首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
An artificial hybrid hemoglobin, alpha(Co)2 beta(Fe)2, the alpha- and beta-subunits of which contain cobaltous and ferrous protoporphyrins IX, respectively, and its complementary hybrid, alpha(Fe)2 beta(Co)2, were prepared from human hemoglobin, crystallized in the deoxy state, and examined by electron paramagnetic resonance (EPR) spectroscopy. The orientations of the porphyrin normals in these deoxy Fe-Co hybrid hemoglobins in terms of the g parallel signals, were closely coincident with those of the heme normals of deoxyhemoglobin determined by x-ray crystallography. Two sets of axially symmetric EPR signals were found in the alpha(Co)-subunits, whereas only one set was observed in the beta(Co)-subunits. Nonequivalence in the electronic structures of the prosthetic groups between the two alpha(Co)-subunits, designated alpha I and alpha II, within deoxy-alpha(Co)2 beta(Fe)2 hybrid hemoglobin was correlated to these two distinct EPR signals. The interaction between the epsilon-nitrogen of the imidazole ring of the proximal histidine and the cobaltous ion in deoxy-alpha I(Co)-subunit is different from that in the deoxy-alpha II(Co)-subunit. The absence of a strict molecular dyad axis in the deoxy-alpha(Co)2 beta(Fe)2 hybrid hemoglobin suggests that the affinity state of the alpha(Co)-subunits may be partially switched to the R-state having a higher affinity for oxygen. Upon partial ligation of carbon monoxide to the beta(Fe)-subunits, the line width of the g parallel and perpendicular signals of the alpha II(Co)-subunit was found to become somewhat narrower without disruption of the crystal structure. This suggests that there may be very close contacts between the alpha- and beta-subunits of different hemoglobin molecules which appear to be responsible for stabilizing the deoxy crystal structure after partial ligation in the crystalline state.  相似文献   

2.
Density functional theory (DFT) calculations of Cu(II) electron paramagnetic resonance (EPR) parameters for the octarepeat unit of the prion protein were conducted. Model complexes were constructed and optimized using the crystal structure of the octarepeat unit of the prion protein. Copper g and A tensors and nitrogen hyperfine and quadrupole coupling constants were calculated using DFT. Solvent effects were incorporated using the conductor-like screening model as well as through the inclusion of explicit water molecules. Calculations using the model with an additional axial water molecule added to the coordination sphere of the Cu(II) metal center give the best qualitative agreement for the copper g and A tensors. The S-band experimental EPR spectra were interpreted in light of the DFT calculations of the directly coordinated nitrogen hyperfine coupling constants which indicate that the three directly coordinated nitrogen atoms in the octarepeat unit are not equivalent. These results demonstrate that DFT calculations of EPR parameters can provide important insight with respect to the structural interpretation of experimental EPR data. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
The molecular structure of free radicals formed in gamma-irradiated monoclinic and orthorhombic single crystals of hydrated testosterone were investigated by EPR spectroscopy. Two different types of radical were observed. In the monoclinic form, the radical arises by the loss of a hydrogen atom from the carbon atom C(2), whereas, in the orthorhombic form, it arises by addition of a hydrogen atom to the oxygen atom O(3). The hyperfine spectrum of the radical formed in the monoclinic single crystal originates from the interaction of the unpaired electron with one alpha-proton in position 2 and two non equivalent beta-protons in position 1. In the orthorhombic single crystal, we observed interaction of the unpaired electron, which is delocalized on the carbons C(3), C(4) and C(5) with one alpha-proton in position 4 and with four nonequivalent beta-protons connected with the carbon atoms C(2) and C(6). The hyperfine tensors of the coupling and the g-tensor of the radicals are given.  相似文献   

