首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-term potentiation (LTP) and long-term depression represent important processes that modulate synaptic transmission that carries out a key role in neural mechanisms of memory. Many studies give strong evidences on a role of the reactive oxygen species in the induction of LTP in CA1 region of hippocampal slices that was inhibited by adding the scavenger enzyme superoxide dismutase (SOD1). Previous data showed that SOD1 is secreted by many cellular lines, including neuroblastoma SK-N-BE cells through microvesicles by an ATP-dependent mechanism; moreover, it has been shown that SOD1 interacts with human neuroblastoma cell membranes increasing intracellular calcium levels via a phospholipase C-protein kinase C pathway activation. The aim of this study was to investigate the effect of intracerebral injection of SOD1 or the inactive form of enzyme (ApoSOD) on the modulation of synaptic transmission in dentate gyrus of the hippocampus in urethane anesthetized rats. The results of the present research showed that intracerebral injection of SOD1 and ApoSOD in the dentate gyrus of the rat hippocampal formation inhibits LTP induced by high-frequency stimulation of the perforant path. This result cannot be only explained by the dismutation of oxygen radical induced by SOD1 since also ApoSOD, that lacks the enzymatic activity, carries out the same inhibitory effect on LTP induction.  相似文献   

2.
Superoxide dismutase (SOD) triggers activation of human platelets exposed to subthreshold concentrations of arachidonic acid and collagen. The subthreshold concentrations used are not able to activate platelets but "prime" platelets to be activated by SOD. The addition of SOD to arachidonic acid-or collagen-primed platelets induced aggregation, thromboxane A2 production, and release of [3H]serotonin. Superoxide dismutase does not have any effect on resting platelets and ADP-, thrombin-, calcium ionophore A23187-, PAF-, or U46619-stimulated platelets. Furthermore, superoxide dismutase-dependent platelet activation is fully prevented by catalase and/or aspirin, suggesting a role for H2O2 and the involvement of the cyclooxygenase pathway of arachidonic acid in such activation.  相似文献   

3.
This study was designed to investigate the protective effects of extracellular superoxide dismutase (SOD3) against amyloid beta (Aβ25–35)-induced damage in human neuroblastoma SH-SY5Y cells and to elucidate the mechanisms responsible for this beneficial effect. SH-SY5Y cells overexpressing SOD3 were generated by adenoviral vector-mediated infection and Aβ25–35 was then added to the cell culture system to establish an in vitro model of oxidative stress. Cell viability, the generation of intracellular reactive oxygen species (ROS), the expression and activity of antioxidant enzymes, the levels of lipid peroxidation malondialdehyde (MDA), the expression of mitochondrial apoptosis-related genes and calcium images were examined. Following Aβ25–35 exposure, SOD3 overexpression promoted the survival of SH-SY5Y cells, decreased the production of ROS, decreased MDA and calcium levels, and decreased cytochrome c, caspase-3, caspase-9 and Bax gene expression. Furthermore, SOD3 overexpression increased the expression and activity of antioxidant enzyme genes and Bcl-2 expression. Together, our data demonstrate that SOD3 ameliorates Aβ25–35-induced oxidative damage in neuroblastoma SH-SY5Y cells by inhibiting the mitochondrial pathway. These data provide new insights into the functional actions of SOD3 on oxidative stress-induced cell damage.  相似文献   

4.
Copper–zinc superoxide dismutase (SOD1) plays a protective role against the toxicity of superoxide, and studies in Saccharomyces cerevisiae and in Drosophila have suggested an additional role for SOD1 in iron metabolism. We have studied the effect of the modulation of SOD1 levels on iron metabolism in a cultured human glial cell line and in a mouse motoneuronal cell line. We observed that levels of the transferrin receptor and the iron regulatory protein 1 were modulated in response to altered intracellular levels of superoxide dismutase activity, carried either by wild-type SOD1 or by an SOD-active amyotrophic lateral sclerosis (ALS) mutant enzyme, G93A-SOD1, but not by a superoxide dismutase inactive ALS mutant, H46R-SOD1. Ferritin expression was also increased by wild-type SOD1 overexpression, but not by mutant SOD1s. We propose that changes in superoxide levels due to alteration of SOD1 activity affect iron metabolism in glial and neuronal cells from higher eukaryotes and that this may be relevant to diseases of the nervous system.  相似文献   

