首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grazing impacts the structure and functional properties of vegetation through floristic changes (i.e., long-term effect) and current defoliation (i.e., short-term effect). The aim of this study was to assess the relative importance of these two grazing effects on productivity (ANPP) and plant quality (C/N ratio) among plant patches submitted to a variety of grazing intensity for several years. Long-term grazing effect was measured by comparing ANPP and C/N ratio among plant patches with contrasting floristic composition. Short-term impact of grazing was measured by comparing ANPP and C/N in plant patches, with and without defoliation. Floristic contrasts led to a lower ANPP in highly grazed patches than in lightly grazed ones. This result may be related to the increasing proportion of grazing-tolerant and grazing-avoiding species with increasing grazing intensity. Vegetation C/N contrasts were recorded among grazed patches but did not linearly relate to grazing intensity. Short-term effect of current-year defoliation on ANPP was limited as vegetation compensated for biomass removal. No evidence for grazing-enhancement of ANPP was found even at moderate grazing intensity. Long-term floristic changes with grazing thus appeared to be the main driving factor of variations in ANPP. In contrast, C/N ratio showed no general and consistent variation along the grazing gradient but varied consistently depending on the community investigated, thus suggesting an effect of the species pool available.  相似文献   

2.
Preliminary results are presented of sampling the leafhopper assemblages on a field experiment designed to examine the differential effects of rabbits and livestock (mainly sheep) on the vegetation of chalk heath in southern England. Experimental plots that excluded livestock either allowed entry by rabbits or excluded them. Results were compared with those from plots grazed by both livestock and rabbits. After 7 years, exclusion of grazing herbivores had resulted in predictable increases in vegetation height, but no major changes were detected in the species composition of the vegetation. As expected, ungrazed plots had higher species richness and greater abundances of several individual leafhopper species. However, plots grazed only by rabbits had a leafhopper assemblage that was distinct from either ungrazed or mixed grazing plots. It is suggested that rabbit grazing may have subtle effects on grassland invertebrate assemblages that are not necessarily predictable from an examination of the species composition of the vegetation. Chalk heath vegetation contains an unusual mixture of calcicole and calcifuge plant species, but the leafhopper assemblage included a restricted number of calcareous grassland specialist species and only one species strongly associated with acidic grasslands; most leafhoppers recorded were generalist grassland species.  相似文献   

3.
Salt marshes of Samborombón Bay (Argentina) have been grazed sporadically at very low stocking rates, but in the last decade, grazing intensity increased due to agriculture expansion. We investigated the effect of cattle grazing on vegetation and soil salinity on the most extended Spartina densiflora community. This community develops along an elevation gradient where the frequency and duration of tidal flooding and soil salinity increased as elevation decreased. Vegetation and soil data were collected from a national park excluded to cattle grazing for 30 years and from an adjacent commercial livestock farm continuously grazed by cattle. As elevation level decreased, plant cover, richness and diversity of functional groups and species decreased. As we expected, grazing altered soil salinity and vegetation composition in different extent along the elevation gradient. Grazing changed vegetation structure more intensively in the high elevation level because it reduced the competitive exclusion exerted by S. densiflora, allowing the increase in floristic richness. Grazing increased soil salinity and the contribution of salt-tolerant species only in the medium but not in the low elevation level probably because the higher frequency and duration of tidal flooding counterbalanced the increase in evaporation promoted by biomass removal in the low respect to the medium elevation level. While grazing may cause positive impacts for plant conservation in the high elevation level, it may cause negative consequence for livestock production because of the reduction in forage quality along the entire elevation gradient.  相似文献   

4.
In northwestern Costa Rica, cattle are being used as a "management tool" to reduce the amount of combustible material, mainly dominated by Hyparrhenia rufa, an African grass. This project is being developed within Parque Nacional Palo Verde and Reserva Biológica Lomas Barbudal, both of which form part of the only remaining tropical dry forests in Mesoamerica. To determine the short-term effects of cattle grazing on the natural vegetation, we compared the floristic composition within Palo Verde in an area under intermittent cattle grazing with an area that has not been grazed. There were significantly fewer plant species in the area with intermittent cattle grazing compared to the area with no grazing. Floristic composition of these two habitats was different as reflected by both Fisher's alpha values and the Shannon index of diversity, both of which were significantly higher in the ungrazed site. The ungrazed area contained more plant species and was more similar to mature forest. The structure of the vegetation was significantly different between the intermittently grazed and ungrazed sites with more small stems (1-5 cm dbh) and fewer large stems (> 5 cm dbh) in the intermittently grazed habitat. These results indicate that cattle grazing has an impact on the dry forest by reducing the relative abundance and density of larger tree species and by changing the species composition and structure of the community. The current management plan implemented in Palo Verde and Lomas Barbudal is not appropriate because of the impact that cattle have on the structure of the natural vegetation and should not be considered a viable alternative in other protected areas of dry forest in the Neotropics. We suggest that alternative fire prevention measures be evaluated including hand-cutting H. rufa, the creation of more frequent and larger fire breaks, and the development of green breaks.  相似文献   