4.
In leghemoglobin a, which is the major hemoglobin component in soybean root nodules, the haem iron has been replaced by cobalt. The electron spin resonance (ESR) of frozen solutions of the cobalt-substituted leghemoglobin has been studied at 77 K in the deoxy and oxy forms respectively. Both ligation states exhibit rhombic g tensors. The hyperfine constants of 59Co, 14N-imidazole (residue of the proximal histidine) and 14N-pyrroles are determined for the three principal directions of the g tensor. Both, the oxy and the deoxy state exhibit pH-dependent changes of the hyperfine structures. For oxy cobalt leghemoglobin a quantitative analysis of the pH titration and of the ESR parameters of the low and high-pH forms respectively are performed. The interconversion of the low and the high-pH forms is controlled by a proton-dissociating group with pK=6.4 which is most probably the distal histidine. g tensors and hyperfine constants are compared with those described for oxy cobalt myoglobin crystal spectra [34] allowing assignments of the low and high-pH species of leghemoglobin to stereoelectronic structures with non-equivalent and equivalent dioxygen atoms respectively. Hydrogen-bonding of the distal histidine with dioxygen favours the structure with equivalent oxygen atoms. The pH dependence of the deoxy form is interpreted as interaction of the proximal imidazole with the central cobalt atom.  相似文献   

5.
C W Hoganson  G T Babcock 《Biochemistry》1992,31(47):11874-11880
The stable tyrosine radical in photosystem II, YD*, has been studied by ESR and ENDOR spectroscopies to obtain proton hyperfine coupling constants from which the electron spin density distribution can be deduced. Simulations of six previously published ESR spectra of PSII (one at Q band; five at X band, of which two were after specific deuteration and two others were of oriented membranes) can be achieved by using a single set of magnetic parameters that includes anisotropic proton hyperfine tensors, an anisotropic g tensor, and noncoincident axis systems for the g and A tensors. From the spectral simulation of the oriented samples, the orientation of the phenol head group of YD* with respect to the membrane plane has been determined. A similar orientation for YZ*, the redox-active tyrosine in PSII that mediates electron transfer between P680 and the oxygen-evolving complex, is expected. ENDOR spectra of YD* in PSII preparations from spinach and Synechocystis support the set of hyperfine coupling constants but indicate that small differences between the two species exist. Comparison with the results of spectral simulations for tyrosyl radicals in ribonucleotide reductase from prokaryotes or eukaryotes and with in vitro radicals indicates that the spin density distribution remains that of an odd-alternant radical but that interactions with the protein can shift spin density within this basic pattern. The largest changes in spin density occur at the tyrosine phenol oxygen and at the ring carbon para to the oxygen, which indicates that mechanisms exist in the protein environment for fine-tuning the chemical and redox properties of the radical species.  相似文献   

6.
Simulation of X- and Q-band electron paramagnetic resonance (EPR) spectra of an unsymmetric dinuclear [Mn(2)(II,III)L(mu-OAc)(2)]ClO(4) complex (1), (L is the dianion of 2-{[N,N-bis(2-pyridylmethyl)amino]methyl}-6-{[N-(3,5-di-tert-butyl-2-hydroxybenzyl)-N-(2-pyridylmethyl)amino]methyl}-4-methylphenol) was performed using one consistent set of simulation parameters. Rhombic g-tensors and hyperfine tensors were necessary to obtain satisfactory simulation of the EPR spectra. The anisotropy of the effective hyperfine tensors of each individual (55)Mn ion was further analyzed in terms of intrinsic hyperfine tensors. Detailed analysis shows that the hyperfine anisotropy of the Mn(III) ion is a result of the Jahn-Teller effect and thus an inherent character. In contrast, the anomalous hyperfine anisotropy of the Mn(II) ion is attributed as being transferred from the Mn(III) ion through the spin exchange interaction. The anisotropy parameter for the Mn(II) is deduced as D(II)=-1.26+/-0.2cm(-1). This is the first reported D(II) value for a Mn(II) ion in a weakly exchange coupled mixed-valence Mn(2)(II,III) complex with a bis-mu-acetato-bridge. The [see text] electronic configuration of the Mn(III) ion in 1 is revealed by the negative sign of its intrinsic hyperfine tensor anisotropy, Deltaa(III)=a(z)-a(x,y)=-46cm(-1). Lower spectral resolution of the Q-band EPR spectrum as compared to the X-band EPR spectrum is associated to large line width broadening of the x- and y-components in contrast to the z-component. The origins of the unequal distribution of line width between the z- and x-, y-components are discussed.  相似文献   

