellite DNA is arranged as tandem arrays, predominantly uninterrupted by nonsatellite sequences. These arrays can be released largely intact by digestion with a range of enzymes that generally cleave frequently in non-satellite DNA. The restriction fragments carrying these arrays are polymorphic in size between inbred strains and provide direct markers for mouse centromeres. To illustrate the possible use of these polymorphic markers we have mapped a 1.3-Mb PvuII variant in a set of RI strains to the centromere of Chromosome 7. The minor satellite arrays are very close to the centromeric telomere and physical linkage with terminal repeat sequences can readily be detected, placing many minor satellite arrays on terminal restriction fragments smaller than 1 Mb. The apparent lack of any sizable amount of nonsatellite DNA between the minor satellite and the terminal repeat arrays indicates that many mouse chromosomes are truly telocentric.  相似文献   

10.
The centromeric regions of human chromosomes contain long tracts of tandemly repeated DNA, of which the most extensively characterized is alpha satellite. In a screen for additional centromeric DNA sequences, four phage clones were obtained which contain alpha satellite as well as other sequences not usually found associated with tandemly repeated alpha satellite DNA, including L1 repetitive elements, an Alu element, and a novel AT-rich repeated sequence. The alpha satellite DNA contained within these clones does not demonstrate the higher-order repeat structure typical of tandemly repeated alpha satellite. Two of the clones contain inversions; instead of the usual head-to-tail arrangement of alpha satellite monomers, the direction of the monomers changes partway through each clone. The presence of both inversions was confirmed in human genomic DNA by polymerase chain reaction amplification of the inverted regions. One phage clone contains a junction between alpha satellite DNA and a novel low-copy repeated sequence. The junction between the two types of DNA is abrupt and the junction sequence is characterized by the presence of runs of A's and T's, yielding an overall base composition of 65% AT with local areas > 80% AT. The AT-rich sequence is found in multiple copies on chromosome 7 and homologous sequences are found in (peri)centromeric locations on other human chromosomes, including chromosomes 1, 2, and 16. As such, the AT-rich sequence adjacent to alpha satellite DNA provides a tool for the further study of the DNA from this region of the chromosome. The phage clones examined are located within the same 3.3-Mb SstII restriction fragment on chromosome 7 as the two previously described alpha satellite arrays, D7Z1 and D7Z2. These new clones demonstrate that centromeric repetitive DNA, at least on chromosome 7, may be more heterogeneous in composition and organization than had previously been thought.  相似文献   

11.
Chromosomal localization of complex and simple repeated human DNAs   总被引:32,自引:0,他引:32  
Complex repeating restriction multimers and a simple AT rich satellite isolated with Hoechst 33258 (<= 0.5% of the human genome) were localized by in situ hybridization to human chromosomes. The complex repeats were clustered at the centromeres, consonant with their integration in tandem arrays at these loci; these sequences were very prominent on chromosomes 7, 10 and 19, sites not previously identified with any specific human repeated sequence. The Hoechst simple satellite labelled predominantly the long arms of the Y chromosome. Although this simple satellite and the complex restriction multimers did not hybridize with each other, and did not contain detectable ribosomal sequences, both isolates additionally labelled the nucleolus organizing regions (NORs) of acrocentric chromosomes. —The possible relationship of complex and simple repeated DNAs, and their assignment to specific chromosomal domains, is discussed.  相似文献   

12.
Repetitive DNA sequences in the terminal heterochromatin of rye (Secale cereale) chromosomes have consequences for the structural and functional organization of chromosomes. The large-scale genomic organization of these regions was studied using the telomeric repeat from Arabidopsis and clones of three nonhomologous, tandemly repeated, subtelomeric DNA families with complex but contrasting higher order structural organizations. Polymerase chain reaction analysis with a single primer showed a fraction of the repeat units of one family organized in a "head-to-head" orientation. Such structures suggest evolution of chromosomes by chromatid-type breakage-fusion-bridge cycles. In situ hybridization and pulse field gel electrophoresis showed the order of the repeats and the heterogeneity in the lengths of individual arrays. After Xbal digestion and pulse field gel electrophoresis, the telomeric and two subtelomeric clones showed strong hybridization signals from 40 to 100 kb, with a maximum at 50 to 60 kb. We suggest that these fragments define a basic higher order structure and DNA loop domains of regions of rye chromosomes consisting of arrays of tandemly organized sequences.  相似文献   