5.
The Cu-Zn superoxide dismutase (SOD1) belongs to a family of isoenzymes that are able to dismutate the oxygen superoxide in hydrogen peroxide and molecular oxygen. This enzyme is secreted by many cellular lines and it is also released trough a calcium-dependent depolarization mechanism involving SNARE protein SNAP 25. Using rat pituitary GH3 cells that express muscarinic receptors we found that SOD1 inhibits P-ERK1/2 pathway trough an interaction with muscarinic M1 receptor. This effect is strengthened by oxotremorine, a muscarinic M agonist and partially reverted by pyrenzepine, an antagonist of M1 receptor; moreover this effect is independent from increased intracellular calcium concentration induced by SOD1. Finally, P-ERK1/2 inhibition was accompanied by the reduction of GH3 cell proliferation.These data indicate that SOD1 beside the well studied antioxidant properties can be considered as a neuromodulator able to affect mitogen-activated protein kinase in rat pituitary cells trough a M1 muscarinic receptor.  相似文献   

6.
Calcineurin (CN) is a protein phosphatase involved in a wide range of cellular responses to calcium-mobilizing signals, and a role for this enzyme in neuropathology has been postulated. We have investigated the possibility that redox modulation of CN activity is relevant to neuropathological conditions where an imbalance in reactive oxygen species has been described. We have monitored CN activity in cultured human neuroblastoma SH-SY5Y cells and obtained evidence that CN activity is promoted by treatment with ascorbate or dithiothreitol and impaired by oxidative stress. Evidence for the existence of a redox regulation of this enzyme has been also obtained by overexpression of wild-type antioxidant Cu,Zn superoxide dismutase (SOD1) that promotes CN activity and protects it from oxidative inactivation. On the contrary, overexpression of mutant SOD1s associated with familial amyotrophic lateral sclerosis (FALS) impairs CN activity both in transfected human neuroblastoma cell lines and in the motor cortex of brain from FALS-transgenic mice. These data suggest that CN might be a target in the pathogenesis of SOD1-linked FALS.  相似文献   

7.
The role of copper in the toxicity of mutant copper-dependent enzyme superoxide dismutase (SOD1) found in patients affected with the familial form of amyotrophic lateral sclerosis (fALS) is widely debated. Here we report that treatment of human neuroblastoma cells SH-SY5Y with a specific copper chelator, triethylene tetramine (Trien) induces the decrease of intracellular copper level, paralleled by decreased activity of SOD1. A comparable effect is observed in mouse NSC-34-derived cells, a motoneuronal model, transfected for the inducible expression of either wild-type or G93A mutant human SOD1, one of the mutations associated with fALS. In both cell types, the drop of SOD1 activity is not paralleled by the same extent of decrease in SOD1 protein content. This discrepancy can be explained by the occurrence of a fraction of copper-free SOD1 upon copper depletion, which is demonstrated by the partial recovery of the enzyme activity after the addition of copper sulphate to homogenates of SH-SY5Y cells. Furthermore, copper depletion produces the enrichment of the physiological mitochondrial fraction of SOD1 protein, in both cells models. However, increasing the fraction of mitochondrial, possibly copper-free, mutant human SOD1 does not further alter mitochondrial morphology in NSC-34-derived cells. Thus, copper deficiency is not a factor which may worsen mitochondrial damage, which is one of the earliest events in fALS associated with mutant SOD1.  相似文献   

8.
Changes in intracellular redox status are crucial events that trigger downstream proliferation or death responses through activation of specific signaling pathways. Moreover, cell responses to oxidative challenge may depend on the pattern of redox-sensitive molecular factors. The stress-activated protein kinases c-Jun-N-terminal kinase (JNK) and p38 MAP kinase (p38MAPK) are implicated in different forms of apoptotic neuronal cell death. Here, we investigated the effects, on neuroblastoma cells, of the prooxidant molecule GSSG, which we previously demonstrated to be an efficient proapoptotic compound able to activate the p38MAPK death pathway in promonocytic cells. We found that neuroblastoma cells are not prone to GSSG-induced apoptosis, although the treatment slightly induced growth arrest through the accumulation of p53 and its downstream target gene, p21. However, GSSG treatment became cytotoxic when cells were previously depleted of intracellular GSH content. Under this condition, apoptosis was triggered by an increased production of superoxide that led to a specific activation of the JNK-dependent pathway. The involvement of superoxide and JNK was demonstrated by cell death inhibition in experiments carried out in the presence of Cu,Zn superoxide dismutase or with specific inhibitors of JNK activity. Our data give support to the studies that indicate preferential requirements for the involvement of stress-activated kinases in apoptotic neuronal cells.  相似文献   