7.
The pH dependence of the electron paramagnetic resonance (EPR) spectrum and oxygen affinity of cobaltous porphyrin-containing myoglobin (CoMb) have been examined. The hyperfine structures of the EPR spectrum of oxy-CoMb undergo small, reversible pH-dependent changes with pK values of 5.33, 5.55, and 5.25 +/- 0.05 for proto-, meso-, and deutero-CoMb's, respectively, whereas deoxy-CoMb does not exhibit any pH dependence of its EPR spectrum. The partial pressure of oxygen at half-saturation of proto-CoMb decreases from 26 to 42 Torr on lowering the pH from 7.0 to 4.8. For comparison, we have prepared cobaltous porphyrin-containing monomeric Glycera hemoglobin (CoHb (Glycera)), in which the distal histidyl group of myoglobin is replaced by a leucyl residue, and examined the equilibria and kinetics of its oxygenation and EPR spectrum. CoHb (Glycera) has exhibited a very low oxygen affinity (p50 = 7 X 10(2) Torr at 5 degrees) and a large dissociation rate constant (more than 8 X 10(4) S-1 at 5 degrees). The EPR spectrum of oxy-CoHb (Glycera) was affected by neither pH nor replacement of H2O with D2O. Low temperature photodissociation studies by EPR and spectrophotometry have shown that the photolyzed form of the ligated hemoglobin (Glycera) is similar to its deoxy form, in contrast to myoglobin which gives a new intermediate states as the photolyzed form. These differences between CoMb and CoHb (Glycera) are interpreted with relation to the possible role of the distal histidyl residue in CoMb.  相似文献   

8.
Hanley J  Sarrou J  Petrouleas V 《Biochemistry》2000,39(50):15441-15445
The central part of the oxygen-evolving complex of photosystem II is a cluster of four manganese atoms. The known EPR spectra in the various oxidation states of the cluster are complicated by the magnetic interactions of the four Mn ions and accordingly are difficult to analyze. It has been shown recently that NO at -30 degrees C slowly reduces the cluster to a Mn(II)-Mn(III) state [Sarrou, J., Ioannidis, N., Deligiannakis, Y., and Petrouleas, V. (1998) Biochemistry 37, 3581-3587). We study herein the orientation dependence of the Mn(II)-Mn(III) EPR spectrum with respect to the thylakoid membrane plane. Both the powder and the oriented spectra are satisfactorily simulated with the same set of fine and hyperfine parameters assuming axial symmetry and collinear g and A tensors. The axial component of the tensors is found to be oriented at an angle of 20 degrees +/- 10 degrees to the membrane plane normal (mosaic spread Omega = 40 degrees ). We make the reasonable assumption that the Mn(II)-Mn(III) dimer is one of the di-mu-oxo units that has been suggested to comprise the Mn tetramer. On the basis of the sign of the hyperfine tensor anisotropy, the axial direction is assigned to the d(z(2)) orbital of Mn(III), which by comparison with synthetic model complexes is assumed to be oriented perpendicular to the Mn-(mu-oxo)-Mn plane. The present results complement earlier orientation studies by EXAFS and suggest that the Mn-(mu-oxo)-Mn plane makes a small angle (approximately 20 degrees) with the membrane plane and the axis connecting the bridging oxygens is approximately parallel to the plane.  相似文献   

9.
Yamanishi M  Ide H  Murakami Y  Toraya T 《Biochemistry》2005,44(6):2113-2118
The reaction catalyzed by adenosylcobalamin-dependent diol dehydratase proceeds by a radical mechanism. A radical pair consisting of the Co(II) of cob(II)alamin and an organic radical intermediate formed during catalysis gives EPR spectra. The high-field doublet and the low-field broad signals arise from the weak interaction of an organic radical with the low-spin Co(II) of cob(II)alamin. To characterize the organic radical intermediate in the diol dehydratase reaction, several deuterated and (13)C-labeled 1,2-propanediols were synthesized, and the EPR spectra observed in the catalysis were measured using them as substrate. The EPR spectra with the substrates deuterated on C1 showed significant line width narrowing of the doublet signal. A distinct change in the hyperfine coupling was seen with [1-(13)C]-1,2-propanediol, but not with the [2-(13)C]-counterpart. Thus, the organic radical intermediate observed by EPR spectroscopy was identified as the 1,2-propanediol-1-yl radical, a C1-centered substrate-derived radical.  相似文献   