13.
Four recombinant DNA clones (H1, H7, H12, and H15) carrying low-repetitive human DNA were previously isolated from a human genomic library based on their specificity for chromosome 21 and were studied for their distribution as determined by in situ hybridization. Clone H7 hybridized to the satellite regions of chromosomes 13, 14, 15, 21, and 22 as well as to the centromere region of chromosome 1. Clone H12 hybridized strongly to chromosomes 11 and 17 and the centromere of the X. Clones H1 and H15 had a very widespread distribution throughout the genome. Clone H15 hybridized significantly more to the short arm of chromosome 18 than to any other chromosomal segment. Clone H1 hybridized strongly to the centromere of chromosome 19 and also showed random distribution on all the other human chromosomes. We conclude that these probes appear to represent four repetitive families that demonstrate in situ hybridization patterns that do not correspond with those of any other repetitive family. Further, the in situ hybridization patterns do not show the strong chromosome 21 specificity originally defined by Southern blot analysis. The nature and chromosomal localization of these repetitive families should be useful in regional mapping and evolutionary studies and give additional insight into chromosomal organization.  相似文献   

14.
The taxonomy of the family Parodontidae is confused, with many open questions regarding the most appropriate generic groupings. Studies on the organization, structure, composition, and in situ location of chromosomal features have led to consistent advances in the understanding of genome evolution. Among the species of Parodontidae, the consistent chromosomal divergences can be helpful in taxonomic classification, such as heteromorphic chromosome sex, karyotypic formulae, and number/location of the repetitive DNAs. Molecular analysis of repetitive sequences of satellite DNA and their physical mapping in the chromosomes of different species in a single group may be used to infer evolutionary divergence and cladistic grouping. In the present study, rDNA and the satellite DNA pPh2004 were mapped by fluorescent in situ hybridization on the chromosomes of some species of Parodontidae. These results were analyzed and reviewed together with other chromosomal markers and previously published data, to formulate inferences about the diversification of the genomes and propose a clustering of some Parodontidae species. This analysis indicated that the species Apareiodon affinis, Parodon moreirai, Parodon hilarii, Parodon nasus, and Parodon pongoensis have an apomorphic state for satellite DNA pPh2004 in Parodontidae in relation to previously studied species of Apareiodon.  相似文献   

15.
The technique of chromosomal orientation and direction fluorescence in situ hybridization (COD-FISH) was adapted for plant chromosomes in order to study long-range organization of two families of satellite repeats, VicTR-B of Vicia sativa and PisTR-B of Pisum sativum. The technique allowed FISH to be performed on mitotic chromosomes in a strand-specific manner, resulting in visualization of the repeat orientation along the chromosomes and with respect to the direction of telomeric repeats. The VicTR-B probe applied to V. sativa chromosomes produced signals on a single chromatid at most regions containing corresponding sequences, thus confirming a presence of long arrays of head-to-tail arranged repeat monomers which is typical for satellite DNA. However, hybridization signals of different or equal intensities on both chromatids were also detected at some loci, suggesting a more complex arrangement of the repeats. Similar observations were made for PisTR-B repeats on P. sativum chromosomes, although the proportion of loci displaying signals on both chromatids was lower. In contrast to VicTR-B, orientation of the PisTR-B clusters with respect to telomeric sequences appeared to be conserved among subtelomeric regions of metacentric chromosomes and of the short arms of acrocentric chromosomes.  相似文献   

16.
Summary The centromeric regions of human chromosomes are characterized by diverged chromosome-specific subsets of a tandemly repeated DNA family, alpha satellite, which is based on a fundamental monomer repeat unit 171 bp in length. We have compared the nucleotide sequences of 44 alphoid monomers derived from cloned representatives of the multimeric higher-order repeat units of human chromosomes 1, 11, 17, and X. The 44 monomers exhibit an average 16% divergence from a consensus alphoid sequence, and can be assigned to five distinct homology groups based on patterns of sequence substitutions and gaps relative to the consensus. Approximately half of the overall sequence divergence can be accounted for by sequence changes specific to a particular homology group; the remaining divergence appears to be independent of the five groups and is randomly distributed, both within and between chromosomal subsets. The data are consistent with the proposal that the contemporary tandem arrays on chromosomes 1, 11, 17, and X derive from a common multimeric repeat, consisting of one monomer each from the five homology groups. The sequence comparisons suggest that this pentameric repeat must have spread to these four chromosomal locations many millions of years ago, since which time evolution of the four, now chromosome-specific, alpha satellite subsets has been essentially independent.  相似文献   