9.
Copper/zinc superoxide dismutase (SOD1) is an abundant intracellular enzyme with an essential role in antioxidant defense. The activity of SOD1 is dependent upon the presence of a bound copper ion incorporated by the copper chaperone for superoxide dismutase, CCS. To elucidate the cell biological mechanisms of this process, SOD1 synthesis and turnover were examined following 64Cu metabolic labeling of fibroblasts derived from CCS+/+ and CCS-/- embryos. The data indicate that copper is rapidly incorporated into both newly synthesized SOD1 and preformed SOD1 apoprotein, that each process is dependent upon CCS and that once incorporated, copper is unavailable for cellular exchange. The abundance of apoSOD1 is inversely proportional to the intracellular copper content and immunoblot and gel filtration analysis indicate that this apoprotein exists as a homodimer that is distinguishable from SOD1. Despite these distinct differences, the abundance and half-life of SOD1 is equivalent in CCS+/+ and CCS-/- fibroblasts, indicating that neither CCS nor copper incorporation has any essential role in the stability or turnover of SOD1 in vivo. Taken together, these data provide a cell biological model of SOD1 biosynthesis that is consistent with the concept of limited intracellular copper availability and indicate that the metallochaperone CCS is a critical determinant of SOD1 activity in mammalian cells. These kinetic and biochemical findings also provide an important framework for understanding the role of mutant SOD1 in the pathogenesis of familial amyotrophic lateral sclerosis.  相似文献   

10.
We investigated whether polymorphonuclear leukocytes (PMN) are able to kill human neuroblastoma cells either directly or if coated with antibody MAb 14.18 that recognizes ganglioside GD2 present on the cell surface of most neuroblastoma cells. Neuroblastoma cells could not be destroyed directly, whereas in the antibody-dependent reaction (ADCC-reaction) they were easily eliminated. In order to answer the question whether reactive oxygen intermediates are involved in this process, chemiluminescence measurements were performed. Compared to the signals that could be measured using opsonized zymosan as stimulus, only weak CL-signals could be registered during the ADCC reaction. Pretreatment of PMN with granulocyte-macrophage colony stimulating factor (GM-CSF) enhanced the CL-signals, catalase and SOD reduced it; however, cell killing was only slightly influenced in the presence of catalase and superoxide dismutase. These data suggested that reactive oxygen compounds do not play a prominent role in the killing process. Definitive evidence for this suggestion could be obtained using PMN from a patient with chronic granulomatous disease (CGD): MAb 14.18 coated neuroblastoma cells could be killed effectively, but no CL-signal could be registered, either in the ADCC-reaction or using opsonized zymosan as stimulus.  相似文献   

11.
The human CuZn superoxide dismutase (superoxide dismutase 1) a key enzyme in the metabolism of oxygen free-radicals, is encoded by a gene located on chromosome 21 in the region 21 q 22.1 known to be involved in Down's syndrome. A gene dosage effect for this enzyme has been reported in trisomy 21. To assess the biological consequences of superoxide dismutase 1 overproduction within cells, the human superoxide dismutase 1 gene and a human superoxide dismutase 1 cDNA were introduced into mouse L cells and NS20Y neuroblastoma cells. Both cell types expressed elevated levels (up to 3-fold) of enzymatically active human superoxide dismutase 1. These human superoxide dismutase 1 overproducers, especially neuronal cell lines, showed an increased activity in the selenodependent glutathione peroxidase. These data are consistent with the possibility that gene dosage of superoxide dismutase 1 contributes to oxygen metabolism modifications previously described in Down's syndrome.  相似文献   