10.
Single crystals of myoglobin nitroxide (MbNO) are examined by the electron paramagnetic resonance spectroscopy at ambient and cryogenic temperatures for both the 14NO and 15NO derivatives. The principal values and the eigenvectors of the g tensor and the hyperfine coupling tensor are determined: g xx = 2.050, g yy = 2.022, and g zz = 1.993; A xi xi = 15.6, A zeta zeta = 21.4, and A eta eta = 26.7 G for the nitrogen in 15NO at ambient temperature. The Fe--N--O bond angle is calculated to be 153 degrees. This result is in good agreement with the x-ray structural result on the six-liganded model compound with the bent Fe--N--O configuration. The principal values and the eigenvectors of the g tensor and the hyperfine coupling tensor are also determined at 77 K for Mb15NO; gxx = 2.076, gyy = 1.979, and gzz = 2.002; A xi xi = 21, A zeta zeta = 24, and A eta eta = 27 G. The Fe--N--O bond angle is calculated to be 109 degrees. The hyperfine splittings attributed to N epsilon atom of proximal histidine are observed in the direction of the gzz at both temperatures. The drastic shift of the EPR spectrum of MbNO single crystal is observed below the freezing point of this crystal. It clearly demonstrates that the conformation of the bonding NO is drastically altered upon freezing. The temperature dependence of the EPR spectra of MbNO below the freezing point cannot be explained only by appropriate combinations of the higher temperature type and the lower temperature type and suggests the contribution from an unpaired electron with the iron dz2 and dyz (or dxz) orbitals. The present EPR results demonstrated that the changes in the molecular orientations are induced by freezing of the biological molecules without disorder of the crystal lattice.  相似文献   

11.
Low-temperature photodissociation of oxygen from oxy-cobalt myoglobin was studied by single-crystal electron paramagnetic resonance (EPR) spectroscopy at 5 K. The photolyzed oxy-cobalt myoglobin exhibited an EPR spectrum consisting of two nonequivalent sets (species I and II) of the principal values and eigenvectors of the g tensors: g1I = 3.55, g2I = 3.47, and g3I = 2.26 for species I, and g1II = 2.04, g2II = 1.93, and g3II = 1.86 for species II, which resembled neither the deoxy nor the oxy form. Possible models of the photodissociated state of oxy-cobalt myoglobin are proposed by comparison with cobalt porphyrin complexes. The photolyzed product of nitric oxide-cobalt myoglobin exhibited new EPR signals at g = 4.3 and a very broad signal at around g = 2. The principal g values have been determined from the single-crystal EPR measurements: g1 = 4.39, g2 = 4.27, and g3 = 4.00. Analysis of another EPR signal around g = 2 was difficult due to its broadness. Magnetic interactions were observed. An isotropic EPR signal at g = 4.3 suggested a weakly spin-coupled system between cobaltous spin (S = 1/2 or 3/2) and nitric oxide spin (S = 1/2).  相似文献   