5.
Large vertebrate herbivores, as well as plant–soil feedback interactions are important drivers of plant performance, plant community composition and vegetation dynamics in terrestrial ecosystems. However, it is poorly understood whether and how large vertebrate herbivores and plant–soil feedback effects interact. Here, we study the response of grassland plant species to grazing‐induced legacy effects in the soil and we explore whether these plant responses can help us to understand long‐term vegetation dynamics in the field. In a greenhouse experiment we tested the response of four grassland plant species, Agrostis capillaris, Festuca rubra, Holcus lanatus and Rumex acetosa, to field‐conditioned soils from grazed and ungrazed grassland. We relate these responses to long‐term vegetation data from a grassland exclosure experiment in the field. In the greenhouse experiment, we found that total biomass production and biomass allocation to roots was higher in soils from grazed than from ungrazed plots. There were only few relationships between plant production in the greenhouse and the abundance of conspecifics in the field. Spatiotemporal patterns in plant community composition were more stable in grazed than ungrazed grassland plots, but were not related to plant–soil feedbacks effects and biomass allocation patterns. We conclude that grazing‐induced soil legacy effects mainly influenced plant biomass allocation patterns, but could not explain altered vegetation dynamics in grazed grasslands. Consequently, the direct effects of grazing on plant community composition (e.g. through modifying light competition or differences in grazing tolerance) appear to overrule indirect effects through changes in plant–soil feedback.  相似文献   

6.
Changes in rainfall regime and grazing pressure affect vegetation composition and diversity with ecological implications for savannahs. The savannah in East Africa has experienced increased livestock grazing and rainfall variability but the impacts associated with those changes on the herbaceous layer have rarely been documented. We investigated the effect of livestock grazing, rainfall manipulation and their interaction on the composition and diversity of the herbaceous community in the savannah for two years in Lambwe, Kenya. Rainfall manipulation plots were set up for vegetation sampling;these plots received either 50% more or 50% less rainfall than control plots. Simpson’s diversity and Bergere Parker indices were used to determine diversity changes and dominance respectively. The frequency of species was used to compute their abundance and their life forms as determined from the literature. Grazing significantly increased species diversity through suppression of dominant species. Rainfall manipulation had no significant impact on plant diversity in fenced plots, but rainfall reduction significantly reduced diversity in grazed plots. In contrast, rainfall manipulation had no impact on dominance in either fenced or grazed plots. The interaction of grazing and rainfall manipulation is complex and will require additional survey campaigns to create a complete picture of the implications for savannah structure and composition.  相似文献   

7.
Species composition, number of emerging seedlings, species diversity and functional group of the soil seed banks, and the influence of grazing on the similarity between the soil seed banks and aboveground vegetation, were studied in 2008 and 2009 in a semi‐arid savanna of Ethiopia. We tested whether the availability of persistent seeds in the soil could drive the transition from a degraded system under heavy grazing to healthy vegetation with ample perennial grasses. A total of 77 species emerged from the soil seed bank samples: 21 annual grasses, 12 perennial grasses, 4 herbaceous legumes, 39 forbs, and 1 woody species. Perennial grass species dominated the lightly grazed sites, whereas the heavily grazed sites were dominated by annual forbs. Heavy grazing reduced the number of seeds that can germinate in the seed bank. Species richness in the seed bank was, however, not affected by grazing. With increasing soil depth, the seed density and its species richness declined. There was a higher similarity in species composition between the soil seed bank and aboveground vegetation at the lightly grazed sites compared with the heavily grazed sites. The mean similarity between the seed banks and aboveground vegetation was relatively low, indicating the effect of heavy grazing. Moreover, seeds of perennial grasses were less abundant in the soil seed banks under heavy grazing. We concluded that restoration of grass and woody species from the soil seed banks in the heavily grazed areas could not be successful in semi‐arid savannas of Ethiopia.  相似文献   