17.
In recent work we have isolated and characterized a highly repetitive DNA (MMV satellite IA) from Muntiacus muntjak vaginalis, the species with the most reduced karyotype in the Cervidae family. We have now analysed the genomes of nine related species for the presence of MMV satellite IA components, and have determined their organization and chromosomal distribution. Repetitive satellite IA type DNA is present in all species of the Cervidae, and also in the bovine, but not in a species of the Tragulidae suggesting that these sequences were generated after the phylogenetic separation of Bovidae and Tragulidae. Studies on the organization of the satellite IA DNA in the various species revealed three main repeat lengths: 1400, 1000 and 807 bp. The relative proportion of satellite IA sequences present in any one of the three registers is strikingly different within the various species and can be correlated with the phylogeny of the Cervidae. The chromosomal locations of the satellite IA sequences were determined in seven species by in situ hybridization. It turned out that the chromosomal rearrangements leading to the reduction in the number of chromosomes during karyotype evolution have led to the elimination of satellite I DNA at most locations. In all tandem fusions, the satellite IA sequences located at the centromeres of the ancestral acrocentric chromosomes are lost. In contrast, during the centric fusion that generates the M. m. vaginalis X chromosome satellite IA sequences are amplified. Sequence motifs, which are known to be involved in recombinational events are present in the satellite IA and might have contributed to the unique karyotype variation in the Cervidae.  相似文献   

18.
Two recombinant DNA clones that are localized to single human chromosomes were isolated from a human repetitive DNA library. Clone pHuR 98, a variant satellite 3 sequence, specifically hybridizes to chromosome position 9qh. Clone pHuR 195, a variant satellite 2 sequence, specifically hybridizes to chromosome position 16qh. These locations were determined by fluorescent in situ hybridization to metaphase chromosomes, and confirmed by DNA hybridizations to human chromosomes sorted by flow cytometry. Pulsed field gel electrophoresis analysis indicated that both sequences exist in the genome as large DNA blocks. In situ hybridization to intact interphase nuclei showed a well-defined, localized organization for both DNA sequences. The ability to tag specific human autosomal chromosomes, both at metaphase and in interphase nuclei, allows novel molecular cytogenetic analyses in numerous basic research and clinical studies.  相似文献   

19.
G M Greig  H F Willard 《Genomics》1992,12(3):573-580
beta satellite is a repetitive DNA family that consists of approximately 68-bp monomers tandemly repeated in arrays of at least several hundred kilobases. In this report we describe and characterize two subfamilies located exclusively on the human acrocentric chromosomes. The first subfamily is defined by a homogeneous approximately 2.0-kb higher-order repeat unit and is located primarily distal to the ribosomal RNA gene cluster, based both on fluorescence in situ hybridization to metaphase chromosomes and on filter hybridization analysis of translocation chromosomes isolated in somatic cell hybrids. In contrast, the second subfamily is located both distal and proximal to the ribosomal RNA gene cluster on the same acrocentric chromosomes. The DNA sequences of a number of monomers from these two subfamilies are compared to each other and to other beta satellite monomers to assess both inter- and intrasubfamily sequence relationships for these monomers.  相似文献   

20.
We have isolated an alpha satellite DNA clone, pG3.9, from gorilla DNA. Fluorescence in situ hybridization on banded chromosomes under high stringency conditions revealed that pG3.9 identifies homologous sequences at the centromeric region of ten gorilla chromosomes, and, with few exceptions, also recognizes the homologous chromosomes in human. A pG3.9-like alphoid DNA is present on a larger number of orangutan chromosomes, but, in contrast, is present on only tow chromosomes in the chimpanzee. These results show that the chromosomal subsets of related alpha satellite DNA sequences may undergo different patterns of evolution.by J.B. Rattner  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号