12.
Bender G  Poyner RR  Reed GH 《Biochemistry》2008,47(43):11360-11366
Rapid-mix freeze-quench (RMFQ) methods and electron paramagnetic resonance (EPR) spectroscopy have been used to characterize the steady-state radical in the deamination of ethanolamine catalyzed by adenosylcobalamin (AdoCbl)-dependent ethanolamine ammonia-lyase (EAL). EPR spectra of the radical intermediates formed with the substrates, [1-13C]ethanolamine, [2-13C]ethanolamine, and unlabeled ethanolamine were acquired using RMFQ trapping methods from 10 ms to completion of the reaction. Resolved 13C hyperfine splitting in EPR spectra of samples prepared with [1-13C]ethanolamine and the absence of such splitting in spectra of samples prepared with [2-13C]ethanolamine show that the unpaired electron is localized on C1 (the carbinol carbon) of the substrate. The 13C splitting from C1 persists from 10 ms throughout the time course of substrate turnover, and there was no evidence of a detectable amount of a product like radical having unpaired spin on C2. These results correct an earlier assignment for this radical intermediate [Warncke, K., et al. (1999) J. Am. Chem. Soc. 121, 10522-10528]. The EPR signals of the substrate radical intermediate are altered by electron spin coupling to the other paramagnetic species, cob(II)alamin, in the active site. The dipole-dipole and exchange interactions as well as the 1-13C hyperfine splitting tensor were analyzed via spectral simulations. The sign of the isotropic exchange interaction indicates a weak ferromagnetic coupling of the two unpaired electrons. A Co2+-radical distance of 8.7 A was obtained from the magnitude of the dipole-dipole interaction. The orientation of the principal axes of the 13C hyperfine splitting tensor shows that the long axis of the spin-bearing p orbital on C1 of the substrate radical makes an angle of approximately 98 degrees with the unique axis of the d(z2) orbital of Co2+.  相似文献   

13.
The R2 dimer of mouse ribonucleotide reductase contains a dinuclear iron-oxygen cluster and tyrosyl radical/subunit. The dinuclear diferrous form reacts with dioxygen to generate the tyrosyl radical essential for the catalytic reaction that occurs at the R1 dimer. It is important to understand how the reactivity toward oxygen is related to the crystal structure of the dinuclear cluster. For the mouse R2 protein, no structure has been available with a fully occupied dinuclear metal ion site. A cobalt substitution of mouse R2 was performed to produce a good model for the very air-sensitive diferrous form of the enzyme. X-band EPR and light absorption studies (epsilon(550 nm) = 100 mm(-1) cm(-1)/Co(II)) revealed a strong cooperative binding of cobalt to the dinuclear site. In perpendicular mode EPR, the axial signal from mouse R2 incubated with Co(II) showed a typical S = 3/2 Co(II) signal, and its low intensity indicated that the majority of the Co(II) bound to R2 is magnetically coupled. In parallel mode EPR, a typical integer spin signal (M(s) = +/-3) with g approximately 12 is observed at 3.6 K and 10 K, showing that the two Co(II) ions (S = 3/2) in the dinuclear site are ferromagnetically coupled. We have solved the 2.4 A crystal structure of the Co(II)-substituted R2 with a fully occupied dinuclear cluster. The bridging Co(II) carboxylate ligand Glu-267 adopts an altered orientation compared with its counterpart Glu-238 in Escherichia coli R2. This might be important for proper O(2) activation of the more exposed native diferrous site in mouse R2 compared with E. coli R2.  相似文献   

14.
We report the X-ray crystal structure of two analogues of human haemoglobin in the deoxy quaternary (T) state with ligand bound exclusively at the alpha haems. These models were prepared from symmetric, mixed-metal hybrid haemoglobin molecules. The structures of alpha Fe(II) beta Co(II), its carbonmonoxy derivative alpha Fe(II)CO beta Co(II), and alpha Fe(II)O2 beta Ni(II) are compared with native deoxy haemoglobin by difference Fourier syntheses at 2.8, 2.9 and 3.5 A resolution, respectively, and the refined alpha Fe(II)CO beta Co(II) structure is analysed. In both the native deoxy and liganded T molecules, the mean plane of the alpha-subunit haem is parallel with the axis of the F helix, but this plane is tilted with respect to the helix axis in the oxy-quaternary R state. The side-chains of LeuFG3 and ValFG5 sterically restrict haem tilting in the T state. We propose that strain energy develops at the contact between the haem and these residues in the liganded T-state haemoglobin, and that the strain is, in part, responsible for the low affinity of the T-state alpha haem.  相似文献   