8.
Reindeer Rangifer tarandus L. grazing shapes forest vegetation, microclimate, and soil respiration in Lapland, especially due to grazing on lichens (Cladina). We studied how these changes and their magnitude affect ground‐dwelling species of beetle families Carabidae (predators) and Curculionidae (herbivores), by using pitfall traps to collect invertebrates from pairs of grazed and ungrazed study plots over a wide range of site types. Changes in abundance, composition, richness and diversity of beetle assemblage were tested in relation to magnitude of the impacts on vegetation. The species compositions of Carabidae and Curculionidae differed between grazed and ungrazed plots in all sites. The relative difference between grazed and ungrazed plots in the number of individuals increased linearly with the impact of reindeer on vegetation cover. Carabid beetles, as a family, were more common in grazed plots in all sites. Curculionid beetles were more common in ungrazed plots in the birch dominated sites. This difference was mainly due to the species that feeds on deciduous leaves. In the pine dominated sites with high Cladina cover and more changes in ground vegetation, the number of curculionids feeding on conifers was higher in grazed plots. Species richness and diversity (H’) of both families were higher in grazed plots. Of the total 27 species, 11 were found only in grazed plots, while not a single species was found only in ungrazed plots. The relative difference between plots in diversity and evennes (H’/H'max) had humped response to the difference in Cladina cover. The diversity values were greater in grazed plots at the intermediate levels of grazing impact, and only in sites with very low or extremely high Cladina cover difference was the diversity higher in ungrazed plots. The response of beetle diversity resembled the hypotheses suggested for the relationship between grazing and vegetation diversity: greatest positive effect at intermediate grazing intensity and negative effects at unproductive sites.  相似文献   

9.

Background & aims

Herbivore-driven changes to soil properties can influence the decomposition rate of organic material and therefore soil carbon cycling within grassland ecosystems. We investigated how aboveground foraging mammalian and invertebrate herbivores affect mineral soil decomposition rates and associated soil properties in two subalpine vegetation types (short-grass and tall-grass) with different grazing histories.

Methods

Using exclosures with differing mesh sizes, we progressively excluded large, medium and small mammals and invertebrates from the two vegetation types in the Swiss National Park (SNP). Mineral soil decomposition rates were assessed using the cotton cloth (standard substrate) method between May and September 2010.

Results

Decomposition displayed strong spatio-temporal variability, best explained by soil temperature. Exclusion of large mammals increased decomposition rates, but further exclusion reduced decomposition rates again in the lightly grazed (tall-grass) vegetation. No difference among treatments was found in the heavily grazed (short-grass) vegetation. Heavily grazed areas had higher decomposition rates than the lightly grazed areas because of higher soil temperatures. Microbial biomass carbon and soil C:N ratio were also linked to spatio-temporal decomposition patterns, but not to grazing history.

Conclusions

Despite altering some of the environmental controls of decomposition, cellulose decomposition rates in the SNP’s subalpine grasslands appear to be mostly resistant to short-term herbivore exclusion.  相似文献   

10.
Abstract. Mainland salt marshes in Schleswig-Holstein (northern Germany) have been grazed intensively by sheep for several decades. In 1988 experimental sites were established in the lower and middle salt marsh of Sönke-Nissen-Koog and subjected to different grazing intensities. From 1989 to 1993 the impact of sheep grazing on the composition and structure of the salt marsh vegetation was studied through the yearly analysis of permanent plots, vegetation mapping and measurements of the vegetation height. The intensively grazed site (10 sheep/ha) is covered by a short monotonous Puccinellia maritima sward with Salicornia europaea and Suaeda maritima. Halimione portulacoides and Aster tripolium, especially flowering plants, are rare. On the sites with 1.5 and 3 sheep/ha Puccinellia maritima remained dominant. The population density of Salicornia europaea decreases after reduction of the grazing intensity, whereas Suaeda maritima finds optimal growing conditions. Stands of Halimione portulacoides and flowering Aster tripolium plants are rare near the sea dike but their cover and size increases further away from the dike. In the plot with 1.5 sheep/ha the height of the vegetation increases along the gradient from the dike towards the tidal flats, due to local differences in actual grazing intensity. When grazing is stopped, Puccinellia maritima is successively replaced by Festuca rubra, Halimione portulacoides and Aster tripolium. High variability of vegetation height indicates structural diversity. Patches of higher and lower vegetation correspond with the distribution pattern of different plant species. In terms of nature conservation cessation of grazing is recommended.  相似文献   