12.
The copper chaperone for superoxide dismutase (CCS) is an intracellular metallochaperone required for incorporation of copper into the essential antioxidant enzyme copper/zinc superoxide dismutase (SOD1). Nutritional studies have revealed that the abundance of CCS is inversely proportional to the dietary and tissue copper content. To determine the mechanisms of copper-dependent regulation of CCS, copper incorporation into SOD1 and SOD1 enzymatic activity as well as CCS abundance and half-life were determined after metabolic labeling of CCS-/- fibroblasts transfected with wild-type or mutant CCS. Wild-type CCS restored SOD1 activity in CCS-/- fibroblasts, and the abundance of this chaperone in these cells was inversely proportional to the copper content of the media, indicating that copper-dependent regulation of CCS is entirely post-translational. Although mutational studies demonstrated no role for CCS Domain I in this copper-dependent regulation, similar analysis of the CXC motif in Domain III revealed a critical role for these cysteine residues in mediating copper-dependent turnover of CCS. Further mutational studies revealed that this CXC-dependent copper-mediated turnover of CCS is independent of the mechanisms of delivery of copper to SOD1 including CCS-SOD1 interaction. Taken together these data demonstrate a mechanism determining the abundance of CCS that is competitive with the process of copper delivery to SOD1, revealing a unique post-translational component of intracellular copper homeostasis.  相似文献   

13.
Recent data indicate that the oxidative stress plays an important role in the pathogenesis of diabetes and its complications such as retinopathy, nephropathy and accelerated atherosclerosis. In diabetic retinopathy, it was demonstrated a selective loss of pericytes accompanied by capillary basement membrane thickening, increased permeability and neovascularization. This study was designed to investigate the role of diabetic conditions such as high glucose, AGE-Lysine, and angiotensin II in the modulation of antioxidant enzymes activities, glutathione level and reactive oxygen species (ROS) production in pericytes. The activity of antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and total glutathione (GSH) was measured spectrophotometrically. The production of ROS was detected by spectrofluorimetry and fluorescence microscopy after loading the cells with 2'-7' dichlorofluoresceine diacetate; as positive control H2O2 was used. Intracellular calcium was determined using Fura 2 AM assay. The results showed that the cells cultured in high glucose alone, do not exhibit major changes in the antioxidant enzyme activities. The presence of AGE-Lys or Ang II induced the increase of SOD activity. Their combination decreased significantly GPx activity and GSH level. A three times increase in ROS production and a significant impairment of intracellular calcium homeostasis was detected in cells cultured in the presence of the three pro-diabetic agents used. In conclusion, our data indicate that diabetic conditions induce in pericytes: (i) an increase of ROS and SOD activity, (ii) a decrease in GPx activity and GSH level, (iii) a major perturbation of the intracellular calcium homeostasis. The data may explain the structural and functional abnormalities of pericytes characteristic for diabetic retinopathy.  相似文献   

14.
15.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by loss of motor function and eventual death as a result of degeneration of motor neurons in the spinal cord and brain. The discovery of mutations in SOD1, the gene encoding the antioxidant enzyme Cu/Zn-superoxide dismutase (CuZnSOD), in a subset of ALS patients has led to new insight into the pathophysiology of ALS. Utilizing a novel adenovirus gene delivery system, our laboratory has developed a human cell culture model using chemically differentiated neuroblastoma cells to investigate how mutations in SOD1 lead to neuronal death. Expression of mutant SOD1 (G37R) resulted in a time and dose-related death of differentiated neuroblastoma cells. This cell death was inhibited by overexpression of the antioxidant enzyme manganese superoxide dismutase (MnSOD). These observations support the hypothesis that mutant SOD1-associated neuronal death is associated with alterations in oxidative stress, and since MnSOD is a mitochondrial enzyme, suggest that mitochondria play a key role in disease pathogenesis. Our findings in this model of inhibition of mutant SOD1-associated death by MnSOD represent an unique approach to explore the underlying mechanisms of mutant SOD1 cytotoxicity and can be used to identify potential therapeutic agents for further testing.  相似文献   

16.
Infection of many cultured cell types with Sindbis virus (SV), an alphavirus, triggers apoptosis through a commonly utilized caspase activation pathway. However, the upstream signals by which SV activates downstream apoptotic effectors, including caspases, remain unclear. Here we report that in AT-3 prostate carcinoma cells, SV infection decreases superoxide (O-2) levels within minutes of infection as monitored by an aconitase activity assay. This SV-induced decrease in O-2 levels appears to activate or modulate cell death, as a recombinant SV expressing the O-2 scavenging enzyme, copper/zinc superoxide dismutase (SOD), potentiates SV-induced apoptosis. A recombinant SV expressing a mutant form of SOD, which has reduced SOD activity, has no effect. The potentiation of SV-induced apoptosis by wild type SOD is because of its ability to scavenge intracellular O-2 rather than its ability to promote the generation of hydrogen peroxide. Pyruvate, a peroxide scavenger, does not affect the ability of wild type SOD to potentiate cell death; and increasing the intracellular catalase activity via a recombinant SV vector has no effect on SV-induced apoptosis. Moreover, increasing intracellular O-2 by treatment of 3T3 cells with paraquat protects them from SV-induced death. Altogether, our results suggest that SV may activate apoptosis by reducing intracellular superoxide levels and define a novel redox signaling pathway by which viruses can trigger cell death.  相似文献   