15.
The adenosylcobalamin coenzyme-dependent ethanolamine deaminase from Salmonella typhimurium catalyzes the deamination of aminoethanol to acetaldehyde and ammonia. The radical intermediate observed during steady state turnover of substrate aminoethanol has been characterized by continuous wave electron paramagnetic resonance (EPR) spectroscopy [J. Am. Chem. Soc. 121 (1999) 10522]. This study presents simulations of EPR spectra of this radical intermediate. Quantitative fits to the EPR spectra are achieved with a model of isotropic exchange and magnetic dipolar interaction between the substrate-derived radical and the Co(II) in the corrin ring. The simulated parameters are compared with those of substrate analog 2-aminopropanol-derived radical in the same enzyme. The comparison confirms that the aminoethanol-derived product radical interacts more weakly with the Co(II) than the 2-aminopropanol-derived radical and suggests that the reduction of isotropic exchange between the aminoethanol-derived product radical and the Co(II) is probably due to orientational-dependent wave function overlap. Successful fits to the radical line shapes of different isotope substitutions unequivocally establish that the observed radical intermediate is an pi-electron-based product radical. The derived principal hyperfine values for the 13C(alpha) and 1H(alpha) nucleus are consistent with previous electron nuclear double resonance (ENDOR) studies on similar radicals, thus providing reliable experimental hyperfine coupling constants for comparison with quantum mechanical-based calculations to gain further insight into the molecular structure of the observed radical.  相似文献   

16.
A triplet spin system (S=1) is detected by low-temperature electron paramagnetic resonance (EPR) spectroscopy in samples of diol dehydrase and the functional adenosylcobalamin (AdoCbl) analogue 5'-deoxy-3',4'-anhydroadenosylcobalamin (anAdoCbl). Different spectra are observed in the presence and absence of the substrate (R,S)-1,2-propanediol. In both cases, the spectra include a prominent half-field transition (DeltaM(S) = 2) that is a hallmark of strongly coupled triplet spin systems. The appearance of 59Co hyperfine splitting in the EPR signals and the positions (g values) of the signals in the spectra show that half of the triplet spin is contributed by the low-spin Co2+ of cob(II)alamin. Line width effects from isotopic labeling (13C and 2H) in the 5'-deoxy-3',4'-anhydroribosyl ring demonstrate that the other half of the spin triplet is from an allylic 5'-deoxy-3',4'-anhydroadenosyl (anhydroadenosyl) radical. The zero-field splitting (ZFS) tensors describing the magnetic dipole-dipole interactions of the component spins of the triplets have rhombic symmetry because of electron spin delocalization within the organic radical component and the proximity of the radical to the low-spin Co2+. The dipole-dipole interaction was modeled as a summation of point-dipole interactions involving the spin-bearing orbitals of the anhydroadenosyl radical and cob(II)alamin. Geometries which are consistent with the ZFS tensors in the presence and absence of the substrate position the 5'-carbon of the anhydroadenosyl radical 3.5 and 4.1 A from Co2+, respectively. Homolytic cleavage of the cobalt-carbon bond of the analogue in the absence of the substrate indicates that, in diol dehydrase, binding of the coenzyme to the protein weakens the bond prior to binding of the substrate.  相似文献   

17.
Single crystals of oxyproto- and oxymesocobalt myoglobin have been examined by electron paramagnetic resonance spectroscopy at ambient and cryogenic temperatures in order to determine the principal values and eigenvectors of g tensors and the hyperfine coupling tensors. The Co--O--O bond angle was determined to be 125 degrees +/- 5 degrees for oxyprotocobalt myoglobin, and 153 degrees +/- 5 degrees for oxymesocobalt myoglobin at ambient temperature. This result suggests that differences in stereochemical interactions of the modified 2,4-side chains of porphyrin with protein contribute to the ligand orientations as well as the altered ligand-binding behavior in these hemoproteins. Upon freezing, two unequivalent orientations of the O--O axis (species I and II) were found in both oxycobalt myoglobin single crystals. Shifts of the resonance spectra of these species were observed below the freezing point of the crystals. The signal intensities of two paramagnetic species in oxyprotocobalt myoglobin were approximately equivalent (I congruent to II), whereas those in oxymesocobalt myoglobin were quite different (I greater than II) at 77 K. The present electron paramagnetic resonance studies demonstrate that changes in the bonding structure of Co--O2 are induced upon freezing the biological macromolecule, including the movement of the residues of the heme environment.  相似文献   