11.
Changes in grazing management are believed to be responsible for declines in populations of birds breeding in grassland over the last decades. The relationships between grazing management regimes, vegetation structure and composition and the availability of invertebrate food resources to passerine birds remain poorly understood. In this study, we investigated the foraging site selection of meadow pipits (Anthus pratensis L.) breeding in high intensity sheep-grazed plots or low intensity mixed (i.e. sheep and cattle)-grazed plots. We sampled above-ground invertebrates, measured vegetation height and density and conducted a vegetation survey in areas where meadow pipits were observed to forage and areas that were randomly selected. Birds foraged in areas with a lower vegetation height and density and in areas containing a lower proportion of the dominant, tussock-forming grass species Molinia caerulea. They did not forage in areas with a total higher invertebrate biomass but at areas with preferred vegetation characteristics invertebrate biomass tended to be higher in foraging sites than random sites. The foraging distance of meadow pipits was higher in the intensively grazed plots. Our findings support the hypothesis that resource-independent factors such as food accessibility and forager mobility may determine patch selection and are of more importance as selection criteria than food abundance per se. Food accessibility seems to become an even more important selection criterion under high grazing intensity, where prey abundance and size decrease. In our upland grazing system, a low intensity, mixed grazing regime seems to provide a more suitable combination of sward height, plant diversity, structural heterogeneity and food supply for meadow pipit foraging activity compared to a more intensive grazing regime dominated by sheep.  相似文献   

12.
Questions: Does vegetation structure display any stability over the grazing season and in two successive years, and is there any correlation between the stability of these spatial patterns and local sward composition? Location: An upland grassland in the French Massif Central. Method: The mosaic of short and tall vegetation stands considered as grazed and ungrazed patches respectively is modeled as the realization of a Boolean process. This method does not require any arbitrarily set sward‐height thresholds to discriminate between grazed and ungrazed areas, or the use of additional variables such as defoliation indexes. The model was validated by comparing empirical and simulated sward‐height distributions and semi‐variograms. Results: The model discriminated between grazed and ungrazed patches at both a fine (1 m2) and a larger (500 m2) scale. Selective grazing on legumes and forbs and avoidance of reproductive grass could partly explain the stability of fine‐scale grazing patterns in lightly grazed plots. In these plots, the model revealed an inter‐annual stability of large‐scale grazing patterns at the time peak biomass occurred. At the end of the grazing season, lightly grazed plots showed fluctuating patch boundaries while heavily grazed plots showed a certain degree of patch stability. Conclusion: The model presented here reveals that selective grazing at the bite scale could lead to the creation of relatively stable patches within the pasture. Locally maintaining short cover heights would result in divergent within‐plot vegetation dynamics, and thus favor the functional diversity of vegetation.  相似文献   

13.
Livestock grazing is one of the main causes of rangeland degradation in Saudi Arabia. Fencing to exclude grazers is one of the main management practices used to restore vegetation and conserve biodiversity. The main objectives of this study were to investigate the changes in plant diversity and abundance, floristic composition and plant groups of the major life forms in response to thirty-five years of grazing exclosure in western Saudi Arabia. These vegetation attributes and palatability were compared in 30 sampling stands located in the excluded and grazed sites. Our results showed that livestock exclusion significantly increased covers, density and species richness of annuals, grasses, perennial forbs, shrubs and trees. Exclosure enhanced the abundance and richness of palatable species and depressed the development of weedy species. About 66.7% of the recorded species at the excluded site were highly palatable compared to 34.5% at the grazed site. In contrary, about 55.2% unpalatable species were found in the grazed site compared to 25.8% in the protected site. Jaccard’s similarity index between the excluded and grazed sites showed lower values of 0.39%, 0.40% and 0.31% at levels of families, genus and species, respectively. The results suggest that establishing livestock exclusion may be a useful sustainable management tool for vegetation restoration and conservation of plant diversity in degraded rangelands of arid regions.  相似文献   