17.
18.
Mutations in the gene encoding cytosolic Cu,Zn-superoxide dismutase (SOD1) have been linked to familial amyotrophic lateral sclerosis (FALS). However the molecular mechanisms of motor neuron death are multi-factorial and remain unclear. Here we examined DNA damage, p53 activity and apoptosis in SH-SY5Y human neuroblastoma cells transfected to achieve low-level expression of either wild-type or mutant Gly93  Ala (G93A) SOD1, typical of FALS. DNA damage was investigated by evaluating the levels of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) and DNA strand breaks. Significantly higher levels of DNA damage, increased p53 activity, and a greater percentage of apoptotic cells were observed in SH-SY5Y cells transfected with G93A SOD1 when compared to cells overexpressing wild-type SOD1 and untransfected cells. Western blot, FACS, and confocal microscopy analysis demonstrated that G93A SOD1 is present in the nucleus in association with DNA. Nuclear G93A SOD1 has identical superoxide dismutase activity but displays increased peroxidase activity when compared to wild-type SOD1. These results indicate that the G93A mutant SOD1 association with DNA might induce DNA damage and trigger the apoptotic response by activating p53. This toxic activity of mutant SOD1 in the nucleus may play an important role in the complex mechanisms associated with motor neuron death observed in ALS pathogenesis.  相似文献   

19.
The antioxidant enzyme CuZn superoxide dismutase (SOD1) is secreted by many cell lines. However, it is not clear whether SOD1 secretion is only constitutive or can be regulated in an activity-dependent fashion. Using rat pituitary GH(3) cells that express voltage-dependent calcium channels and are subjected to Ca(2+) oscillations, we found that treatment with high K(+)-induced SOD1 release that was significantly higher than the constitutive secretion. Evoked SOD1 release was correlated with depolarization-dependent calcium influx and was virtually abolished by removal of extracellular calcium with EGTA or by pre-incubation of GH(3) cells with Botulinum toxin A that cleaves the SNARE protein SNAP-25. Immunofluorescence experiments performed in GH(3) cells and rat brain synaptosomes showed that K(+)-depolarization induced a marked depletion of intracellular SOD1 immunoreactivity, an effect that was again abolished in the absence of extracellular calcium or after treatment with Botulinum toxin A. Subcellular fractionation analysis showed that SOD1 was present in large dense core vesicles. These data clearly show that, in addition to the constitutive SOD1 secretion, depolarization induces an additional rapid calcium-dependent SOD1 release in GH(3) cells and in rat brain synaptosomes. This likely occurs through exocytosis from SOD1-containing vesicles operated by the SNARE complex.  相似文献   

20.
In various organisms, high intracellular manganese provides protection against oxidative damage through unknown pathways. Herein we use a genetic approach in Saccharomyces cerevisiae to analyze factors that promote manganese as an antioxidant in cells lacking Cu/Zn superoxide dismutase (sod1 Delta). Unlike certain bacterial systems, oxygen resistance in yeast correlates with high intracellular manganese without a lowering of iron. This manganese for antioxidant protection is provided by the Nramp transporters Smf1p and Smf2p, with Smf1p playing a major role. In fact, loss of manganese transport by Smf1p together with loss of the Pmr1p manganese pump is lethal to sod1 Delta cells despite normal manganese SOD2 activity. Manganese-phosphate complexes are excellent superoxide dismutase mimics in vitro, yet through genetic disruption of phosphate transport and storage, we observed no requirement for phosphate in manganese suppression of oxidative damage. If anything, elevated phosphate correlated with profound oxidative stress in sod1 Delta mutants. The efficacy of manganese as an antioxidant was drastically reduced in cells that hyperaccumulate phosphate without effects on Mn SOD activity. Non-SOD manganese can provide a critical backup for Cu/Zn SOD1, but only under appropriate physiologic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号