18.
The dinuclear copper enzyme tyrosinase (Ty) from genetically engineered Streptomyces antibioticus has been investigated in its paramagnetic half-met form [Cu(I)-Cu(II)]. The cw EPR, pulsed EPR, and hyperfine sublevel correlation spectroscopy (HYSCORE) experiments on the half-met-Ty and on its complexes with three different types of competitive inhibitor are reported. The first type includes p-nitrophenol, a very poor substrate for the monooxygenase activity of Ty. The second type comprises hydroxyquinones, such as kojic acid and l-mimosine, and the third type of inhibitor is represented by toluic acid. The electronic and structural differences of the half-met-Ty form induced at the cupric site by the different inhibitors have been determined. Probes of structural effects are the hyperfine coupling constants of the non coordinating Ndelta histidyl nitrogens. By using the available crystal structures of hemocyanin as a template in combination with the spectroscopic results, a structural model for the active site of half-met-Ty is obtained and a model for the binding modes of both mono- and diphenols could be proposed.  相似文献   

19.
In order to clarify the role of salt-bridges in hemoglobin, the oxygen equilibrium curves and electron paramagnetic resonance (EPR) spectra of cobalt-iron hybrid hemoglobins were determined. The EPR spectra of deoxy alpha(Co)2 beta(Fe)2 could be interpreted as a mixture of two distinct paramagnetic species: one showed a maximum of the first derivative spectrum at g = 2.39 and the other at g = 2.33. The oxygen equilibrium curves of the hybrid indicated that the former is assignable to the T structure and the latter to the R structure. The cooperativity of oxygen binding of alpha(Co)2 beta(Fe)2 exhibited a maximum at g = 2.33, which is characteristic of the R structure, regardless of the pH. Addition of inositol hexaphosphate (IHP) to des-Arg alpha(Co)2 beta(Fe)2 restored the cooperativity of oxygen binding, which implies that the deoxygenated form of des-Arg alpha(Co)2 beta(Fe)2 is converted to the T structure upon addition of IHP. However, the EPR signal at g = 2.39 was not restored upon conversion to the T structure by addition of IHP. It is therefore concluded that the EPR spectrum of the deoxy alpha(Co) subunit depends both on the quaternary structure and on the localized strain at the heme.  相似文献   

20.
The Photosystem I (PS I) reaction center contains two branches of nearly symmetric cofactors bound to the PsaA and PsaB heterodimer. From the x-ray crystal structure it is known that Trp697PsaA and Trp677PsaB are pi-stacked with the head group of the phylloquinones and are H-bonded to Ser692PsaA and Ser672PsaB, whereas Arg694PsaA and Arg674PsaB are involved in a H-bonded network of side groups that connects the binding environments of the phylloquinones and FX. The mutants W697FPsaA, W677FPsaB, S692CPsaA, S672CPsaB, R694APsaA, and R674APsaB were constructed and characterized. All mutants grew photoautotrophically, yet all showed diminished growth rates compared with the wild-type, especially at higher light intensities. EPR and electron nuclear double resonance (ENDOR) studies at both room temperature and in frozen solution showed that the PsaB mutants were virtually identical to the wild-type, whereas significant effects were observed in the PsaA mutants. Spin polarized transient EPR spectra of the P700+A1- radical pair show that none of the mutations causes a significant change in the orientation of the measured phylloquinone. Pulsed ENDOR spectra reveal that the W697FPsaA mutation leads to about a 5% increase in the hyperfine coupling of the methyl group on the phylloquinone ring, whereas the S692CPsaA mutation causes a similar decrease in this coupling. The changes in the methyl hyperfine coupling are also reflected in the transient EPR spectra of P700+A1- and the CW EPR spectra of photoaccumulated A1-. We conclude that: (i) the transient EPR spectra at room temperature are predominantly from radical pairs in the PsaA branch of cofactors; (ii) at low temperature the electron cycle involving P700 and A1 similarly occurs along the PsaA branch of cofactors; and (iii) mutation of amino acids in close contact with the PsaA side quinone leads to changes in the spin density distribution of the reduced quinone observed by EPR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号