14.
We investigate the persistent soil seed bank composition and its relation to the above-ground flora of grazed and non-grazed sub-Mediterranean deciduous oak forests of NW Greece. Twenty-eight taxa were recorded in the soil seed bank and 83 taxa (70 taxa in plots of seed bank sampling) in the above-ground vegetation. The dominant tree species and many woodland species found in the above-ground vegetation were absent from the soil seed bank. Similarity between the soil seed bank and the above-ground vegetation decreased with grazing, and grazing led to a decrease of species richness in above-ground vegetation and soil seed bank. Beta diversity of vegetation among grazed and among non-grazed plots did not differ, but was significantly higher between grazed and non-grazed areas. Beta diversity of the soil seed bank declined with grazing. When applying classification tree and logistic regression analyses, non-grazed forest sites are clearly differentiated by the presence of Phillyrea latifolia, Euphorbia amygdaloides and Brachypodium sylvaticum. PCA ordination of above-ground species composition reflected a gradient from sites grazed by ruminants to non-grazed sites, but no clear structure was detected in the seed bank.  相似文献   

15.
Worldwide, savanna remnants are losing acreage due to species replacement with shade-tolerant midstory forest species as a response to decades of fire suppression. Because canopy closes grasses and other easily ignitable fuels decline, therefore, fire, when reintroduced after years of absence, is not always effective at restoring the open structure original to these communities. Our study sought to determine if managed grazing is an alternative tool for reducing shrub densities and restoring savanna structure without the impacts on soils and native vegetation observed with unmanaged grazing. We compared effects of fire and managed grazing on shrub and herb composition within degraded oak savanna and tallgrass prairie of the U.S. Upper Midwest using a randomized complete block design. The vegetation response to treatments differed by species and by vegetation type. Total shrub stem densities declined 44% in grazed and 68% in burned paddocks within savanna and by 33% for both treatments within prairie. Within savanna, cattle reduced stem densities of Rubus spp. 97%, whereas fire reduced Ribes missouriense stems 96%. Both fire and grazing were effective at reducing stem numbers for several other shrub species but not to the same degree. Native forbs were suppressed in grazed savanna paddocks, as were native grasses in grazed prairie paddocks along with a minor increase of exotic forbs. We did not observe changes in soil bulk density. We conclude that managed grazing can serve as a valuable supplement but not as a replacement to fire for controlling shrubs in these systems.  相似文献   

16.
以科尔沁沙地小叶锦鸡儿群落为对象,分析了放牧和不同封育年限下小叶锦鸡儿群落的植被特征及植被分布的小尺度空间异质性.结果表明:放牧和封育样地内植被均以1年生草本植物为主,物种数没有明显差异;封育6年、封育12年样地的植株密度分别为(124.46±5.22)株·m~(-2)和(203.05±10.38)株·m~2,显著高于放牧样地(P<0.05);封育样地的Shannon-Wiener多样性指数、Simpson多样性指数、Pielou均匀度指数均低于放牧样地,并随着封育年限的增加而减小;封育样地植被分布的小尺度空间异质性小于放牧样地,并且封育年限越长,空间异质性越小.
Abstract:
This paper studied the vegetation characteristics and small-scale spatial heterogeneity of Caragana mirophylla community in Horqin Sandy Land in northeast Inner Mongolia of China under grazing and under 6-and 12 years enclosure, aimed to assess the effects of grazing and enclosure on vegetation restoration. In the sampling plots of grazing and different years enclosure, the species composition of C. mirophylla community all dominated by annual herbaceous plants. The species richness in grazed plot and in the plots enclosed for 6 and 12 years was 22, 19, and 20, respectively, with no significant difference. In the plots enclosed for 6 and 12 years, the plant density was (124.46±5.22) plants·m~(-2) and (203. 05±10. 38) plants·m~(-2), respec- tively, being significantly higher than that in grazed plot, which suggested that enclosure was an effective method to accelerate the vegetation restoration in Sandy Land. The Shannon-Wiener index, Simpson species diversity, and Pielou evenness in enclosed plots were lower than those in grazed plot, and decreased with increasing enclosure duration. The small-scale spatial heteroge-neity of vegetation in enclosed plots was smaller than that in grazed plot. The longer the enclosure duration, the smaller the spatial heterogeneity was.  相似文献   

17.
In this study, we investigated the effect of reindeer grazing on tundra heath vegetation in northern Norway. Fences, erected 30 yr ago, allowed us to compare winter grazed, lightly summer grazed and heavily summer grazed vegetation at four different sites. At two sites, graminoids dominated the heavily grazed zone completely, while ericoid dwarf shrubs had almost disappeared. In the other two areas, the increase of graminoids was almost significant. At one of the sites where graminoids dominated the heavily grazed area, we also measured plant biomass, primary production and nitrogen cycling. In this site, heavy grazing increased primary production and rate of nitrogen cycling, while moderate grazing decreased primary production. These results were inconsistent with the view that the highest productivity is found at intermediate grazing pressure. These results rather support the hypothesis that intensive grazing can promote a transition of moss-rich heath tundra into productive, graminoid-dominated steppe-like tundra vegetation. Moreover the results suggests that intermittent intensive reindeer grazing can enhance productivity of summer ranges.  相似文献   

18.
Over the last few decades, due to increase in grazing intensity, animal trampling has led to soil structure deterioration in Inner Mongolia, China. We investigated two different steppe ecosystems: Leymus chinensis (LCh, characterized by relatively higher precipitation) and Stipa grandis (SG) and two grazing intensities: ungrazed since 1979 (UG79) and grazed (continuously grazed, CG, at the Stipa grandis site and winter grazed, WG, at Leymus chinensis). Soil mechanical and hydraulic properties of semiarid steppe soils from each site and treatment were determined for soil aggregates and disturbed and bulk soil samples from different depths (4?C8, 18?C22, 30?C34 and 56?C60 cm for disturbed and bulk samples and 0?C15 cm for the aggregates). Grazing causes a significant increase in tensile strength of aggregates and in the precompression stress of the bulk soil as well as a decrease in air and saturated hydraulic conductivity, irrespective of the vegetation type. Furthermore, exclusion from grazing led to more pronounced recovery of soil strength and pore continuity and hydraulic conductivity at the LCh site but it also depended on the moisture conditions of the sites. Under wetter conditions as well as after repeated freezing and thawing the soil strength declined.  相似文献   

19.
Abstract. The role of sheep grazing on vegetation change in upland mires removed from livestock farming and surrounded by conifer plantation was investigated with a grazing trial at Butterburn Flow in northern England. Paired grazed and ungrazed plots from central and peripheral locations were compared over 14 yr. Vegetation data from 34 mires in Kielder Forest provided an ordination framework within which vegetation trends were investigated. A gradient from dry moorland/hummock to wet mire/hollow vegetation dominated this framework and may reflect hydrological variability and structural vegetation differences between the mires. Some species were significantly affected by change in grazing intensity and there were differences between the edge and the centre of the mire. Overall vegetation change depended upon the grazing management and the position of the plots such that the removal of sheep grazing decreased the cover of species typical of wet ombrotrophic conditions, but only at the periphery of the mire. The vegetation in one plot became very similar to that of mires elsewhere in Kielder Forest where sheep were removed several decades ago. Cessation of grazing on upland mires is likely to lead to slow structural and species change in vegetation at the mire edge with a long‐term loss of ombrotrophic species. The nature conservation significance of these changes will depend upon whether or not management objectives target natural conditions or wish to maximize ombrotrophic vegetation. The context of external factors such as climate and pollution may, however, be more important in determining site condition on the wettest mires.  相似文献   

20.
The High Mountains of Córdoba, Argentina have a long evolutionary history of grazing by large herbivores. However, about 400?years ago, European livestock were introduced and gradually replaced native herbivores. Since the 1920s, domestic herbivores have been the only large herbivores present in the area, causing severe soil erosion and a threat to the system diversity. The endemic fauna of the region includes four amphibian species. We evaluated the effect of livestock rearing on amphibian diversity and water bodies in woodlands and grasslands of the High Mountains of Córdoba. The work was conducted on stream stretches and ponds in two contrasting grazing situations: an area with livestock presence and another area where livestock was excluded 14?years ago. The following variables were recorded at each sampling site: amphibian richness and abundance, percentage of emergent, submerged and peripheral vegetation in areas surrounding the water bodies, water pH, and water dissolved O2. No significant differences were detected in amphibian diversity between streams of both grazing situations, whereas a greater diversity (p?<?0.01) was observed in ponds in grazed grasslands. Our results suggest that livestock rearing, qualitatively measured as grazing and 14?years of livestock exclusion, in the study area would not have negative effects on amphibian diversity. This finding might be due to the long evolutionary grazing history of the area, large-scale livestock exclusion exhibiting a novel scenario. The ongoing reintroduction of native grazers may provide the benefits of grazing without the consequent soil erosion and habitat degradation associated with domestic livestock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号